Logic-based Truth Maintenance System (LTMS)

- Incrementally maintains consequences of a propositional theory
 - incrementally manages addition and deletions from
- is a set of propositional clauses
 - a *clause* is disjunction of propositional literals
 - a *unit clause* is a clause with exactly one disjunct
 - a *literal* is a proposition or the negation of a proposition

 \neg rain \neg umbrella dry

- a clause can be read as an implication in different ways

rain umbrella dry rain ¬ dry ¬umbrella

Generic LTMS interface

- Updating the clauses in
 - add-clause (clause,)
 - delete-clause (clause,)
- Propositional inference
 - consistent? ()
 - follows-from? (literal,)
- Justification structure
 - supporting-clause (literal,
 - *supporting-literals* (*literal*,)
 - the *supporting-clause* together with the *supporting-literals* entail *literal*
 - each literal in *supporting-literals* follows from
 - is a special literal denoting a contradiction

Using the LTMS in diagnosis

- LTMS database contains clauses describing component behavior in each mode (*SD*)
- Search algorithm adds and deletes clauses corresponding to assumptions that a component is in a particular mode
 - checks that is consistent
 - justification structure is used to generate conflicts from an inconsistent

LTMS labels

- The LTMS labels each proposition true, false, or unknown
 - if *p* is labeled *true* (*false*), then logically entails $p(\neg p)$
 - labeling algorithm is *sound*, but not necessarily *complete*

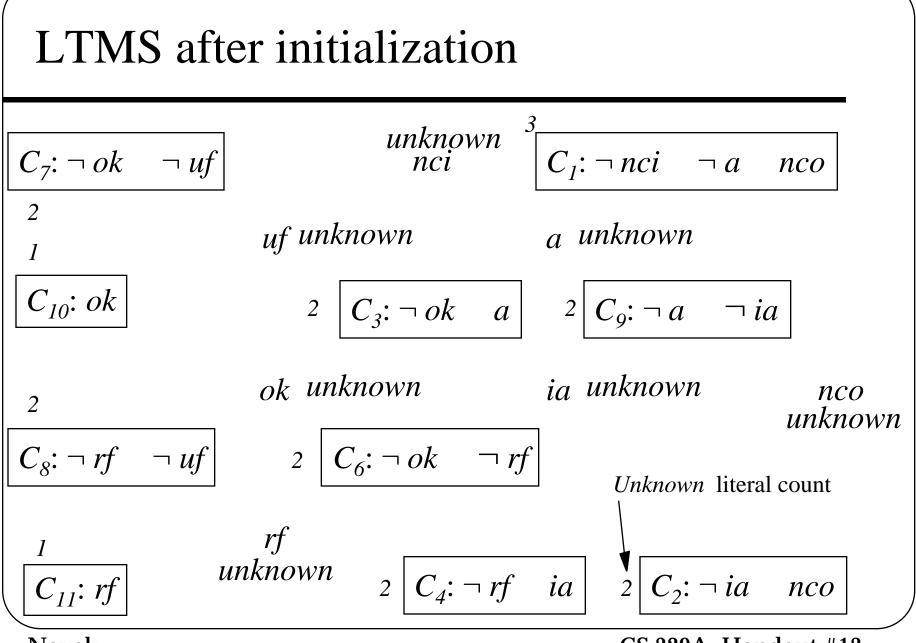
Labels

p: true	u: unknown
q: true	v:unknown
r: true	
s: false	

Conflicting clauses

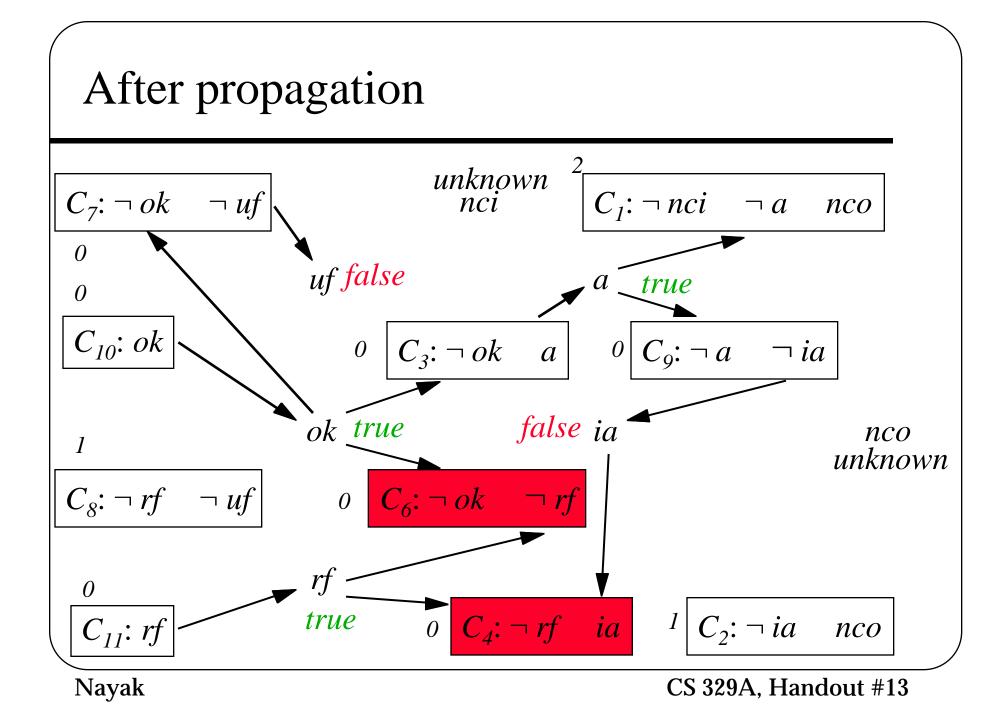
- A *conflicting clause* is one in which all literals are labeled *false*
 - $-\neg p \neg q$ *r* is a conflicting clause if the labels are *p: true, q: true, r: false*
- Existence of a conflicting clause means that is *inconsistent*
- If is inconsistent, *supporting-clause*(,) returns a conflicting clause and *supporting-literals*(,) returns the set of literals in that clause

Unit propagation at the *fringe*

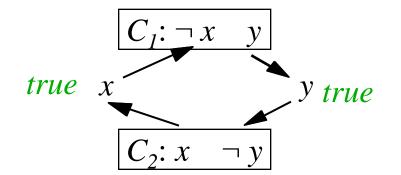

- Unit propagation takes place at the *fringe*, which consists of all clauses that have
 - exactly one literal labeled *unknown*
 - all other literals labeled *false*
- Basic unit propagation algorithm
 - select a clause from the *fringe* and propagate until the *fringe* is empty or a conflicting clause is detected

Updating *fringe* and *conflicts*

- *fringe* and *conflicts* updated when a proposition's label changes
 - only clauses in which the proposition occurs can update *fringe* or *conflicts*
- Membership in *fringe* and *conflicts* determined *incrementally*
 - track the count of literals in the clause labeled *unknown*
 - decrement (increment) the count when an *unknown* (*true* or false) literal becomes *true* or *false* (*unknown*)
 - track whether the clause is satisfied (*i.e.*, contains a literal labeled *true*)


A clause is added to (removed from) the *fringe* if the *unknown* literal count becomes (changes from) 1 and it is not (or it is) satisfied

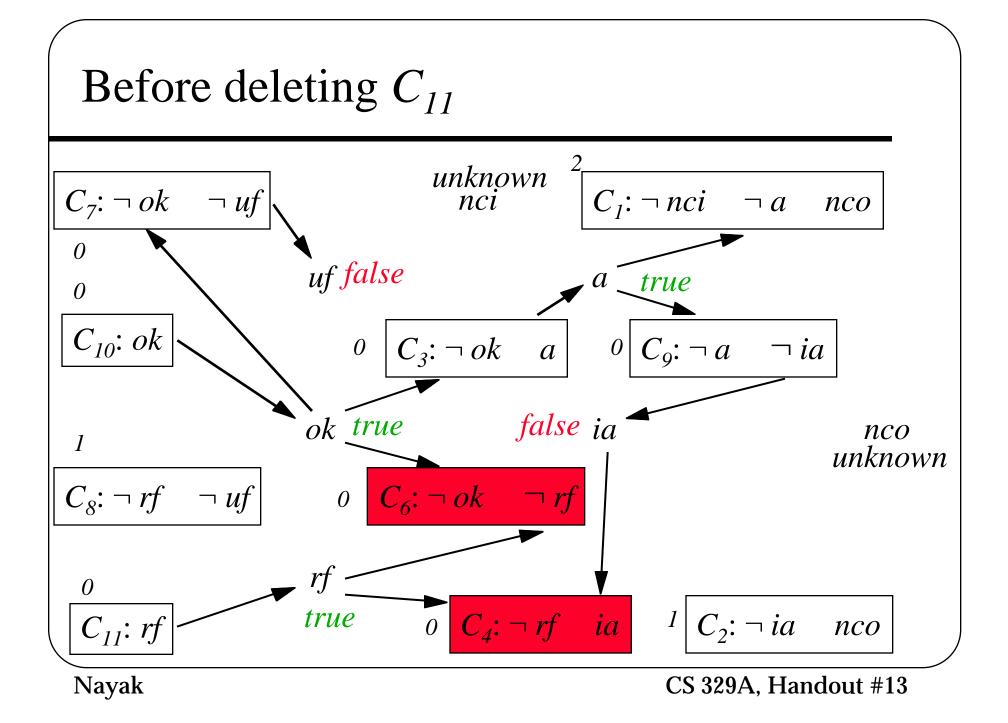
A clause is added to (removed from) the *conflicts* if the *unknown* literal count becomes (changes from) 0 and it is not (or it is) satisfied


Nayak

CS 329A, Handout #13

Well-founded support

- Proposition supports generated by unit propagation form a directed acyclic graph Unit propagation produces well-founded support
- *Non-well-founded support* contains cycles in the support graph



Implementing the generic interface

- consistent? ()
 - returns *true* iff has no conflicts after unit propagation terminates
- follows-from? (literal,)
 - returns *literal*'s label after unit propagation terminates
- *supporting-clause* (literal,) *supporting-literals* (literal,)
 - returns the clause and literals, respectively, that support *literal* after unit propagation terminates

Incrementally modifying

- add-clause (clause,)
 - update *clause*'s *unknown* literal count and whether it is satisfied
 - update 's *fringe* and *conflicts* appropriately
 - call *propagate* ()
 need only do propagations (directly or indirectly) dependent on *clause*
- delete-clause (clause,)
 - follow the support structure to set the label of all propositions (directly or indirectly) supported by *clause* to *unknown*
 - update 's *fringe* and *conflicts* as labels are changed only propagations (directly or indirectly) dependent on *clause* are undone
 - call *propagate* ()

