
CSE 573: Artificial Intelligence

Search

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Today

▪ Agents that Plan Ahead
▪ goal-based

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

Planning Agents

▪ Planning agents decide based on
evaluating future action sequences

▪ Must have a model of how the world
evolves in response to actions

▪ Usually have a definite goal

▪ Optimal: Achieve goal at least cost

Optimal?

Precompute optimal plan, execute it

Search Problems

Search Problems

▪ A search problem consists of:

▪ A state space S
▪ An initial state s0

▪ Actions A(s) in each state
▪ Transition model Result(s,a)
▪ A goal test G(s)

▪ S has no dots left

▪ Action cost c(s,a,s’)
▪ +1 per step; -10 food; -500 win; +500 die; -200 eat ghost

▪ A solution is an action sequence that reaches a goal state
▪ An optimal solution has least cost among all solutions

N

E -9

-9

Search Problems Are Models

Example: Traveling in Romania

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Initial state:

▪ Arad

▪ Actions:
▪ Go to adjacent city

▪ Transition model:

▪ Reach adjacent city

▪ Goal test:
▪ s = Bucharest?

▪ Action cost:

▪ Road distance from s to s’

▪ Solution?

Models are almost always wrong

What’s in a State Space?

▪ Problem: Pathing (= path finding)
▪ States: (x,y); location

▪ Actions: NSEW

▪ Transition: update x,y value

▪ Goal test: is (x,y)=destination

▪ Problem: Eat-All-Dots
▪ States: pacman location,

boolean for each food

▪ Actions: NSEW

▪ Transition: update x,y and
possibly a dot Boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120x(230)x(122)x4

▪ States for pathing (path finding)?

 120

▪ States for eat-all-dots?

 120x(230)

State Space Graphs and Search Trees

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

State Space Graphs vs. Search Trees

S

G

d

b

p q

c

e

h

a

f

r

We construct the
tree on demand –

and we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s

b

b G a

a

G

a G b G

… …

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid:

(a) (b) (c)

How many unique states within d steps of start?

How many states in search tree of depth d?

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many unique states within d steps of start?

Enumerate after step 1:
 {4, 4 + 8, 4 + 8 + 12, …}

How many states in search tree of depth d?

 = O(4^d)

(a) (b) (c)

Tree Search

Search Example: Romania

Creating the search tree

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Creating the search tree

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Creating the search tree

General Tree Search

▪ Main variations:
▪ Which leaf node to expand next
▪ Whether to check for repeated states
▪ Data structures for frontier, expanded nodes

Systematic search

expanded

frontier

unexplored

reached =
expanded U frontier

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded
b. Adds nodes from unexplored into frontier, maintaining property 1

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

(last in first out)

Search Algorithm Properties

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

Remember O(..) is the upper bound of the function

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes does DFS expand?
▪ Some left prefix of the tree down to depth m.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the frontier take?

▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite

▪ preventing cycles may help (more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless

of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO
queue

(first in first out)

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the frontier take?

▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ If costs are equal (e.g., 1)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

▪ When will BFS outperform DFS?

▪ S << M

▪ When will DFS outperform BFS?

▪ S ~= M

Example: Maze Water DFS/BFS (part 1)

Example: Maze Water DFS/BFS (part 2)

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s time
/ shallow-solution advantages

▪ Run a DFS with depth limit 1. If no solution…

▪ Run a DFS with depth limit 2. If no solution…

▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest level
searched, so not so bad!

▪ Also useful for the meta data

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If solution costs C* and arcs cost at least  , then C*/ is
effective depth (upper bound on depth of solution)

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the frontier take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?

▪ Assuming C* is finite and  > 0, yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ “tiers”
g  3

g  2

g  1

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

	Slide 1: CSE 573: Artificial Intelligence
	Slide 2: Today
	Slide 3: Planning Agents
	Slide 4: Optimal?
	Slide 5: Precompute optimal plan, execute it
	Slide 6: Search Problems
	Slide 7: Search Problems
	Slide 8: Search Problems Are Models
	Slide 9: Example: Traveling in Romania
	Slide 10: Example: Traveling in Romania
	Slide 11: Models are almost always wrong
	Slide 13: What’s in a State Space?
	Slide 14: State Space Sizes
	Slide 15: State Space Graphs and Search Trees
	Slide 16: State Space Graphs
	Slide 17: State Space Graphs
	Slide 18: State Space Graphs vs. Search Trees
	Slide 19: Quiz: State Space Graphs vs. Search Trees
	Slide 20: Quiz: State Space Graphs vs. Search Trees
	Slide 21: Quiz: State Space Graphs vs. Search Trees
	Slide 22: Quiz: State Space Graphs vs. Search Trees
	Slide 23: Tree Search
	Slide 24: Search Example: Romania
	Slide 25: Creating the search tree
	Slide 26: Creating the search tree
	Slide 27: Creating the search tree
	Slide 28: General Tree Search
	Slide 29: Systematic search
	Slide 30: Depth-First Search
	Slide 31: Depth-First Search
	Slide 32: Search Algorithm Properties
	Slide 33: Search Algorithm Properties
	Slide 34: Depth-First Search (DFS) Properties
	Slide 35: Breadth-First Search
	Slide 36: Breadth-First Search
	Slide 37: Breadth-First Search (BFS) Properties
	Slide 38: Quiz: DFS vs BFS
	Slide 39: Quiz: DFS vs BFS
	Slide 40: Quiz: DFS vs BFS
	Slide 41: Example: Maze Water DFS/BFS (part 1)
	Slide 42: Example: Maze Water DFS/BFS (part 2)
	Slide 43: Iterative Deepening
	Slide 44: Cost-Sensitive Search
	Slide 45: Uniform Cost Search
	Slide 46: Uniform Cost Search
	Slide 47: Uniform Cost Search (UCS) Properties
	Slide 48: Video of Demo Empty UCS
	Slide 49: Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)
	Slide 50: Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

