

Model-based diagnosis system

A diagnosis system is a triple (SD, COMPS, OBS)

- SD is a system description
 - expressed as a set of constraints, propositional clauses, first-order formulae ...
- *COMPS* is finite set of *components*
 - a component *c* can be failed, AB(c), or normal, $\neg AB(c)$
 - SD specifies the consequences of a component being normal or failed
- OBS is a set of observations
 - expressed as variable values, propositional clauses, firstorder formulae...

• Given a set of components Δ subset of *COMPS*, a *candidate* is

 $Cand() = {}_{c \in \Delta}AB(c) \qquad {}_{c \quad COMPS \setminus \Delta} \neg AB(c)$

- A candidate *Cand()* is a *diagnosis* if and only if *SD OBS Cand()* is satisfiable
- Handles single and multiple fault cases
- Does not require fault models

Conflicts

- A *conflict* is a disjunction of *AB*(...) literals entailed by *SD OBS*
 - for conflict *conf* : *SD* $OBS \neg conf$ is inconsistent
- **Theorem:** Let be the set of conflicts of a system. A candidate $Cand(\Delta)$ is a diagnosis if and only if $Cand(\Delta)$

is satisfiable

- Conflicts can be generated during consistency checking
- Can focus consistency checking

- Diagnosis can become indiscriminate without fault models
- Each component has a set of *modes* with associated models
 - normal modes
 - fault modes
- Each component has the *unknown* fault mode with the empty model
- Each mode has an associated *probability*
- Diagnosis is the combinatorial optimization problem of finding the most likely component modes

Combinatorial optimization problem

- A combinatorial optimization problem is a tuple (V, f, c)
- V is a set of *discrete* variables with *finite* domains
- An *assignment* maps each $v \in V$ to a value in v's domain
- *f* is a function that decides *feasibility* of assignments
 f(a) returns *true* if and only if assignment *a* is feasible
- *c* is a function that returns the *cost* of an assignment
 - c(a) is the cost of assignment a
 - assignment a_1 is *preferred* over assignment a_2 if $c(a_1) < c(a_2)$
- Problem:

min c(V) st f(V)

• Each variable has an associated cost of assigning it a value

- $c(v_i = l_i)$ is the cost of assigning value l_i to variable v_i

• Cost of a complete assignment is the *sum* of the costs of the individual variable assignments

- if assignment *a* is $v_1 = l_1, ..., v_n = l_n$ then $c(a) = {}_i c(v_i = l_i)$

• Costs of all variable values are non-negative

 $-c(v_i=l_i) \quad 0$

- Each variable has a minimum cost value with cost 0
 - generating a least cost assignment is straightforward
 - each variable is assigned a value with cost 0

Using the simple cost model

- Most probable diagnosis with *independent* component failures $p(v_1 = l_1, ..., v_n = l_n) = p(v_1 = l_1) \times ... \times p(v_n = l_n)$
 - let m_i be the most probable mode for component v_i

$$- c(v_i = l_i) = - \log(p(v_i = l_i) / p(v_i = m_i))$$

all costs are non-negative with $c(v_i = m_i) = 0$

for any assignments a_1 and a_2 , $c(a_1) - c(a_2)$ iff $p(a_1) - p(a_2)$

Best first search

function *BFS*(*V*, *f*, *c*)

Initialize *Agenda* to a least cost assignment Initialize *Solutions* to the empty set **while** *Agenda* is non-empty **do**

Let *A* be one of the least cost assignments in *Agenda* Remove *A* from *Agenda*

if f(A) is true then Add A to Solutions

Add *immediate successor* assignments of A to Agenda

if enough solutions then return Solutions

endwhile

return Solutions

end BFS

Required subroutines for BFS

- Generating a least cost assignment
- Generating the immediate successors of an assignment
 - *completeness*: every feasible assignment must be the (eventual) successor of the least cost assignment
 - *monotonicity*: if *b* is an immediate successor of *a*, then $c(a) \quad c(b)$
- Deciding that enough solutions have been generated
 - maximum number of solutions
 - minimum difference between cost of best feasible solution and the cost of the best assignment on the *Agenda*
 - minimum difference between costs of the last two assignments

Representing assignments

• Each assignment is represented by the set of variable values that *differ* from the least cost assignment

$$dom(v_1) = \{a_1, b_1, c_1\} \qquad c(v_i = a_i) = 0$$

$$dom(v_2) = \{a_2, b_2, c_2\} \qquad c(v_i = b_i) = 1$$

$$dom(v_3) = \{a_3, b_3, c_3\} \qquad c(v_i = c_i) = 2$$

- Least cost assignment { $v_1 = a_1$, $v_2 = a_2$, $v_3 = a_3$ }
- Assignment { $v_1 = a_1$, $v_2 = a_2$, $v_3 = b_3$ } represented as just { $v_3 = b_3$ }

Basic successor function

- Assignment A_2 is an *immediate* successor of assignment A_1 if
 - the representation of A_1 is a *subset* of the representation of A_2 ;
 - the representations of A_1 and A_2 differ by exactly one variable value
 - *e.g.*, $\{v_3 = b_3\}$ is an immediate successor of $\{\}$
 - *e.g.*, $\{v_3=b_3, v_2=b_2\}$ is an *eventual* successor, but *not* an immediate successor, of $\{\}$
- Definition of immediate successors is
 - *complete*: all assignments are eventual successors of the least cost assignment
 - *monotonic*: if A_2 is an immediate successor of A_1 , then $c(A_1) \quad c(A_2)$

Using conflicts

- *Requirement*: whenever *f* determines that an assignment is infeasible, it returns a conflict
 - if assignment A is infeasible, then A itself is trivially a conflict
 - ideally, *f* should return a *minimal* infeasible subset of *A* as a conflict
 - conflicts can be generated using dependency tracking in a truth maintenance system

Focusing with conflicts

• Lemma: Let A_2 be an (eventual) successor of A_1 such that A_1 is subsumed by a conflict N, but A_2 is not. Then there exists an immediate successor A_3 of A_1 that is not subsumed by N such that A_2 is an (eventual) successor of A_3 .

If an assignment A_1 is infeasible and is subsumed by a conflict N, then we need only generate those immediate successors of A_1 that are *not* subsumed by N

- the lemma ensures that completeness is preserved
- the smaller the conflict, the fewer the immediate successors

CS 329A, Handout #13

Decreasing agenda size

- Agenda size can be problematic in a best first search
 - for a branching factor b, agenda grows to size O(bk) after k checks
 - inserting *b* elements into the agenda after *k* checks is $O(b \log b + b \log k)$
- Immediate successors of an assignment are totally ordered
 - non-least cost successors only checked after least cost successor

Insert only least cost successor onto agenda

Sort remaining successors

Each assignment has exactly two successors

- least cost immediate successor
- next more expensive sibling
- Size of the agenda is *bounded by* the number of checks
 - inserting b successors after k checks is $O(b \log b + 2\log k)$