CSE 573: Artificial Intelligence

Search

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Today

= Agents that Plan Ahead
= goal-based

= Search Problems

= Uninformed Search Methods

= Depth-First Search
= Breadth-First Search

= Uniform-Cost Search

Planning Agents

Planning agents decide based on
evaluating future action sequences

Must have a model of how the world
evolves in response to actions

Usually have a definite goal

Optimal: Achieve goal at least cost

Optimal?

SCORE: 0

Precompute optimal plan, execute it

SCORE: 0

Search Problems

Search Problems

= A search problem consists of:

- nsaespace s [l [I Y

" Aninitial state s,
= Actions _A4(s) in each state

1S N -9 u

* Transition model Result(s,a) !<

= Agoal test G(s) - !
= S has no dots left

= Action cost c(s,a,s’)
= +]1 per step; -10 food; -500 win; +500 die; -200 eat ghost

= A solution is an action sequence that reaches a goal state
= An optimal solution has least cost among all solutions

Search Problems Are Models

A

SIS

Example: Traveling in Romania

Oradea

Arad

Fagaras

118

Timisoara

111

Lugoj
70
Mehadia
75
Drobeta 120

80

Rimnicu Vilcea

Craiova

138

Pitesti

Neamt
87
Iasi
92
Vaslui
’11 142
98 .
85 Hirsova
101 Urziceni
86
Bucharest
90
Giurgiu Eforie

= State space:

= (Cities
Initial state:

= Arad
Actions:

= Go to adjacent city
Transition model:

= Reach adjacent city
Goal test:

= 5 =Bucharest?
Action cost:

m Road distance fromstos’

Solution?

Models are almost always wrong

= T WT
o E Microsofi®
g8 g Ly . Point’
e & = F =
& cC =< °& = y
< i) ICELAND
> e
» = § e i
< * o 2 e
o 2] PRI
T: » /E puzar ATLANTIC :
> 12.8(°%: [E Pl -
2 " Helsinki Tver
w %o y e Teldngfors
| = Riga@ A
j? E, .;f“§m¢MHEE@ ;

¥Vilnius i~ g
) L
Biatystok 7, BELARUS

POLAHD i/~ Kiev g

z

i ROMAHIA =

S0 1000

200 400 [=1H]]

Start: Haugesund, Rogaland, Morway

Emd: Trondheim, Sar-Trendelag, Morway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. nofalltidmoro

What’s in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing (= path finding)

= States: (x,y); location

= Actions: NSEW

®= Transition: update x,y value
= Goal test: is (x,y)=destination

= Problem: Eat-All-Dots

States: pacman location,
boolean for each food

Actions: NSEW

Transition: update x,y and
possibly a dot Boolean

Goal test: dots all false

State Space Sizes

= World state:
= Agent positions: 120
= Food count: 30

" Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%x(12%)x4
= States for pathing (path finding)?
120
= States for eat-all-dots?
120x(239)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

¥

V]

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct the
tree on demand —
and we construct as
little as possible.

-

<
e
————— S
b e h r
I — N 1
a r p gq f
N 1 J -
p f q C G
[] /\
q c G d

Search Tree

~

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
AN
a b
© ONAYA
b G a G
N\ N\
a/ G é G

/N /N

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many unique states within d steps of start?

How many states in search tree of depth d?

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid:

How many unique states within d steps of start?

Enumerate after step 1:
{44+8 4+8+12,..}

How many states in search tree of depth d?

= O(4d)

Tree Search

Search Example: Romania

Oradea
Neamt
Zerind 87
75 151
Iasi
Arad
- 92
Sibiu 99 Fagaras
118 Vaslui
80
. . Rimnicu Vilcea
Timisoara
142
ol . 211
111 Lugoj Pitesti
70 98
. 85 Hirsova
Mehadia 101 Urziceni
86
75 138 Bucharest
Drobeta 120
90

Craiova Giurgiu Eforie

Creating the search tree

- N T =—o
- N ~~-
- N S~
- N -~
N ~— o
N S~
N S~
N -
N ~——_
- :‘_z--—__\
- -
Tlmlsoara D C Zerind >
~
/7 N\ VAR
/7 \ / \
Ve \ 7 N
/7 \ V4 N
/ \ / S
7 \ Vs N
7 \ / N\
Ve \ / AN
\ ~< Ve \ / N
=== e ——— e —— /_.._h__._\ _ _—-‘—5_5\ _— e m———— == - —_—————
" Arad D Fagaras Oradea > CRimnicu Vileea > C_Arad > < Lugoj _Arad D Oradea »
S —— _ ~—_;\——’ ~—_./<——’ SN—— —_—-—— S~ —_ _ S~ ._.—" = - _——K———
//T\\\ RN RN ///I\\\ ///T\\\ // S ///T\\\ RN
| S e N ped N pad | S e | SN e N e | SN yed >

N

Creating the search tree

\\ Vi N

- — e ——— o —— - —— o —— e —— =t —— -

CArad > CFagaras™ Oradea™ CRminien> < Arad > <CLugoj > <_Arad > < Oradea
///I \\\ ///"\\\ ////‘\\\ //:;I :\\ ////I \\\ ///W\\\ ////—l \\\ ///—K\\\

e | ~ 7 N 7 N\ Ve | ~ ~ | ~ 7 N\ Ve | ~ 7 N

// \\
r | ~
r 1 ~
' ~

Creating the search tree

<«

L S
Fagaras Oradea Rimnicu Vilcea _Arad > < Lugoj »
— par i N e
e N 7 N / | \ S S s
// N d NS e | SN //

_—— _-._

~ -
—_—— ——

S~ -
—_—— S

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

= Main variations:
= Which |leaf node to expand next
= Whether to check for repeated states
= Data structures for frontier, expanded nodes

Systematic search

frontier

reached =

unexplored expanded U frontier

expanded

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded

b. Adds nodes from unexplored into frontier, maintaining property 1

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Frontieris a LIFO stack

(last in first out)

Depth-First Search

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

’
Space complexity? 1 node
b nodes
b? nod
Cartoon of search tree: noeges
. : m tiers <
= bis the branching factor
= mis the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
" 1+b+b%+...b"=0(bM)

Remember O(..) is the upper bound of the function

Depth-First Search (DFS) Properties

= What nodes does DFS expand?

= Some left prefix of the tree down to depth m. 1 node
" Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
] m tiers <
= How much space does the frontier take?
®= Only has siblings on path to root, so O(bm)
" |s it complete? b™ nodes

= m could be infinite
» preventing cycles may help (more later)

" |sit optimal?

= No, it finds the “leftmost” solution, regardless
of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Frontieris a FIFO

Breadth-First Search

queue
(first in first out)
/
Search
Tiers

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest solution - b 1 node
= Let depth of shallowest solution be s stiers < b nodes
= Search takes time O(b°) / b2 nodes
= How much space does the frontier take? " / o \ b* nodes
= Has roughly the last tier, so O(b°)
@,
" |s it complete? o b™ nodes

= s must be finite if a solution exists, so yes!

" |s it optimal?
= |f costs are equal (e.g., 1)

Quiz: DFS vs BFS

Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

= When will BFS outperform DFS?

= When will DFS outperform BFS?

Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

= When will BFS outperform DFS?
= S<< M

= When will DFS outperform BFS?
*S~=M

Example: Maze Water DFS/BFS (part 1)

T IR . (ol 1 1 £ KA LT L] 1L N —

Example: Maze Water DFS/BFS (part 2)

8 O O Search Strategies Demo

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s time
/ shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" |sn’t that wastefully redundant?

/ A\
/ \

A

= Generally most work happens in the lowest level
searched, so not so bad!

= Also useful for the meta data

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

g(n) = cost from root to n
Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

Uniform Cost Search

Cost <
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?
= Processes all nodes with cost less than cheapest solution!

= |f solution costs C* and arcs cost at least &, then C*/¢ is
effective depth (upper bound on depth of solution)

= Takes time O(b®"¢) (exponential in effective depth)
C*/e “tiers”

= How much space does the frontier take?
* Has roughly the last tier, so O(b®"¢)

" |sit complete?

= Assuming C* is finite and € >0, yes!

= [sit optimal?
= Yes! (Proof next lecture via A*)

Video of Demo Empty UCS

‘@00 Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)

‘® 00 Search Strategies Demo [

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

®00 ——— Search Strategies Demo

	Slide 1: CSE 573: Artificial Intelligence
	Slide 2: Today
	Slide 3: Planning Agents
	Slide 4: Optimal?
	Slide 5: Precompute optimal plan, execute it
	Slide 6: Search Problems
	Slide 7: Search Problems
	Slide 8: Search Problems Are Models
	Slide 9: Example: Traveling in Romania
	Slide 10: Example: Traveling in Romania
	Slide 11: Models are almost always wrong
	Slide 13: What’s in a State Space?
	Slide 14: State Space Sizes
	Slide 15: State Space Graphs and Search Trees
	Slide 16: State Space Graphs
	Slide 17: State Space Graphs
	Slide 18: State Space Graphs vs. Search Trees
	Slide 19: Quiz: State Space Graphs vs. Search Trees
	Slide 20: Quiz: State Space Graphs vs. Search Trees
	Slide 21: Quiz: State Space Graphs vs. Search Trees
	Slide 22: Quiz: State Space Graphs vs. Search Trees
	Slide 23: Tree Search
	Slide 24: Search Example: Romania
	Slide 25: Creating the search tree
	Slide 26: Creating the search tree
	Slide 27: Creating the search tree
	Slide 28: General Tree Search
	Slide 29: Systematic search
	Slide 30: Depth-First Search
	Slide 31: Depth-First Search
	Slide 32: Search Algorithm Properties
	Slide 33: Search Algorithm Properties
	Slide 34: Depth-First Search (DFS) Properties
	Slide 35: Breadth-First Search
	Slide 36: Breadth-First Search
	Slide 37: Breadth-First Search (BFS) Properties
	Slide 38: Quiz: DFS vs BFS
	Slide 39: Quiz: DFS vs BFS
	Slide 40: Quiz: DFS vs BFS
	Slide 41: Example: Maze Water DFS/BFS (part 1)
	Slide 42: Example: Maze Water DFS/BFS (part 2)
	Slide 43: Iterative Deepening
	Slide 44: Cost-Sensitive Search
	Slide 45: Uniform Cost Search
	Slide 46: Uniform Cost Search
	Slide 47: Uniform Cost Search (UCS) Properties
	Slide 48: Video of Demo Empty UCS
	Slide 49: Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)
	Slide 50: Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

