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Search
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Today

= Agents that Plan Ahead
= goal-based

= Search Problems

= Uninformed Search Methods

= Depth-First Search
= Breadth-First Search

= Uniform-Cost Search



Planning Agents

Planning agents decide based on
evaluating future action sequences

Must have a model of how the world
evolves in response to actions

Usually have a definite goal

Optimal: Achieve goal at least cost




Optimal?

SCORE: 0




Precompute optimal plan, execute it

SCORE: 0




Search Problems




Search Problems

= A search problem consists of:

- nsaespace s [l [ I Y

" Aninitial state s,
= Actions _A4(s) in each state

1S N -9 u

* Transition model Result(s,a) !<

= Agoal test G(s) - !
= S has no dots left

= Action cost c(s,a,s’)
= +]1 per step; -10 food; -500 win; +500 die; -200 eat ghost

= A solution is an action sequence that reaches a goal state
= An optimal solution has least cost among all solutions



Search Problems Are Models
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Example: Traveling in Romania

Oradea

Arad

Fagaras

118

Timisoara

111

Lugoj
70
Mehadia
75
Drobeta 120

80

Rimnicu Vilcea

Craiova

138

Pitesti

Neamt
87
Iasi
92
Vaslui
’11 142
98 .
85 Hirsova
101 Urziceni
86
Bucharest
90
Giurgiu Eforie

= State space:

= (Cities
Initial state:

= Arad
Actions:

= Go to adjacent city
Transition model:

= Reach adjacent city
Goal test:

= 5 =Bucharest?
Action cost:

m Road distance fromstos’

Solution?



Models are almost always wrong
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Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes
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What’s in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing (= path finding)

= States: (x,y); location

= Actions: NSEW

®= Transition: update x,y value
= Goal test: is (x,y)=destination

= Problem: Eat-All-Dots

States: pacman location,
boolean for each food

Actions: NSEW

Transition: update x,y and
possibly a dot Boolean

Goal test: dots all false



State Space Sizes

= World state:
= Agent positions: 120
= Food count: 30

" Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%x(12%)x4
= States for pathing (path finding)?
120
= States for eat-all-dots?
120x(239)




State Space Graphs and Search Trees



State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

¥
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State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem



State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct the
tree on demand —
and we construct as
little as possible.
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Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0




Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
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Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many unique states within d steps of start?

How many states in search tree of depth d?




Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid:

How many unique states within d steps of start?

Enumerate after step 1:
{44+8 4+8+12,..}

How many states in search tree of depth d?

= O(4d)



Tree Search



Search Example: Romania

Oradea
Neamt
Zerind 87
75 151
Iasi
Arad
- 92
Sibiu 99 Fagaras
118 Vaslui
80
. . Rimnicu Vilcea
Timisoara
142
ol . 211
111 Lugoj Pitesti
70 98
. 85 Hirsova
Mehadia 101 Urziceni
86
75 138 Bucharest
Drobeta 120
90
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Creating the search tree
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Creating the search tree
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General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

= Main variations:
= Which |leaf node to expand next
= Whether to check for repeated states
= Data structures for frontier, expanded nodes




Systematic search

frontier

reached =

unexplored expanded U frontier

expanded

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded

b. Adds nodes from unexplored into frontier, maintaining property 1



Depth-First Search




Strategy: expand a
deepest node first

Implementation:
Frontieris a LIFO stack

(last in first out)

Depth-First Search




Search Algorithm Properties




Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

’
Space complexity? 1 node
b nodes
b? nod
Cartoon of search tree: noeges
. : m tiers <
= bis the branching factor
= mis the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
" 1+b+b%+...b"=0(bM)

Remember O(..) is the upper bound of the function



Depth-First Search (DFS) Properties

= What nodes does DFS expand?

= Some left prefix of the tree down to depth m. 1 node
" Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
] m tiers <
= How much space does the frontier take?
®= Only has siblings on path to root, so O(bm)
" |s it complete? b™ nodes

= m could be infinite
» preventing cycles may help (more later)

" |sit optimal?

= No, it finds the “leftmost” solution, regardless
of depth or cost



Breadth-First Search




Strategy: expand a
shallowest node first

Implementation:
Frontieris a FIFO

Breadth-First Search

queue
(first in first out)
/
Search
Tiers




Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest solution - b 1 node
= Let depth of shallowest solution be s stiers < b nodes
= Search takes time O(b°) / b2 nodes
= How much space does the frontier take? " / o \ b* nodes
= Has roughly the last tier, so O(b°)
@,
" |s it complete? o b™ nodes

= s must be finite if a solution exists, so yes!

" |s it optimal?
= |f costs are equal (e.g., 1)



Quiz: DFS vs BFS




Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

= When will BFS outperform DFS?

= When will DFS outperform BFS?



Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

= When will BFS outperform DFS?
= S<< M

= When will DFS outperform BFS?
*S~=M



Example: Maze Water DFS/BFS (part 1)
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Example: Maze Water DFS/BFS (part 2)

8 O O Search Strategies Demo




Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s time
/ shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3. .....

" |sn’t that wastefully redundant?

/ A\
/ \

A

= Generally most work happens in the lowest level
searched, so not so bad!

= Also useful for the meta data



Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.



Uniform Cost Search




g(n) = cost from root to n
Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

Uniform Cost Search

Cost <
contours




Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?
= Processes all nodes with cost less than cheapest solution!

= |f solution costs C* and arcs cost at least &, then C*/¢ is
effective depth (upper bound on depth of solution)

= Takes time O(b®"¢) (exponential in effective depth)
C*/e “tiers”

= How much space does the frontier take?
* Has roughly the last tier, so O(b®"¢)

" |sit complete?

= Assuming C* is finite and € >0, yes!

= [sit optimal?
= Yes! (Proof next lecture via A*)



Video of Demo Empty UCS

‘@00 Search Strategies Demo




Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)

‘® 00 Search Strategies Demo [




Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

®00 ——— Search Strategies Demo
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