CSE 573: Artificial Intelligence

Probability
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Uncertainty

" The real world is rife with uncertainty!

" E.g., if | leave for SEA 60 minutes before my flight, will arrive in time?

" Problems:
= partial observability (road state, other drivers’ plans, etc.)
" noisy sensors (radio traffic reports, Google maps)
" immense complexity of modelling and predicting traffic, security line, etc.
" |ack of knowledge of world dynamics (will tire burst? need COVID test?)

= Combine probability theory + utility theory -> decision theory
* Maximize expected utility : a* = argmax, 2., P(s | a) U(s)



Inference in Ghostbusters

= A ghostis in the grid
somewhere
= Sensor readings tell how
close a square is to the
ghost
= On the ghost: red
= 1 or 2away: orange
= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color(x,y) | DistanceFromGhost(x,y))

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Basic laws of probability

" Begin with a set (2 of possible worlds
" E.g., 6 possible rolls of a die, {1, 2, 3,4, 5, 6}

= A probability model assigns a number P(w) to each world @
" E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6. N
" These numbers must satisfy 1/6,".”.6 e
" 0<P(w) <1 ' .:1,6
>, c0oPlo)=1




Basic laws contd.

= An event is any subset of (2
" E.g., “roll < 4” is the set {1,2,3}
" E.g., “roll is odd” is the set {1,3,5}
" The probability of an event is the sum of probabilities over its worlds
= P(A) :Za)eA P(w)
= Eg., P(roll<4)=P(1)+ P(2) + P(3)=1/2

= De Finetti (1931):

=" anyone who bets according to probabilities that violate these laws can be
forced to lose money on every set of bets



Random Variables

= Arandom variable (usually denoted by a capital letter) is some aspect
of the world about which we (may) be uncertain
= Formally a deterministic function of @
* The range of a random variable is the set of possible values
= Odd =Is the dice roll an odd number? — {true, false}
" e.g. Odd(1)=true, Odd(6) = false
= often write the event Odd=true as odd, Odd=false as —odd
= T=lsithotorcold? — {hot, cold}
= D =How long will it take to get to the airport? — [0, )
" lonost = Whereis the ghost? — {(0,0), (0,1), ...}
= The probability distribution of a random variable X gives the
probability for each value x in its range (probability of the event X=x)

" P(X=x)=2 {w: X(w)=x} P(w)
" P(x) for short (when unambiguous)
= P(X) refers to the entire distribution (think of it as a vector or table)




Probability Distributions

= Associate a probability with each value; sums to 1

" Temperature: = Weather:
P(T) »
W P
! P
hot 0.5 w -
B - rain 0.1
fog 0.3
meteor | 00
. ﬂ,:/"ij;_g: L 4// )
W1 h//ﬂ/

= Joint distribution

P(T,W)
Temperature
hot cold
sun 0.45 |0.15
g rain 0.02 | 0.08
g fog 0.03 |0.27
meteor | 0.00 | 0.00




Making possible worlds

" |[n many cases we
" begin with random variables and their domains
= construct possible worlds as assignments of values to all variables

= E.g., two dice rolls Roll; and Roll,
" How many possible worlds?
= What are their probabilities?

= Size of distribution for n variables with range size d? d"

" For all but the smallest distributions, cannot write out by hand!



Probabilities of events

" The Probability of an event is the sum of probabilities
of its worlds, P(A) =2, . 4 P() Joint distribution
= So, given a joint distribution over all variables, can

compute any event probability! P(TW)
= Probability that it’s hot AND sunny? Temberature
" P(T=hot, W=sun) P
» = 45 hot cold
= Probability that it’s hot? _|sun 0.45 |0.15
* P(T=hot) =%, c w P(T= hot, W=w) 2 1 rain 0.02 |0.08
= = P(T=hot, W=sun) + P(T=hot, W=rain) + P(T=hot, W=fog) + P(T=hot, §
W=meteor) = fog 0.03 | 0.27
= = 45+.02+.03+.00=.5 meteor | 0.00 | 0.00

= Probability that it’s hot OR not foggy?
= P(T=hot V - W=fog) = P(T=hot) + P(- W=fog) - P(T=hot, - W=fog)
= = P(T=hot) + (1 - P(W=fog)) - P(T=hot, - W=fog)
= = 5+(1-.03+.27)—(.45+.02+.00)=.5+.7-.47=.73



= P(+x, +y) ?

= P(+x) ?

= P(-y OR+x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Quiz: Events

= P(+x, +y) ?

= P(+x) ?

=.2+.3=.5

= P(-y OR+x) ?

=P(-y) + P(+x) - P(-y, +x)=.3+.1+.2+ .3-.3=.6
=1-P(+y,x)=1-.4=.6

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

=  Marginal distributions are sub-tables which eliminate variables
=  Marginalization (summing out): Collapse a dimension by adding

P(X=x) = Zy P(X=x, Y=y)

Temperature
hot cold
sun 0.45 |0.15 0.60
g rain 0.02 |0.08 0.10
g fog 003 [027 030 P(W)
meteor | 0.00 | 0.00 0.00
0.50 |0.50

P(T)



Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) => P(z,y)




Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) => P(z,y)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

P(a | b)= Pla.b]

P(b)
P(T\W)
Temperature
hot
sun 0.45
fc_f rain 0.02
©
Vo|f 0.03
= | %8
meteor | 0.00

P(a,b)

P(a)

P(W=s | T=c) = P(W=s,T=c} = 0.15/0.50 = 0.3
P(T=c)
N

= P(W=s,T=c) + P(W=r,T=c) + P(W=f,T=c) + P(W=m,T=c)
=0.15+0.08 + 0.27 + 0.00=0.50




Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

" P(+x | +y)?

= P(-x | +y)?

= P(-y | +x)?



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

" P(+x | +y)?

=.2/(2+.4)=1/3

= P(-x | +y)?

=4/(2+.4)=2/3

= P(-y | +x)?

=.3/(3+.2)=.6



Conditional Distributions

= Distributions for one set of variables given another set

P(W | T=h) P(W | T=c) P(W | T)
Temperature hot cold
hot cold hot cold
_ |sun 0.45 |0.15 0.90 0.30
< |rain 0.02 |0.08 0.04 0.16
g fog 0.03 |0.27 0.06 0.54
meteor | 0.00 |0.00 0.00 0.00

Notice how the valuesin the tables have been re-normalized!



Normalizing a distribution

= Procedure:

* Multiply each entry by o= 1/(sum over all entries)

N

Ensure entries sum to ONE

P(W,T)
- . P(W | T=c) = P(W,T=c)/P(T=c)
emperature P(WT=C) - o P(WT=c)
hot
sun 0.45 0.15 0.30
o ) Normalize
< | rain 0.02 0.08 0.16
S | f 0.03 I
= 0g : 0.27 - 1/0.50=2 0.54
meteor | 0.00 000 | T 0.00




The Product Rule

= Sometimes we have conditional distributions but we want the joint

P(a | b) P(b) = P(a, b) (> P(a|b)= Pab)

P(b)



The Product Rule: Example

P(W | T) P(T) = P(W, T)

P(W | T) P(W, T)
hot
0 cold P(T) Temperature
hot cold
T P
sun 0.45 |0.15
hot 0.5 =
' 0.02 |0.08
cold | 0.5 % rain
%J fog 0.03 |0.27
meteor | 0.00 | 0.00




The Chain Rule

= A joint distribution can be written as a product of conditional
distributions by repeated application of the product rule:

P(Xli X2 X3) = P(X3 | X1/ X2) P(Xl' X2)
= P(X3 | X1, Xz) P(XZ | Xl) P(Xl)

Pxy, Xp,es X,) = L1 POXG | Xy,eeey Xi9)



Bayes’ Rule




Bayes’ Rule

= Write the product rule both ways:
P(a | b) P(b) = P(a, b) = P(b | a) P(a) That's my rule! |

= Dividing left and right expressions, we get:

P(b)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse

= Often one conditional is tricky but the other one is simple

= Describes an “update” step from prior P(a) to posterior P(a | b)
= Foundation of many systems we’ll see later

" |nthe running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect | cause) P(cause)

P(cause | effect) =

P(effect)
= Example:
= M: meningitis, S: stiff neck

P(s| m)=0.8
P(m) = 0.0001
P(s) = 0.01
p P

P(m | s)= s :D(T)) = -

—

—

Example
givens

0.8 x0.0001

0.01

= Note: posterior probability of meningitis still very small: 0.008 (80x bigger — why?)

= Note: you should still get stiff necks checked out! Why?



Independence

= Two variables X and Y are (absolutely) independent if
vx,y  Px,y) = P(x) Ply)

" |.e., the joint distribution factors into a product of two
simpler distributions

= Equivalently, via the product rule P(x,y) = P(x|y)P(y),
P(x | y)=P(x) or Ply|x)=Ply)

= Example: two dice rolls Roll; and Roll,
= P(Roll,=5, Roll,=3) = P(Roll,=5) P(Roll,=3)= 1/6 x1/6 = 1/36
= P(Roll,=3 | Roll;=5) = P(Roll,=3)




Example: Independence

" n fair, independent coin flips:

H |05 H |05 L H |05
T 0.5 T 0.5 T 0.5
N -
—

P(X,X,,...X,)

)
table size: 2" < —

in general: d” {




Conditional Independence




Conditional Independence

= Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= Xis conditionally independent of Y given Z:
vxy,z  Plx|y z)= Plx| 2)
= P(x,y,2) / Ply, z) = P(x,z)/ P(z)

or, equivalently, if and only if
Vxy,z  Plx,y|z)=Plx|2z)Ply|z)




Probabilistic Inference

Probabilistic inference: compute a desired probability
from a probability model

= Typically for a query variable given evidence

= E.g., P(airport on time | no accidents) =0.90

= These represent the agent’s beliefs given the evidence

Probabilities change with new evidence:
= P(airport on time | no accidents, 5 a.m.) = 0.95
= P(airport on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated




Inference by Enumeration

* Works fine with

=  General case: multiple query
= Evidencevariables: E,, .., E,=e, ...€e; X X = We want: variables, too
= Query* variable: Q L Tn

P(Q | ell "'Iek)

= Hidden variables: Hy, ..., H, All variables
Probability model P(X,, ..., X.) is given

= Step 1: Select the = Step 2: Sum out H from model to = Step 3: Normalize
entries consistent get joint of Query and evidence
with the evidence

Peo
0.05
0.25
0.07 )ek) = P(Q/ell Iek)
0.2 |
0.01 aa'_-_i
—




= P(W)?

Inference by Enumeration

Season Temp | Weather P
summer hot sun 0.35
summer hot rain 0.01
summer hot fog 0.01
summer hot meteor 0.00
summer cold sun 0.10
summer cold rain 0.05
summer cold fog 0.09
summer cold meteor 0.00
winter hot sun 0.10
winter hot rain 0.01
winter hot fog 0.02
winter hot meteor 0.00
winter cold sun 0.15
winter cold rain 0.20
winter cold fog 0.18
winter cold meteor 0.00




Inference by Enumeration

= P(W)?
= =2 P(WS,T)
= =<P(W=sun), P(W=Rain), P(W=fog), P(W=meteor)>

Season Temp | Weather P
summer hot / sun 0.35\
summer hot rain 0.01
summer hot fog 0.01
summer hot meteor 0.00
summer cold sun 0.10
summer cold rain 0.05
summer cold fog 0.09
summer cold meteor 0.00
winter hot sun 0.10
winter hot rain 0.01
winter hot fog 0.02
winter hot meteor 0.00
winter cold sun 0.15
winter cold rain 0.20
winter cold fog 0.18
winter cold |\ meteor 0.00 /




Inference by Enumeration

= P(W)?
= =2 P(WS,T)
= =<P(W=sun), P(W=Rain), P(W=fog), P(W=meteor)>

= P(W | winter)?
= =2 P(W,T|S=winter)
= =qa2. P(W,T,S=winter)

Season Temp | Weather P
summer hot sun 0.35
summer hot rain 0.01
summer hot fog 0.01
summer hot meteor 0.00
summer cold sun 0.10
summer cold rain 0.05
summer cold fog 0.09
summer cold meteor 0.00
winter hot |/ sun 0.10\
winter hot rain 0.01
winter hot fog 0.02
winter hot meteor 0.00
winter cold sun 0.15
winter cold rain 0.20
winter cold fog 0.18
winter cold | \meteor 0.00/




Inference by Enumeration

= P(W)?
= =2 P(WS,T)
= =<P(W=sun), P(W=Rain), P(W=fog), P(W=meteor)>

= P(W | winter)?
= =2 P(W,T|S=winter)
= =qa2. P(W,T,S=winter)

= P(W | winter, hot)?
= = P(W|S=winter, T=hot)
= = aP(W, S=winter, T=hot)

Season Temp | Weather P
summer hot sun 0.35
summer hot rain 0.01
summer hot fog 0.01
summer hot meteor 0.00
summer cold sun 0.10
summer cold rain 0.05
summer cold fog 0.09
summer cold meteor 0.00
winter hot |(  sun 0.10)
winter hot rain 0.01
winter hot fog 0.02
winter hot | \Imeteor 0.00/
winter cold sun 0.15
winter cold rain 0.20
winter cold fog 0.18
winter cold meteor 0.00




Inference by Enumeration

" Obvious problems:
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution

" O(d") data points to estimate the entries in the joint distribution
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