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Reinforcement Learning




Double Bandits




Double-Bandit MDP

_ o 4
Actions: Blue, Red No discount
= States: Win, Lose 10 time steps
0.25 50 Both states have
the same value
\_ J
$1




Offline Planning

= Solving MDPs is offline planning 4 )
" You determine all quantities through computation No discount
" You need to know the details of the MDP 10 time steps
= You do not actually play the game! \_ )
/ Value
Play Red 15
Play Blue 10

o /




Let’s Play!

S2 $2 SO S2 S2
S2 $2 SO SO SO



Online Planning

= Rules changed! Red’s win chance is different.




Let’s Play!

ii)) S0 $2 SO
$2
9 $2 SO SO



What Just Happened?

= That wasn’t planning, it was learning!
= Specifically, reinforcement learning
= There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

" I[mportant ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes
= Sampling: because of chance, you have to try things repeatedly
= Difficulty: learning can be much harder than solving a known MDP



Reinforcement Learning

= Still assume a Markov decision process (MDP):
" Asetofstatess €S
= Asetof actions (per state) A

= A model T(s,a,s’)

= Areward function R(s,a,s’)

I\ ’ ;u‘”( 3

Overheated

= Still looking for a policy 7t(s)

= New twist: don’t know T or R

" |.e. we don’t know which states are good or what the actions do
" Must actually try actions and states out to learn



Reinforcement Learning

\

Agent

State: s
Reward: r

Actions: a

/

Environment

= Basicidea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= Alllearning is based on observed samples of outcomes!




Robotics Rubik Cube

= https://www.youtube.com/watch?v=x408pojMFOw



https://www.youtube.com/watch?v=x4O8pojMF0w

DeepMind Atari (©Two Minute Lectures)




Video of Demo Crawler Bot

Applet T —————— = ]

Run Skip 1000000 step | Stop | Skip 30000 steps | Reset speed counter ResetQ
average speed - 2.0342145361990625 ]

eps- eps++ gam- || gam++ alpha- alpha++




Reinforcement Learning

= Still assume a Markov decision process (MDP):
" Asetofstatess €S
= Asetof actions (per state) A

= A model T(s,a,s’)

= Areward function R(s,a,s’)

I\ ’ ;u‘”( 3

Overheated

= Still looking for a policy 7t(s)

= New twist: don’t know T or R

" |.e. we don’t know which states are good or what the actions do
" Must actually try actions and states out to learn



Offline (MDPs) vs. Online (RL)
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Offline Solution Online Learning




Analogy: Expected Age

Goal: Compute expected age of students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a, a,, ... Q]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free”

Why does this
work? Because
eventually you
learn the right
model.

~

P(a) num(a)

E[A] = —Zai

Why does this
work? Because
samples appear

with the right

frequencies.

—




Model-Based Learning




Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of T'(s, a, s')
= Discover each (s, a, S/)when we experience (s, a, s')

= Step 2: Solve the learned MDP

= For example, use value iteration, as before




Example: Model-Based Learning

Input Policy ©

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

Assume:y=1

' +
% D, exit, X, IOJ

Episode 3

4 N
E, north, C, -1
C,east, D, -1

Episode 2

-
B, east, C, -1
C, east, D, -1

' +
\D’ exit, X, 10)

' +
% D, exit, X, 10)

Episode 4

4 N
E, north, C, -1
C, east, A, -1

Learned Model

T(s,a,s")

-

_ A, exit, X, -10)

\_

T(B, east, C) = 1.00

T(C, east, D) = 0.75
T(C, east, A) =0.25

~

J

R(s,a,s")

-

\_

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) =+10

~

J




Model-Free Learning




A Motivating Example Video

e

URRENT



Direct Evaluation

" Goal: Compute values for each state under &t

= |dea: Average together observed sample values

= Act accordingto m

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation



Example: Direct Evaluation

Input Policy &t Observed Episodes (Training) Output Values
Episode 1 Episode 2
4 B, east, C, -1 N ( B, east, C, -1 h
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
\§ /L J
Episode 3 Episode 4
4 E, north, C, -1 N ( E, north, C, -1 h
Cr eaStl Dl -1 CI eaStI A) -1 V(D) = 3/3*10=10
Assume:y = 1 D, exit, x, +10 A, exit, x,-10 V®(A)=1/1*-10=-10
g J L ) VT(B)=2/2*(-1+-1+10)=8

V(C) = 3/4 * (-1 +10) +
1/4 (-1 +-10) = 4
VME)=1/2 *(-1+-1+10)+
1/2 (-1+-1+-10)=-2



Problems with Direct Evaluation

= What's good about direct evaluation? Output Values
" |t's easy to understand

" |t doesn’t require any knowledge of T, R

= |t eventually computes the correct average values,
using just sample transitions

= What bad about it?

® |t wastes information about state connections

If B and E both go to C

under this policy, how can
= So, it takes a long time to learn their values be different?

= Each state must be learned separately



Passive Reinforcement Learning

= Simplified task: policy evaluation
" |nput: a fixed policy 7t(s)
* You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" Goal: learn the state values

" |n this case:
* Learneris “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience

This is NOT offline planning! You actually take actions in the world.




Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:
= Each round, replace V with a one-step-look-ahead layer over V

Voi(s) =0

Vkﬂ_l_l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + 'kaW(S’)]

S S,R(S) ,S’
g

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?
= |n other words, how to we take a weighted average without knowing the weights?



Sample-Based Policy Evaluation?

= We want to improve our estimate of V by computing these averages:

ka_|_1(3) — ZT(S,W(S), SHIR(s,7(s),s") + 'kaW(s')]

S
* |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s),s7) + ’)/Vkﬂ(sll)
samples = R(s,m(s),s5) + WV]{W(SIQ) i‘/ E‘E \
samplen, = R(s,w(s), S,n) -+ ’)/Vkﬂ(sln) > A 7°

1
Vi 1(s8) < - > sample;
()




Temporal Difference Learning

" Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r) Tc(S)
= Likely outcomes s’ will contribute updates more often

= Temporal difference learning of values

= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s, m(s), N +~AVT(s)
Updateto V(s): V"(s) « (1 — a)V"™(s) 4+ (a)sample

Same update: V7T (s) «+ V™(s) 4+ a(sample — V7 (s))




Exponential Moving Average

= Exponential moving average
" The running interpolation update: Ly = (1 — CE) +Tp—1 + Q- Tn

" Makes recent samples more important

" Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

States Observed Transitions

[ B, east, C, -2 ] [ C, east, D, -2 ]

s m vr (C) < (1/2)U7T(C) +
Assume:y=1,a=1/2 V(8] < (11//22)[92 (JrBzJ:(C)] 1/2 [-2 + U™(D)]
-1 <3

VT (s) < (1-a)V™(s) + a [R(s,m(s),s’) + yV7(s)]




Example: Temporal Difference Learning

Observed Transitions

[ D, exit, , +10 ] [ B, east, C, -2 ] [ C, east, D, -2 ]

V™ (D) « (1/2)V™(D) + V7™ (B) < (1/2)V™(B) + VT (C) « (1/2)V™(C) +
1/2 [+10] 1/2 [-2 + V7(C)] 1/2 [-2 + V7(D)]
«9 «-1/2+1.5=0 <« 15+35=5

V7T (s) < (1-a)V™(s) + a [R(s,m(s),s’) + yV7(s')]



Problems with TD Value Learning

= TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a

Q(s,a) = ZT(S, a,s’) {R(s, a,s) + ’YV(S’)}

= |dea: learn Q-values, not values

= Makes action selection model-free too!



Active Reinforcement Learning




Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
" You choose the actions now
» Goal: learn the optimal policy / values

" |n this case:
" Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the world and
find out what happens...



Detour: Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) =0, which we know is right
= Given V,, calculate the depth k+1 values for all states:

Viet1(8) < mC?XZT(s, a,s’) {R(s,a, ) + nyk(s’)}

= But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) = S T(s,a,8) | R(s,a,8) +9 maxQu(s'sa)

S



Q-Learning

" Q-Learning: sample-based Q-value iteration

Qk—|—1(87 CL) — Z T(87 a, S,) _R(Sa a, S/) Y ma,X Qk(sla a’,)]

a

» Learn Q(s,a) values as you go vvv
= Receive a sample (s,a,s’,r) >!4>!4!
= Consider your old estimate: Q(s,a) v v
= Consider your new sample estimate: Q g

sample = R(s,a,s') +ymaxQ(s',a’) 10 on&er POUCY bqub
’ POANVANANIAN

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]



Q-Learning Demo

pa s
s




Video of Demo Q-Learning -- Gridworld




Video of Demo Q-Learning -- Crawler

—- . e

‘Run] Skip 1000000 step || Stop || Skip 30000 steps | Reset speed counter | Reset Q |

average speed 1. 7666772684134645




Q-Learning:

act according to current optimal (and also exglore...}

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
" You choose the actions now
» Goal: learn the optimal policy / values

" |n this case:
" Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation
* This is NOT offline planning! You actually take actions in the world and
find out what happens...



Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you're acting suboptimally!

= This is called off-policy learning

: -

" You have to eventually make the learning rate

= (Caveats:

" You have to explore enough

small enough
= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

me



Exploration vs. Exploitation




How to Explore?

= Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability ¢, act randomly
= With (large) probability 1-¢, act on current policy

®" Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions



Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) =u-+k/n

Regular Q-Update: Q(s,a) <o R(s,a,s") +ymaxQ(s',a’)
Modified Q-Update: Q(s,a) <o R(s,a,s") +ymax f(Q(s",a"), N(s',a"))

" Note: this propagates the “bonus” back to states that lead to unknown states as well!



Q-Learn Epsilon Greedy




Video of Demo Q-learning — Epsilon-Greedy — Crawler

ers |05 | evsee JOO cam- [+ | game [N ana— [ ana--




Video of Demo Q-learning — Exploration Function — Crawler

‘Runl| Skip 1000000 step Skip 30000 steps || Reset speed counter

oo [[ | cvsee [ gam [ | gam [ apns— [ aonae-




Regret

= Even if you learn the optimal policy,
you still make mistakes along the way

= Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards and optimal
(expected) rewards

= Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret




Approximate Q-Learning




Video of Demo Q-Learning Pacman —
Tricky — Watch All

SCORE: -505

|g~=ﬁ~*
eginning 300 episcdes of Training

=
. 11:54 AM
98% ) & 4. .
- il PP




Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

" Too many states to visit them all in training

" Too many states to hold the g-tables in memory

Instead, we want to generalize:

® Learn about some small number of training states from
experience

= Generalize that experience to new, similar situations

» This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]



Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

*

*
*

* *
* *
* *
* *
* *
* *
* *
* *
® ®

*
*




Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1 /(dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)




Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wif1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = wyf1(s,a)Fwafa(s,a)+...+wnfn(s,a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

QGs,0) =wifi(s )+wafals, )+ Aunfals,a)

= Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,Ob)
Q(s,a) «— Q(s,a) + «[difference] Exact Qs

difference = [r + v max Q(s',a)
a

w; <+ w; + « [difference] f;(s,a)  Approximate Qs

" |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

= Formal justification: online least squares



Example: Q-Pacman

Q(S,CL) — 4'OfDOT(Saa) — ]..OfGST(S,CL)

) 4
fDOT(S: NORTH) = 0.5
a = NORTH S/
r = —500
fasT(s, NORTH) =1.0
/ N
Q(s,NORTH) = +1 Q(s,)=0

r+~vymaxQ(s’,a’) = —-500 40
G,,
: —501] 0.
difference = —501 :> wpor ¢ 4.0+ a[~50110.5
wasr +— —1.04+ a[-501]1.0

Q(S,CL) — 3'OfDOT(Saa) — 3'OfGST(Saa)




Video of Demo Approximate Q-Learning -- Pacman

:" v .;‘_l v l{h -

( )
74 C5188 Pacman - — |




Bonus: Q-Learning and Least Squares™




40

Linear Approximation: Regression™

f1(x)

Prediction:
Yy = wo + wi f1(x)

20

Prediction:

y; = wo + wi f1(x) + wofo(x)



Optimization: Least Squares™

1

2
total error = Z (yz — 3]},)2 — Z (y@ - Zwkfk(ﬂi'i))
p k

. Error or “residual”
Observation Yy

Prediction g/j

° f1(z) ;



Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = ; (y — Zwkfk(ﬂf))
k

0 error(w)

— (y — Zwkfk(fc)) fm(x)
k

Owm,

W < Wm + « (y — Zwkfk(w)) fm(x)
k

Approximate g update explained:
Wi — wm + o | +yMaxQ(s', a) — Q(s, a)| fm(s,a)

“target” “prediction”



Overfitting: Why Limiting Capacity Can Help




Summary: MDPs and RL

Known MDP: Offline Solution

\_

Goal
Compute V*, Q*, n*

Evaluate a fixed policy &

Technique

Value / policy iteration

Policy evaluation

J

Unknown MDP: Model-Based
/ *use features \
Goal to generalize Technique

Compute V*, Q*, n*

Evaluate a fixed policy &

-

VI/PI on approx. MDP

PE on approx. MDP

_/

Unknown MDP: Model-Free
*use features )
Goal to generalize  Technique
Compute V*, Q*, n* Q-learning
Evaluate a fixed policy & Value Learning
\ J




Conclusion

We’ve seen how Al methods can solve
problems in:

= Search

= Games

= Markov Decision Problems

= Reinforcement Learning

Next up: Uncertainty and Learning!
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