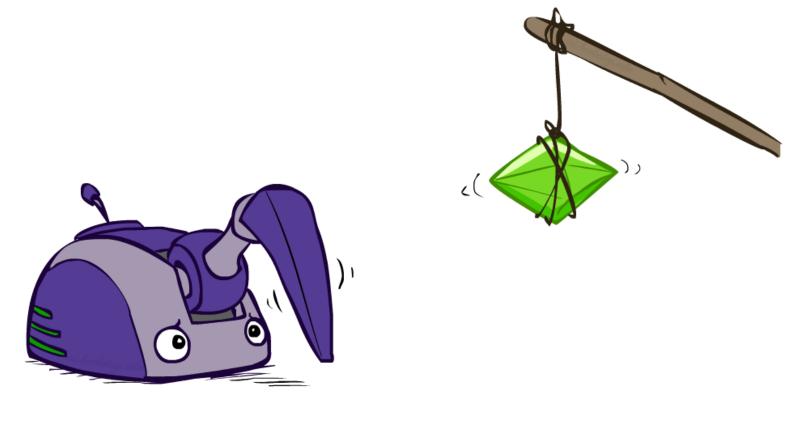
CSE 573: Artificial Intelligence

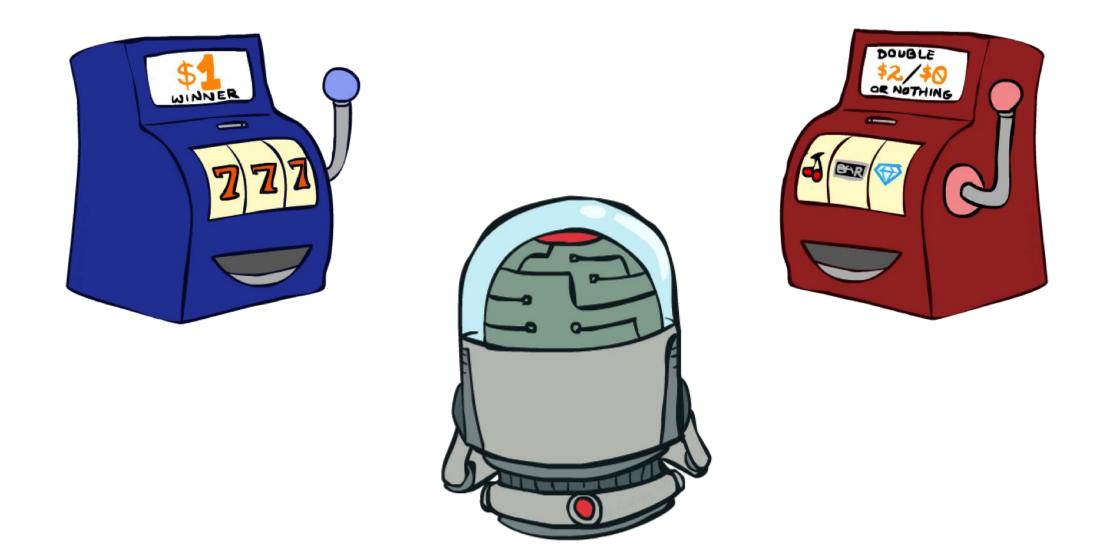
Reinforcement Learning

slides adapted from Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu And Hanna Hajishirzi, Jared Moore, Dan Weld

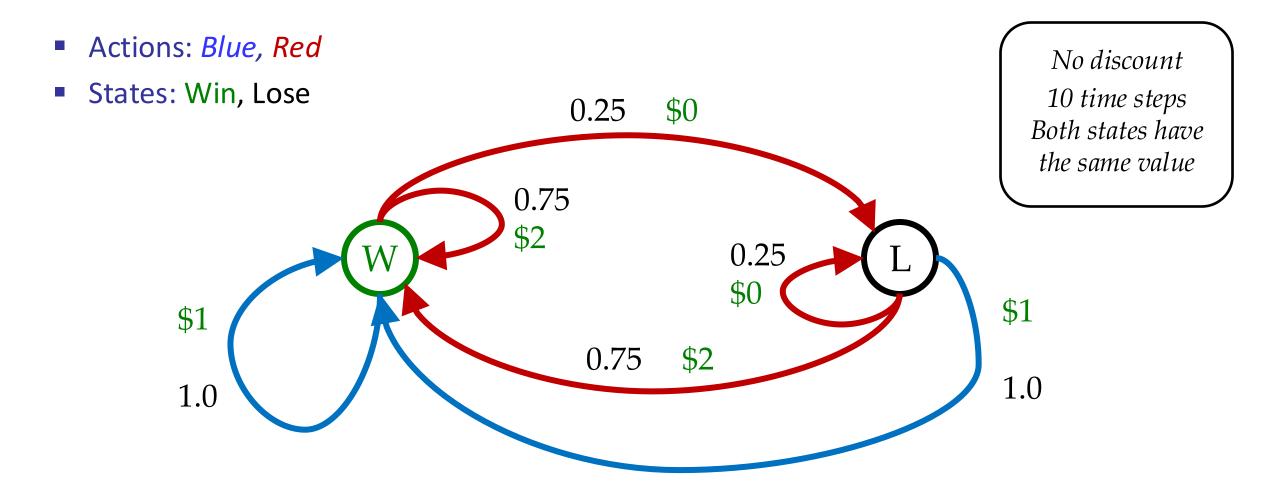
Reinforcement Learning



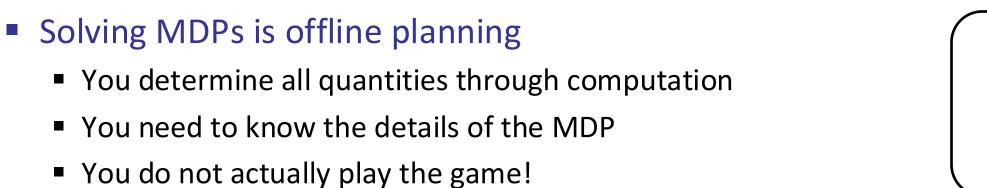
Double Bandits

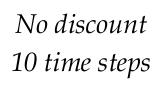


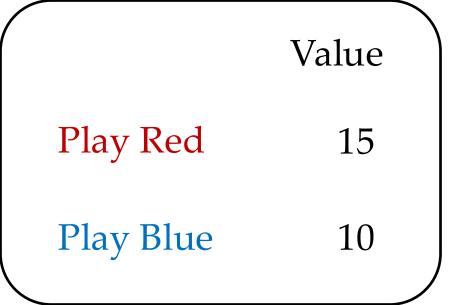
Double-Bandit MDP

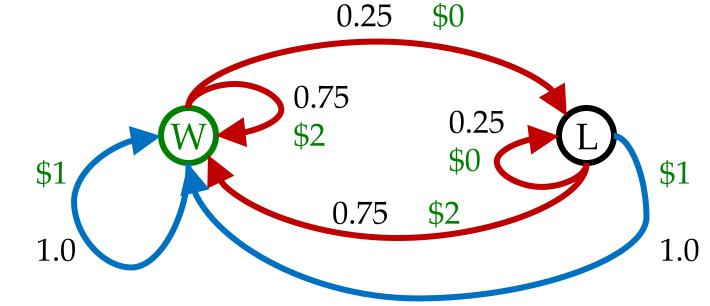


Offline Planning

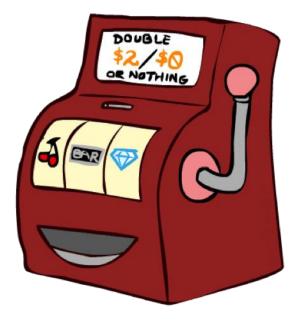








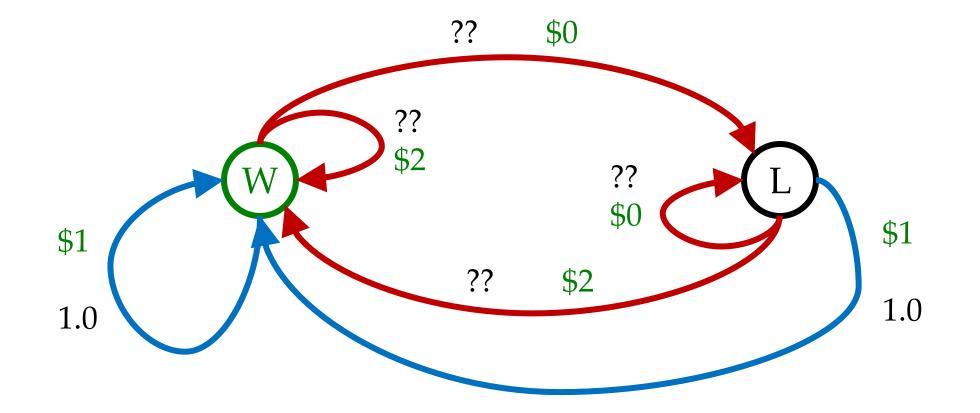
Let's Play!



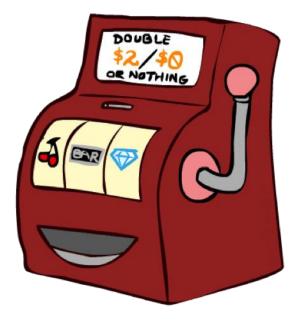
\$2\$2\$0\$2\$2\$0\$0\$0

Online Planning

Rules changed! Red's win chance is different.



Let's Play!



\$0
\$0
\$2
\$0
\$0
\$2
\$2
\$0
\$0

What Just Happened?

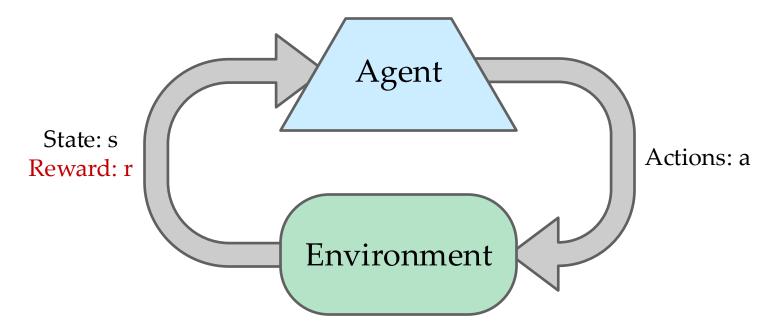
- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning

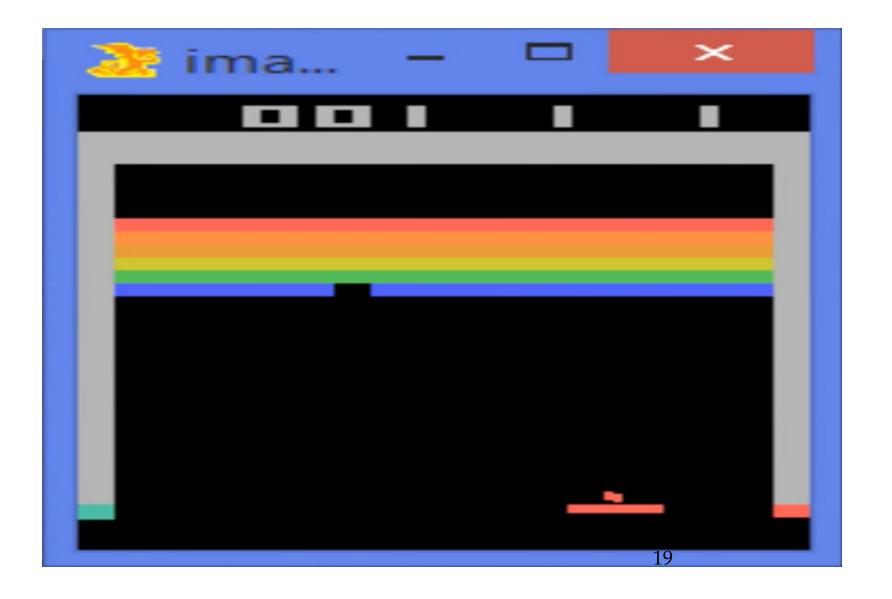


- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Robotics Rubik Cube

https://www.youtube.com/watch?v=x4O8pojMF0w

DeepMind Atari (©Two Minute Lectures)



Video of Demo Crawler Bot

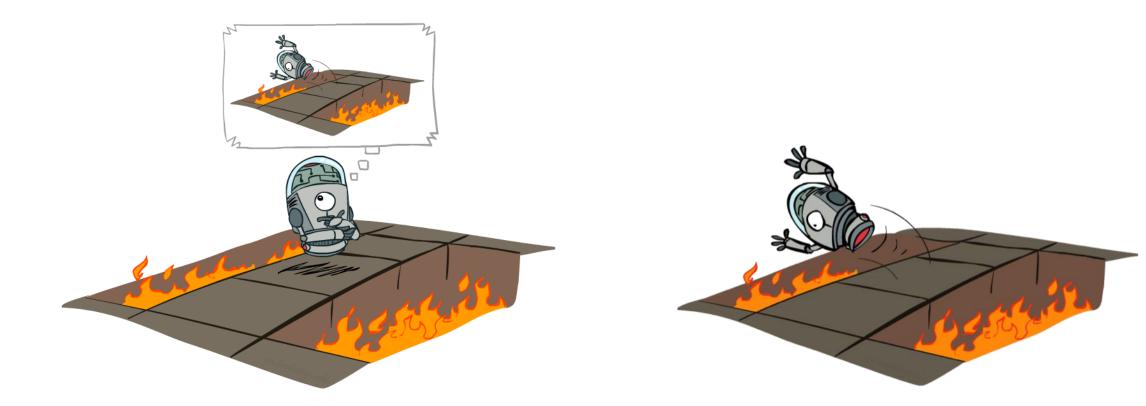
average spe		kip 1000000 step	Stop Skip 3000	Nesera	peed counter	Reset Q
		-				
		-1	-			
	eps 0.8	eps++	gam 0.9	gam++	alpha- 1.0	alpha++

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

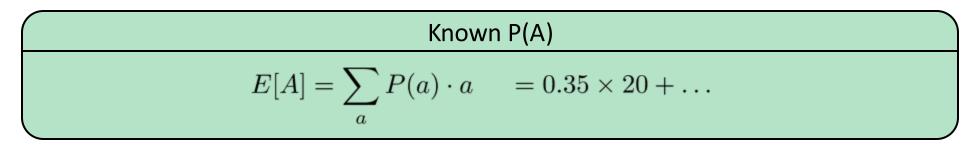


Offline Solution

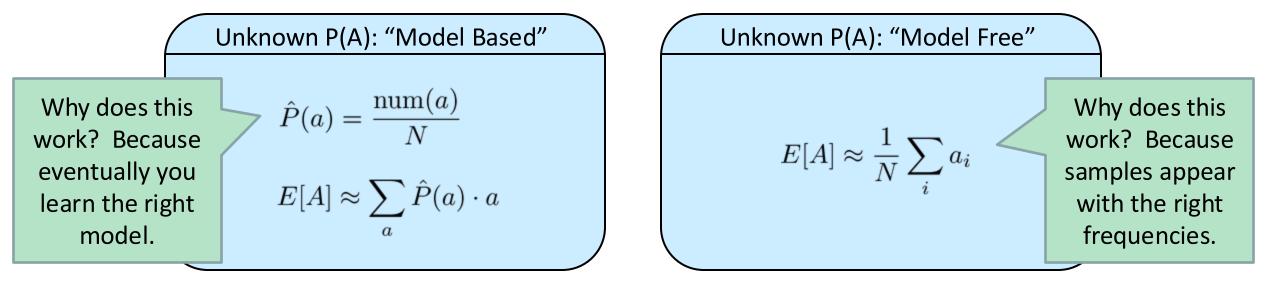
Online Learning

Analogy: Expected Age

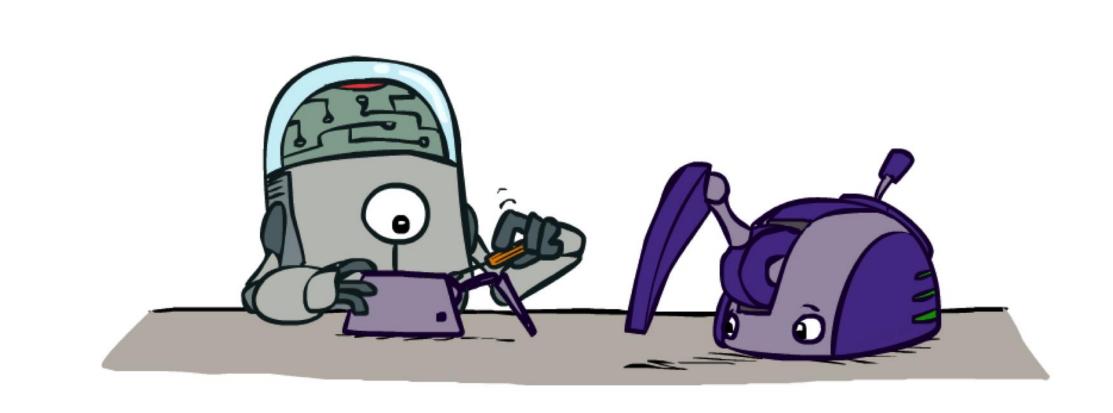
Goal: Compute expected age of students



Without P(A), instead collect samples $[a_1, a_2, ..., a_N]$



Model-Based Learning



Model-Based Learning

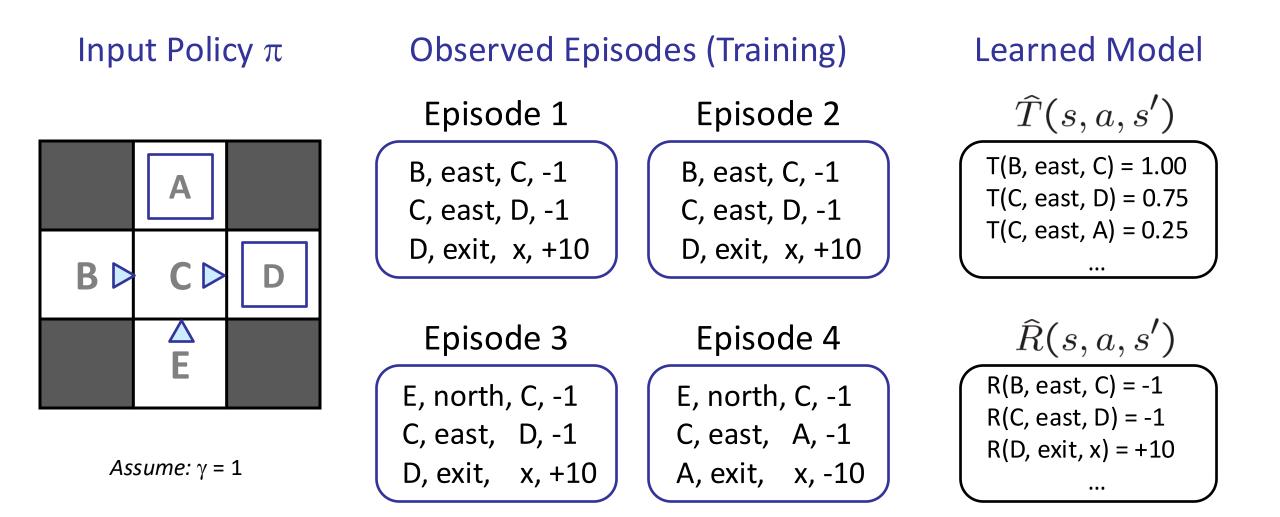
Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

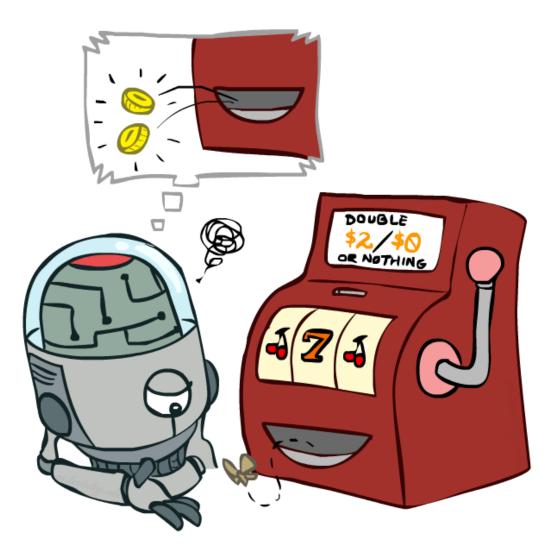
Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

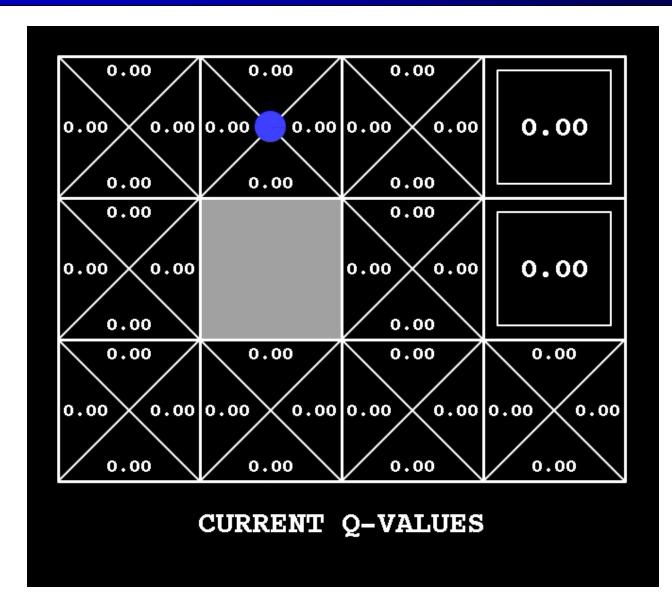
Example: Model-Based Learning



Model-Free Learning

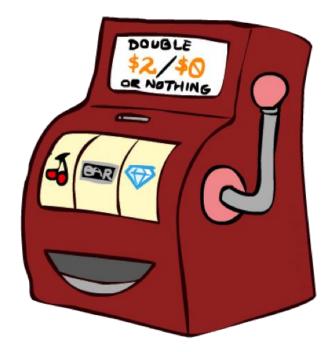


A Motivating Example Video

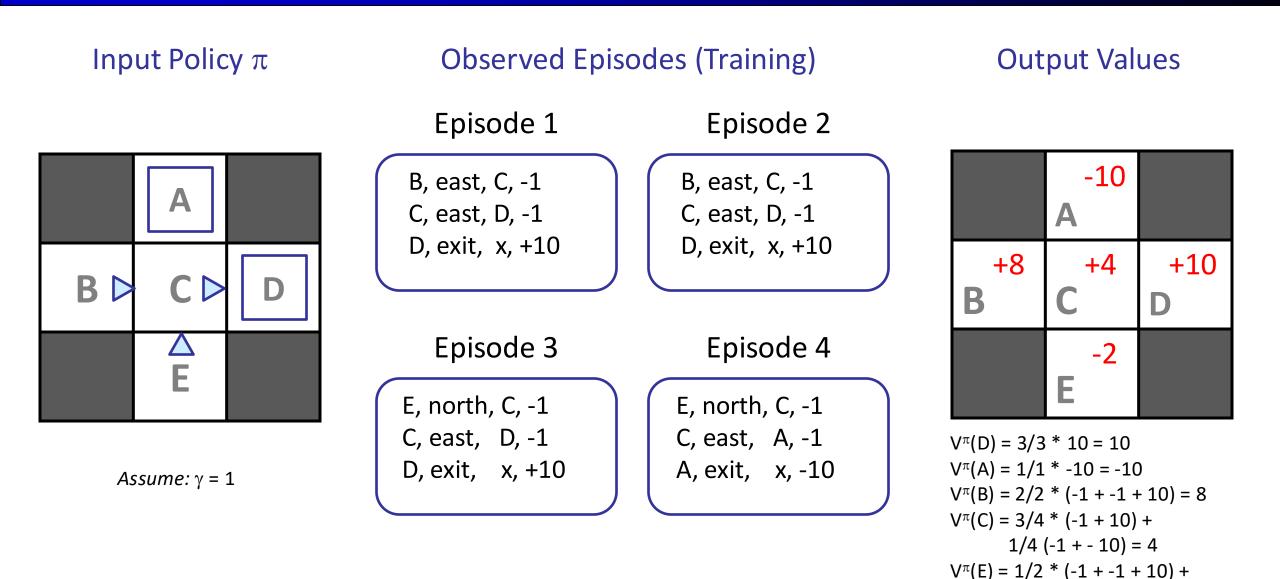


Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation



Example: Direct Evaluation

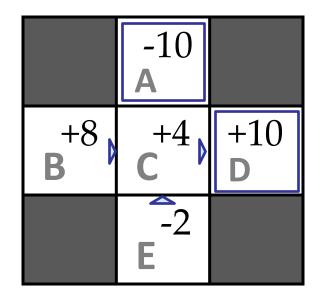


1/2(-1+-1+-10) = -2

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

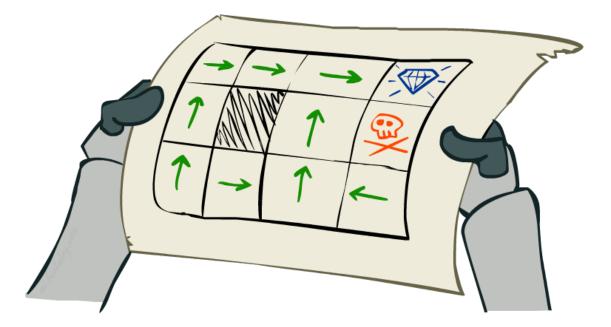


If B and E both go to C under this policy, how can their values be different?

Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy π(s)
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values



- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

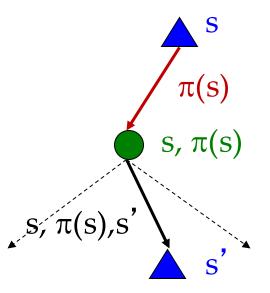
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?



Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

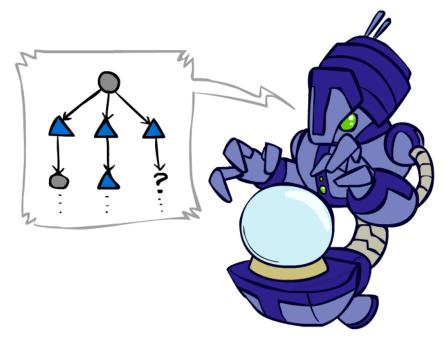
$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$



Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = $R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

 $\pi(s) \qquad S, \pi(s) \qquad S'$

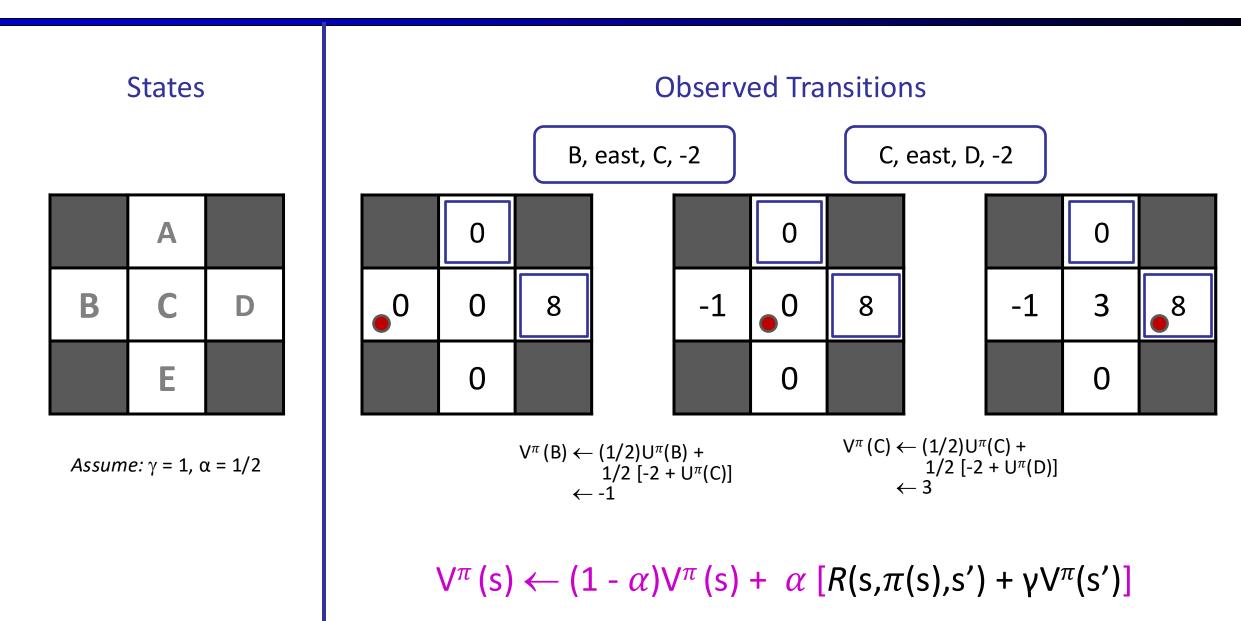
Exponential Moving Average

- Exponential moving average
 - The running interpolation update:

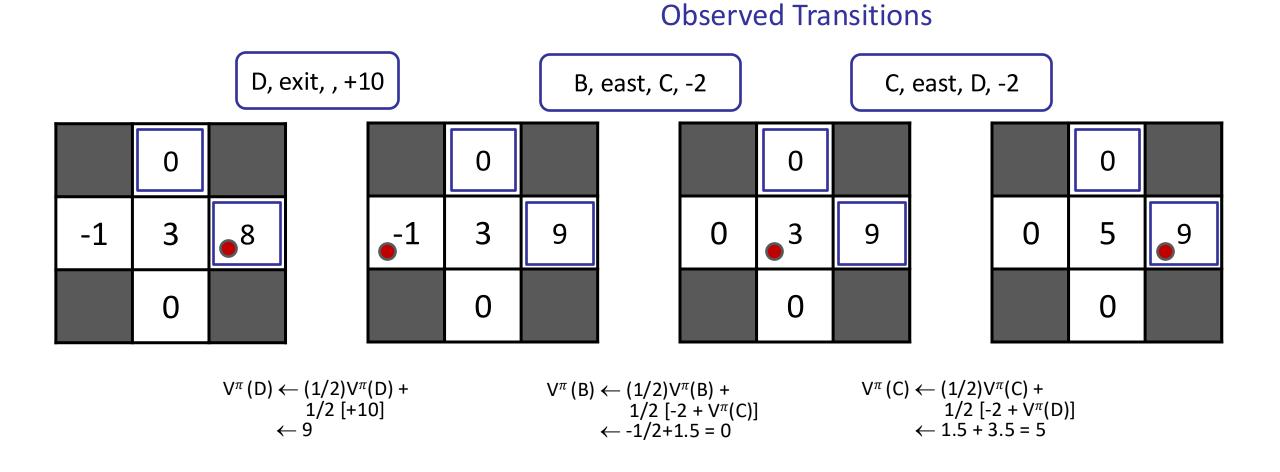
$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

- Makes recent samples more important
- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning



Example: Temporal Difference Learning



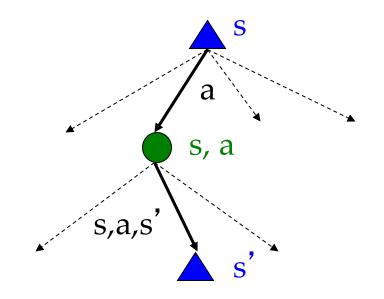
 $\nabla^{\pi}(s) \leftarrow (1 - \alpha) \nabla^{\pi}(s) + \alpha [R(s, \pi(s), s') + \gamma \nabla^{\pi}(s')]$

Problems with TD Value Learning

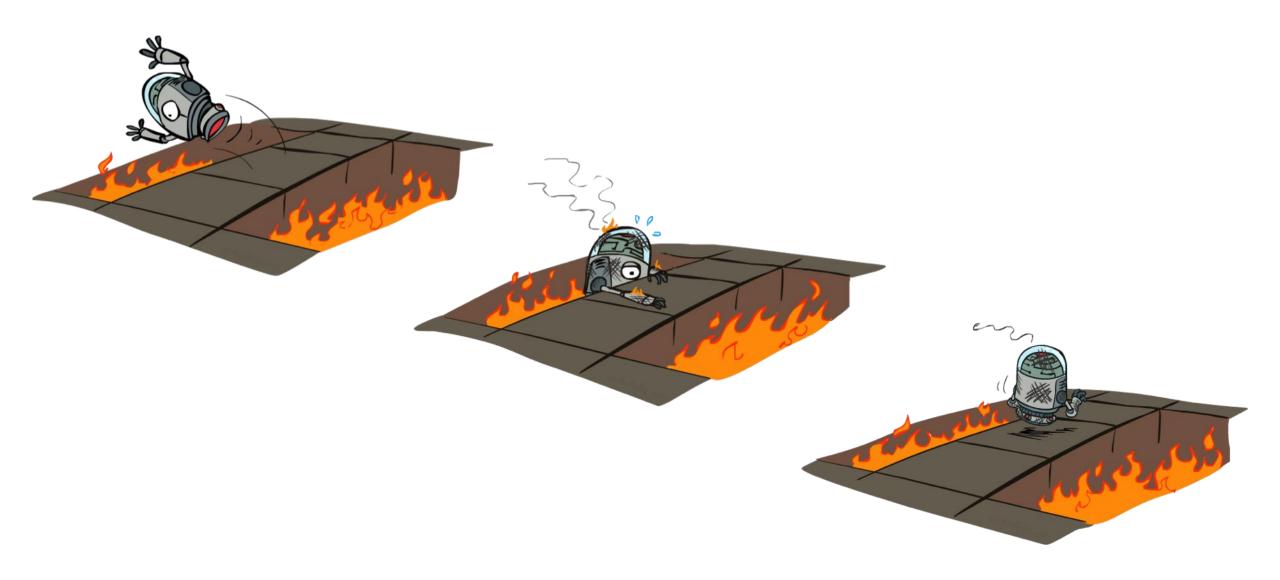
- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$
$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s) \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!



Active Reinforcement Learning

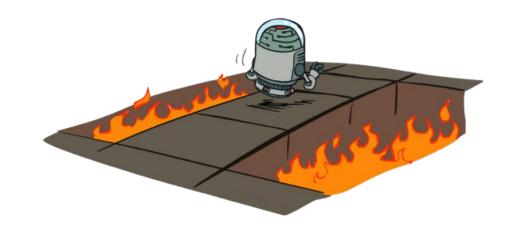


Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...



Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with V₀(s) = 0, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a) = 0, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

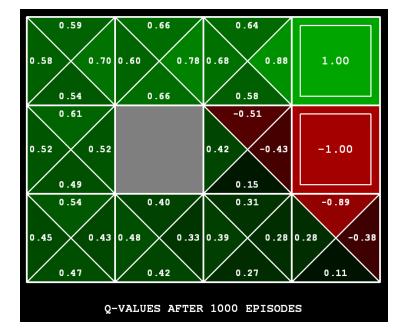
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$ no longer policy evaluation!

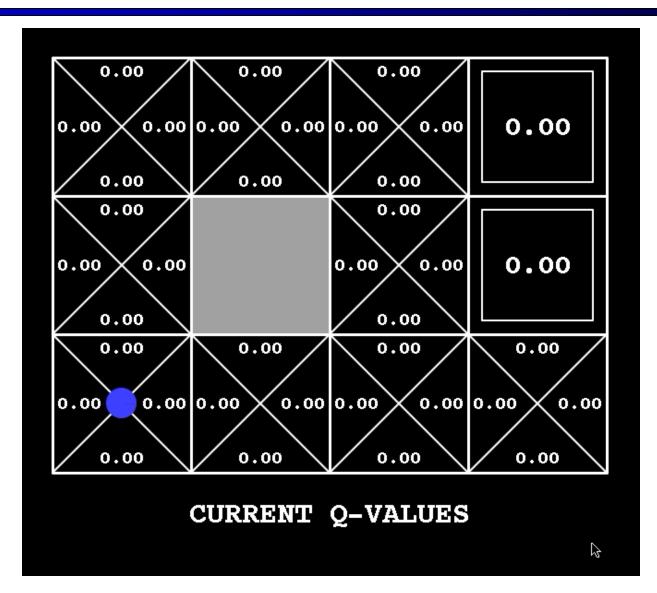
Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

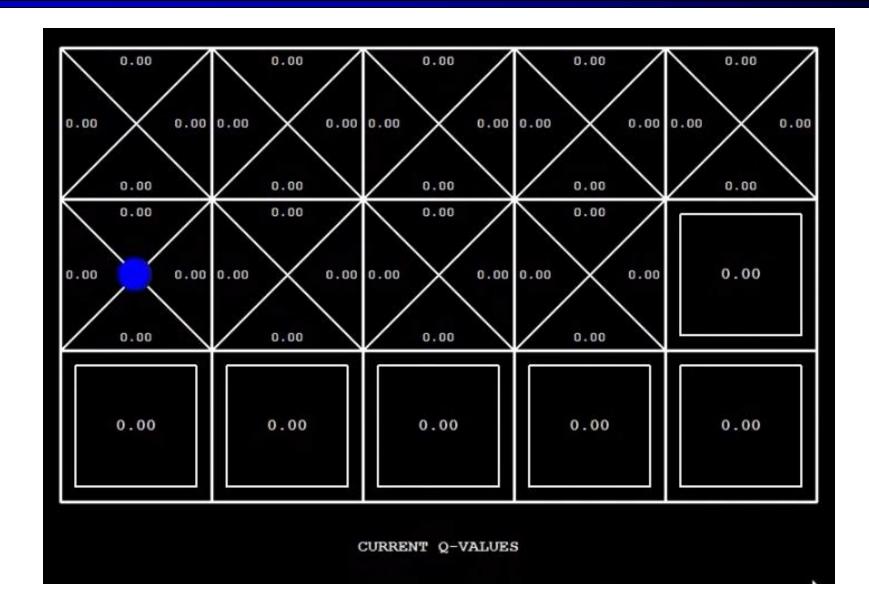


[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Q-Learning Demo



Video of Demo Q-Learning -- Gridworld



Video of Demo Q-Learning -- Crawler

Run	Skip 1000000 step	Stop	Skip 30000 steps	Reset speed counter	Reset Q	
average speed : 1.7	666772684134646					
	3					

Q-Learning:

act according to current optimal (and also explore...)

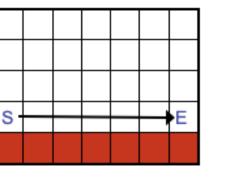
- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

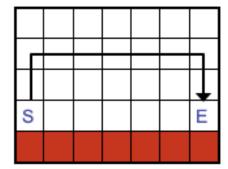
In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

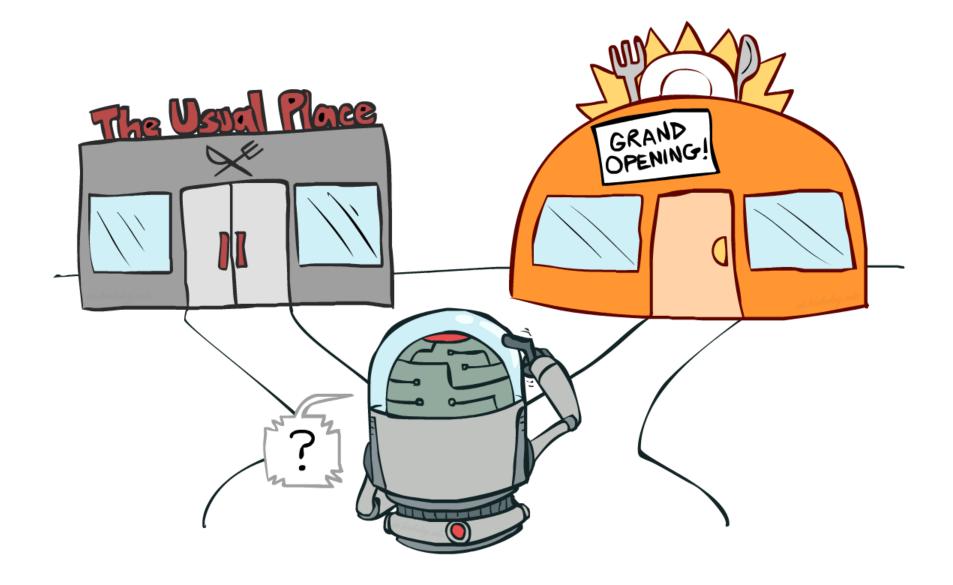
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)





Exploration vs. Exploitation

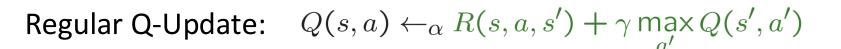


How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1- ε , act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - $\hfill\blacksquare$ One solution: lower ϵ over time
 - Another solution: exploration functions

Exploration Functions

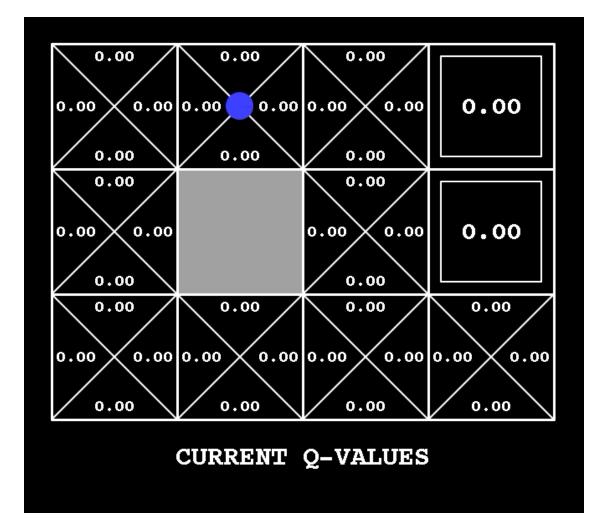
- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n



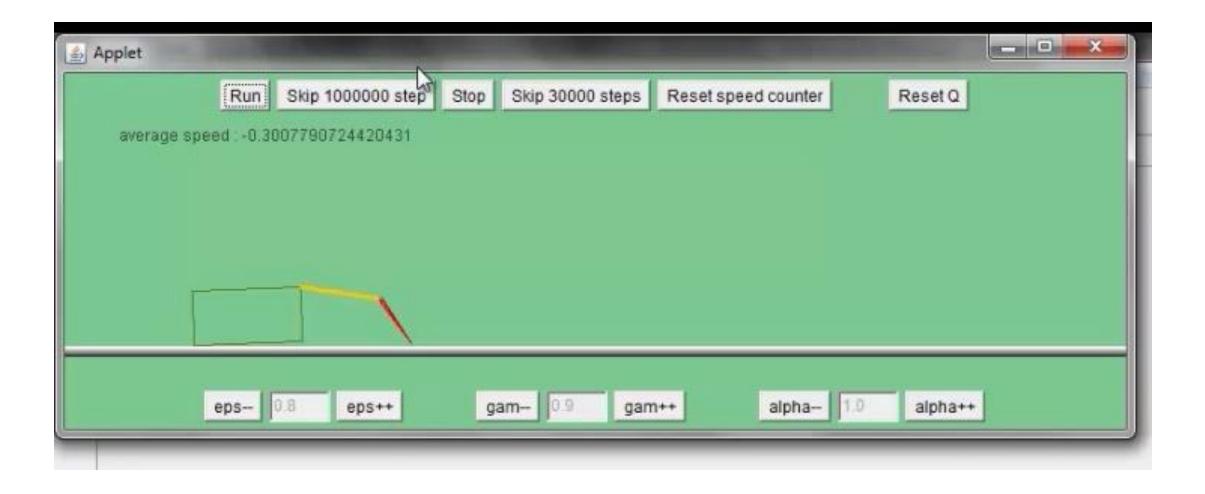
Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$

Note: this propagates the "bonus" back to states that lead to unknown states as well!

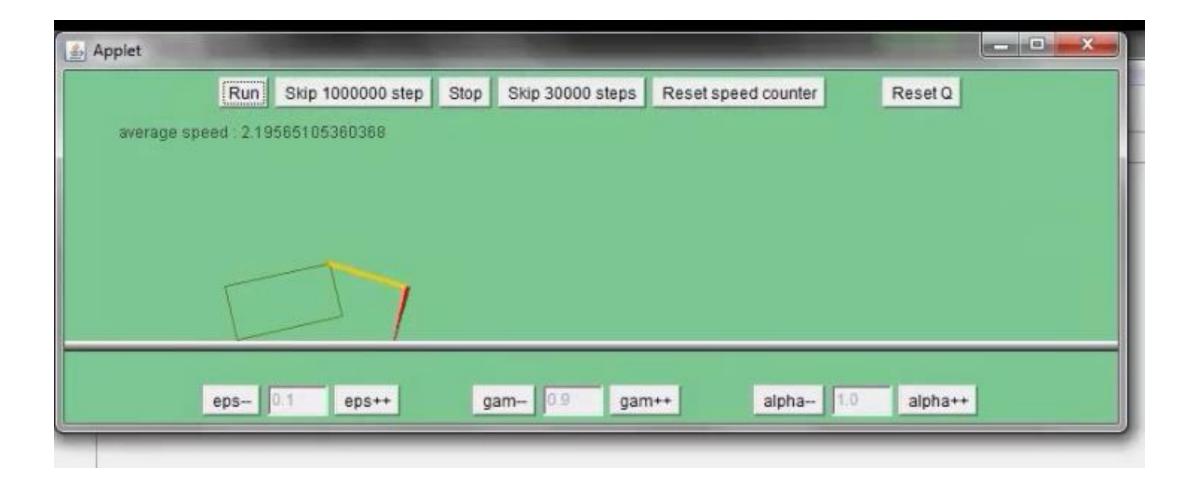
Q-Learn Epsilon Greedy



Video of Demo Q-learning – Epsilon-Greedy – Crawler

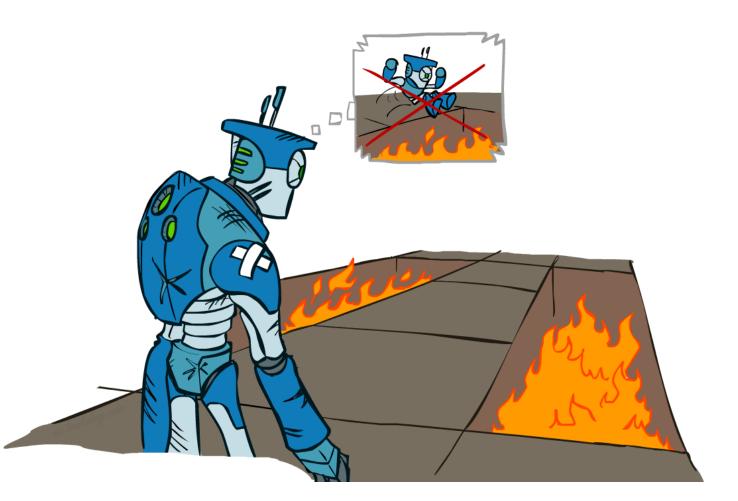


Video of Demo Q-learning – Exploration Function – Crawler

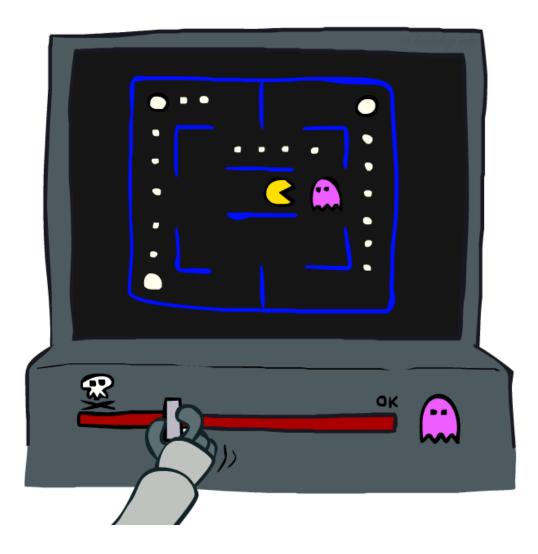


Regret

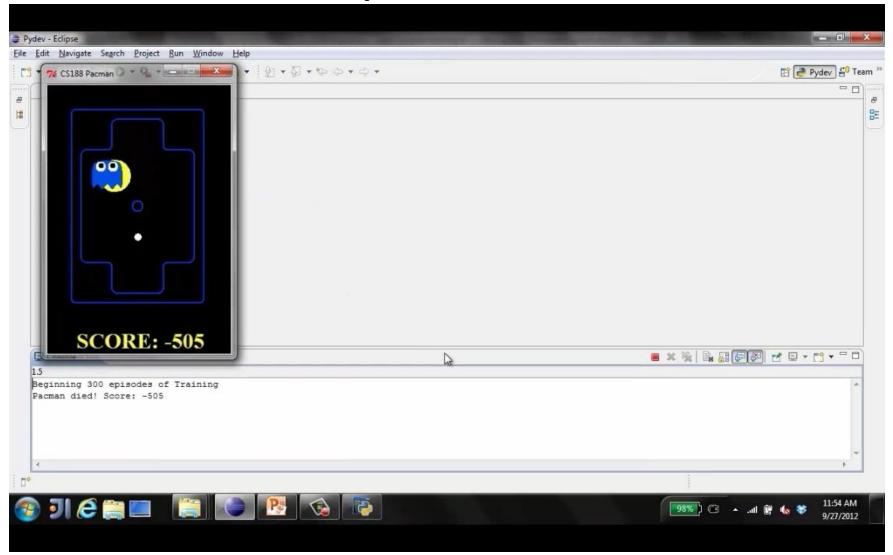
- Even if you learn the optimal policy, you still make mistakes along the way
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret



Approximate Q-Learning

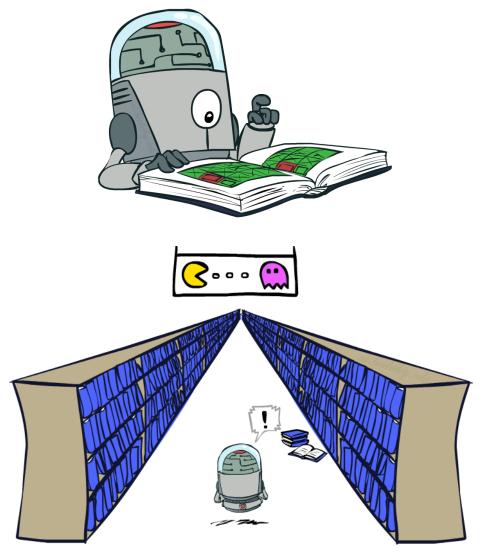


Video of Demo Q-Learning Pacman – Tricky – Watch All



Generalizing Across States

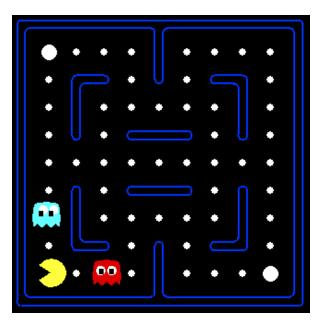
- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again



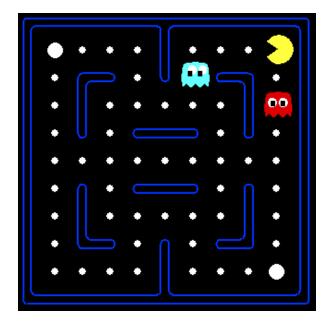
[demo – RL pacman]

Example: Pacman

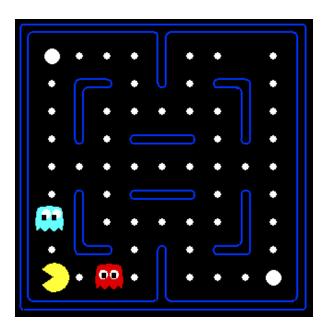
Let's say we discover through experience that this state is bad:



In naïve q-learning, we know nothing about this state:

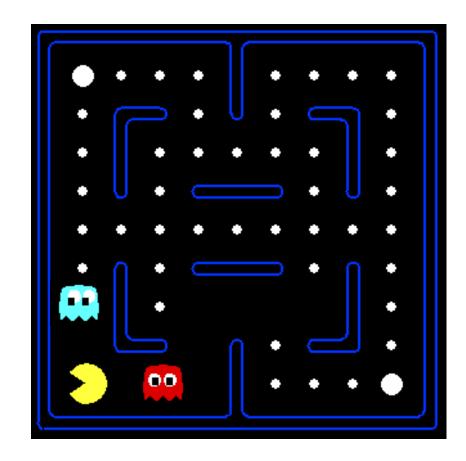


Or even this one!



Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

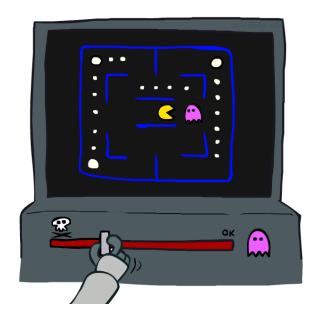
$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} \text{transition} &= (s, a, r, s') \\ \text{difference} &= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ Q(s, a) &\leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \qquad \text{Exact G} \\ w_i &\leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned}$$

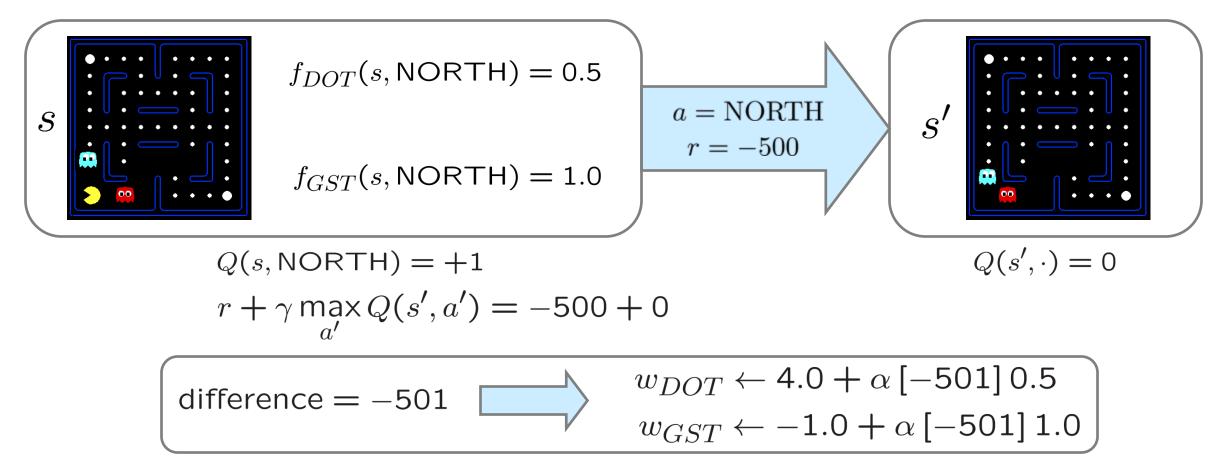
imate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares



Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

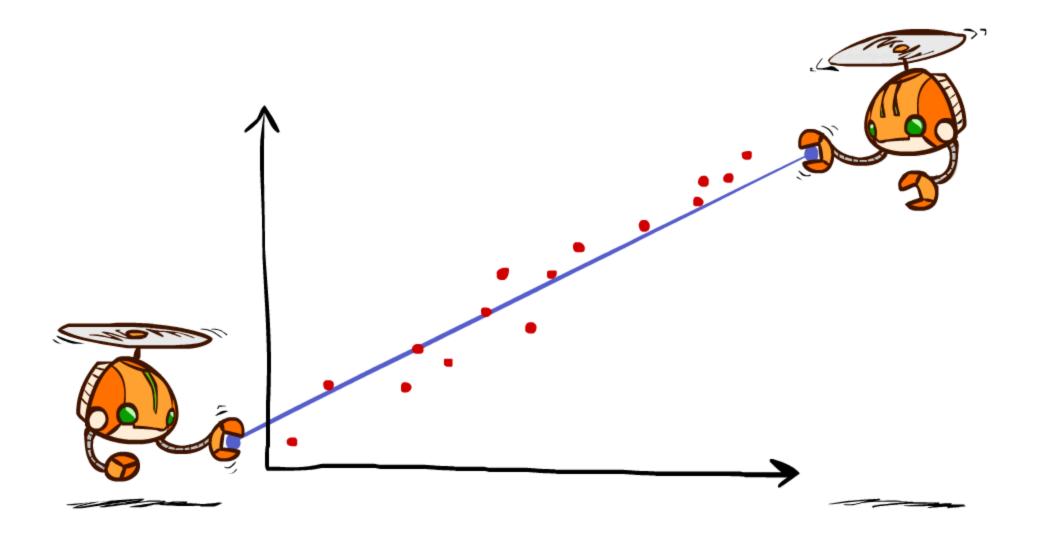


 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

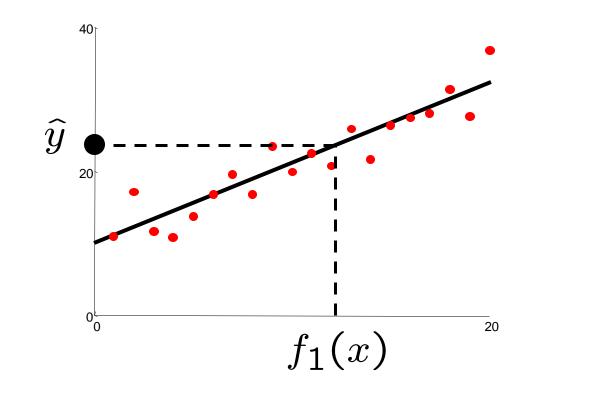
Video of Demo Approximate Q-Learning -- Pacman

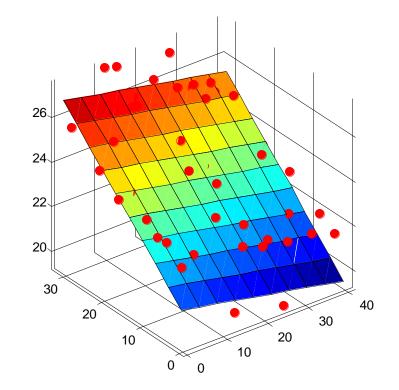
•	••	••	•	00	??		•	•	•••	•	•	
•		• n	•••	•••	•	• •	•	n	•		•	
•		• U	• =				•		• •		•	
	••	•••	• 2		•	•••	•	•	•••		•	
	ORF											

Bonus: Q-Learning and Least Squares*



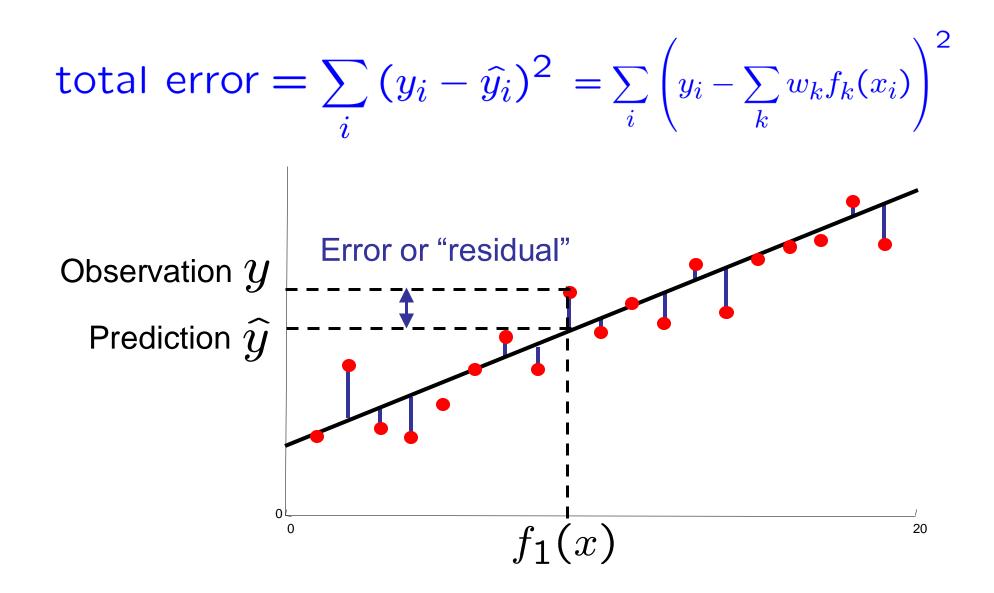
Linear Approximation: Regression*





Prediction: $\hat{y} = w_0 + w_1 f_1(x)$ Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

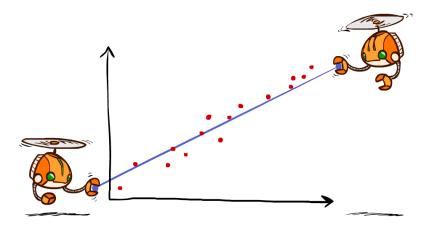
Optimization: Least Squares*



Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$



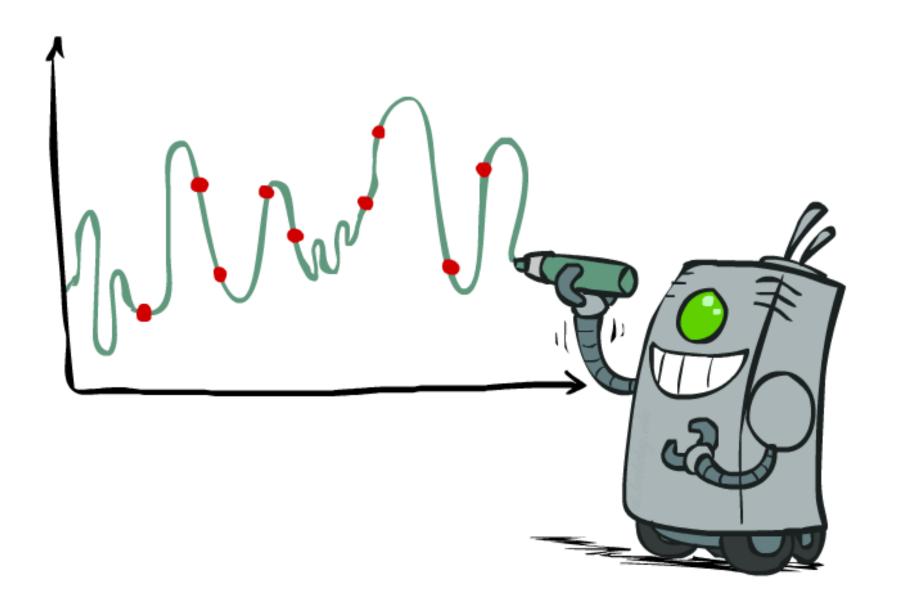
Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"prediction"

"target"

Overfitting: Why Limiting Capacity Can Help



Summary: MDPs and RL

Known MDP: Offline Solution	on
-----------------------------	----

Goal	Technique	
Compute V*, Q*, π^*	Value / policy iteration	
Evaluate a fixed policy π	Policy evaluation	

Unknown MDP: Model-Based

Goal	*use features to generalize	Technique		
Compute V*,	Q*, π*	VI/PI on approx. MDP		
Evaluate a fix	xed policy π	PE on approx. MDP		

Unknown MDP: Model-Free

Goal	*use features to generalize	Technique		
Compute	√*, Q*, π*	Q-learning		
Evaluate a	fixed policy π	Value Learning		

Conclusion

- We've seen how AI methods can solve problems in:
 - Search
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Uncertainty and Learning!

