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Today

▪ Agents that Plan Ahead
▪ goal-based

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search



Planning Agents

▪ Planning agents decide based on 
evaluating future action sequences

▪ Must have a model of how the world 
evolves in response to actions

▪ Usually have a definite goal

▪ Optimal: Achieve goal at least cost



Optimal? 



Precompute optimal plan, execute it



Search Problems



Search Problems

▪ A search problem consists of:

▪ A state space S 
▪ An initial state s0

▪ Actions A(s) in each state
▪ Transition model Result(s,a)
▪ A goal test G(s)

▪ S has no dots left

▪ Action cost c(s,a,s’)
▪ +1 per step; -10 food; -500 win; +500 die; -200 eat ghost

▪ A solution is an action sequence that reaches a goal state
▪ An optimal solution has least cost among all solutions
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Search Problems Are Models



Example: Traveling in Romania



Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Initial state:

▪ Arad

▪ Actions:
▪ Go to adjacent city

▪ Transition model:

▪ Reach adjacent city

▪ Goal test:
▪ s = Bucharest?

▪ Action cost:

▪ Road distance from s to s’

▪ Solution?



Models are almost always wrong



What’s in a State Space?

▪ Problem: Pathing (= path finding)
▪ States: (x,y); location

▪ Actions: NSEW

▪ Transition: update x,y value

▪ Goal test: is (x,y)=destination

▪ Problem: Eat-All-Dots
▪ States: pacman location, 

boolean for each food

▪ Actions: NSEW

▪ Transition: update x,y and 
possibly a dot Boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)



State Space Sizes

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120x(230)x(122)x4

▪ States for pathing (path finding)?

 120

▪ States for eat-all-dots?

 120x(230)



State Space Graphs and Search Trees



State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only 
once!

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea



State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only 
once!

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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search problem



State Space Graphs vs. Search Trees
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We construct the 
tree on demand – 

and we construct as 
little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.
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Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?



Quiz: State Space Graphs vs. Search Trees
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Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: 

(a) (b) (c)

How many unique states within d steps of start?

How many states in search tree of depth d?



Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many unique states within d steps of start?

Enumerate after step 1:  
                  {4, 4 + 8, 4 + 8 + 12, …}

How many states in search tree of depth d?
 
 = O(4^d)

(a) (b) (c)



Tree Search



Search Example: Romania



Creating the search tree
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General Tree Search

▪ Main variations: 
▪ Which leaf node to expand next
▪ Whether to check for repeated states
▪ Data structures for frontier, expanded nodes



Systematic search

expanded

frontier

unexplored

reached = 
expanded U frontier 

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded
b. Adds nodes from unexplored into frontier, maintaining property 1



Depth-First Search



Depth-First Search
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Strategy: expand a 
deepest node first

Implementation: 
Frontier is a LIFO stack

(last in first out)



Search Algorithm Properties



Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

Remember O(..) is the upper bound of the function

…
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Depth-First Search (DFS) Properties

…
b

1 node
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m tiers

▪ What nodes does DFS expand?
▪ Some left prefix of the tree down to depth m.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the frontier take?

▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite

▪ preventing cycles may help (more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless 

of depth or cost



Breadth-First Search



Breadth-First Search
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Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the frontier take?

▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ If costs are equal (e.g., 1)

…
b
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s tiers
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Quiz: DFS vs BFS



Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth) 

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?



Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth) 

▪ When will BFS outperform DFS?

▪ S << M

▪ When will DFS outperform BFS?

▪ S ~= M



Example: Maze Water DFS/BFS (part 1)



Example: Maze Water DFS/BFS (part 2)



Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s time 
/ shallow-solution advantages

▪ Run a DFS with depth limit 1.  If no solution…

▪ Run a DFS with depth limit 2.  If no solution…

▪ Run a DFS with depth limit 3.  …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest level 
searched, so not so bad!

▪ Also useful for the meta data



Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path.  We will now cover
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search



Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If solution costs C* and arcs cost at least  , then C*/  is 
effective depth (upper bound on depth of solution)

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the frontier take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?

▪ Assuming C* is finite and  > 0, yes!

▪ Is it optimal?
▪ Yes!  (Proof next lecture via A*)

b

C*/  “tiers”
g  3

g  2

g  1



Video of Demo Empty UCS



Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)



Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)
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