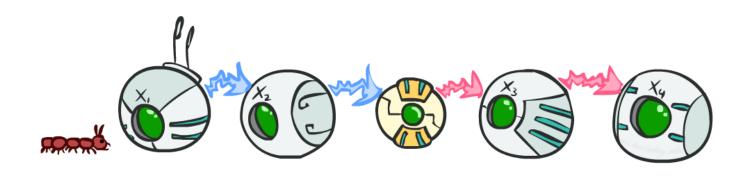
CSE 573: Artificial Intelligence Hidden Markov Models



slides adapted from Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu And Hanna Hajishirzi, Jared Moore, Dan Weld

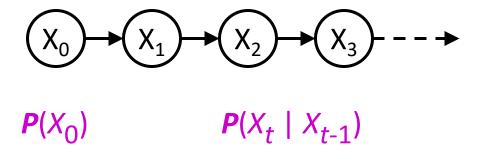
Uncertainty and Time

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Generalize MDPs by adding sensing noise (and removing actions)

Video of Demo Pacman – Sonar

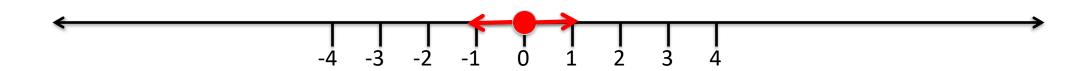
Markov Models (aka Markov chain/process)

Value of X at a given time is called the state (usually discrete, finite)



- The **transition model** $P(X_t \mid X_{t-1})$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
 - X_{t+1} is independent of $X_0, ..., X_{t-1}$ given X_t
 - This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)
- Joint distribution $P(X_0,...,X_T) = P(X_0) \prod_t P(X_t \mid X_{t-1})$

Example: Random walk in one dimension



- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k | X_{t-1} = k \pm 1) = 0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
 - How far does it get as a function of t?
 - Expected distance is $O(\sqrt{t})$
 - Does it get back to 0 or can it go off for ever and not come back?
 - In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: Web browsing

- State: URL visited at step t
- Transition model:
 - With probability p, choose an outgoing link at random
 - With probability (1-p), choose an arbitrary new page
- Question: What is the *stationary distribution* over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

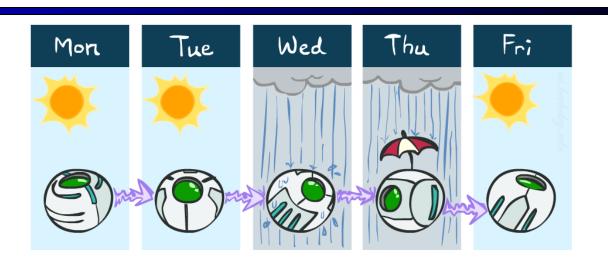
Example: Weather

- States {rain, sun}
- Initial distribution $P(X_0)$

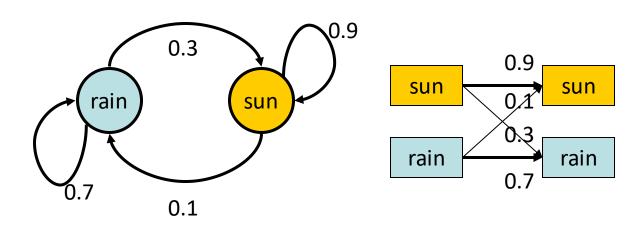
P(X _o)	
sun	rain
0.5	0.5

• Transition model $P(X_t \mid X_{t-1})$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7



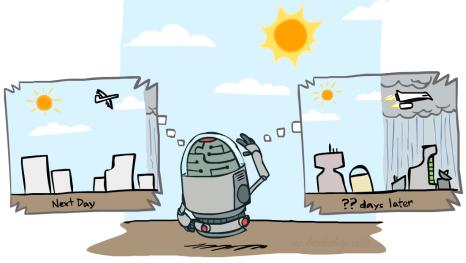
Two new ways of representing the same CPT



Weather prediction

■ Time 0: <0.5,0.5>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

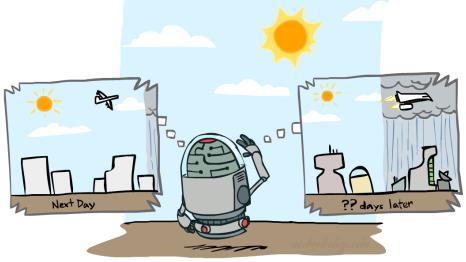


- What is the weather like at time 1?
 - $P(X_1) = \sum_{x_0} P(X_1, X_0 = x_0)$ = $\sum_{x_0} P(X_0 = x_0) P(X_1 | X_0 = x_0)$ = 0.5 < 0.9, 0.1 > +0.5 < 0.3, 0.7 > = < 0.6, 0.4 >

Weather prediction, contd.

■ Time 1: <0.6,0.4>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

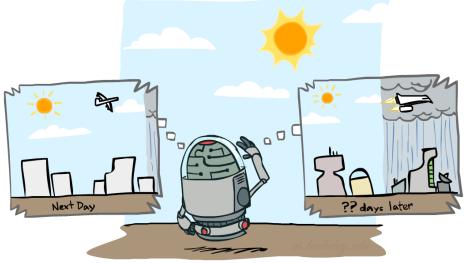


- What is the weather like at time 2?
 - $P(X_2) = \sum_{X_1} P(X_2, X_1 = X_1)$ = $\sum_{X_1} P(X_1 = X_1) P(X_2 | X_1 = X_1)$ = 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >

Weather prediction, contd.

■ Time 2: <0.66,0.34>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7



• What is the weather like at time 3?

■
$$P(X_3) = \sum_{X_2} P(X_3, X_2 = x_2)$$

= $\sum_{X_2} P(X_2 = x_2) P(X_3 | X_2 = x_2)$
= $0.66 < 0.9, 0.1 > +0.34 < 0.3, 0.7 > = < 0.696, 0.304 >$

Forward algorithm (simple form)

Probability from previous iteration

What is the state at time.

$$P(X_t) = \sum_{X_{t-1}} P(X_t, X_{t-1} = X_{t-1})$$

$$= \sum_{X_{t-1}} P(X_{t-1} = X_{t-1}) P(X_t \mid X_{t-1} = X_{t-1})$$

Iterate this update starting at t=0

Transition model

And the same thing in linear algebra

• What is the weather like at time 2?

$$P(X_2) = 0.6 < 0.9, 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

In matrix-vector form:

$$P(X_2) = \begin{pmatrix} 0.9 \\ 0.1 \\ 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix}$$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

• I.e., multiply by T^T , transpose of transition matrix

Stationary Distributions

- The limiting distribution is called the *stationary distribution* P_{∞} of the chain
- It satisfies $P_{\infty} = P_{\infty+1} = T^{\mathsf{T}} P_{\infty}$
- Solving for P_{∞} in the example:

$$\begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix}$$
 $\begin{pmatrix} p \\ 1-p \end{pmatrix}$ = $\begin{pmatrix} p \\ 1-p \end{pmatrix}$
 $0.9p + 0.3(1-p) = p$
 $p = 0.75$

Stationary distribution is <0.75,0.25> *regardless of starting distribution*

Stationary Distributions

• Question: What's P(X) at time t = infinity?

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_4$$

$$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$

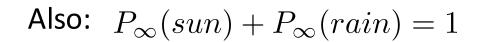
$$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$

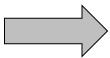
$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$$P_{\infty}(sun) = 3P_{\infty}(rain)$$

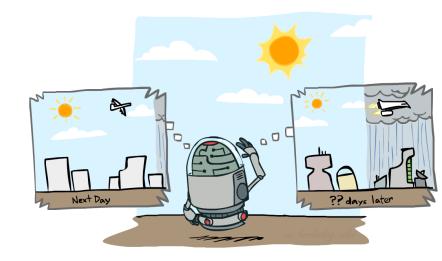
$$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$





$$P_{\infty}(sun) = 3/4$$

$$P_{\infty}(rain) = 1/4$$

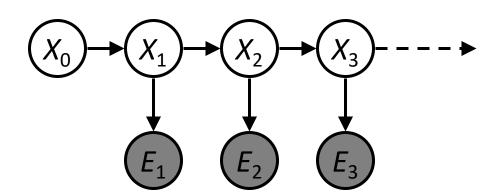


X _{t-1}	X _t	$P(X_t X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence *E* at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables



Example: Weather HMM

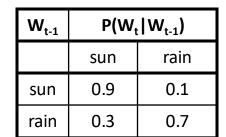
Umbrella_{t+1}

An HMM is defined by:

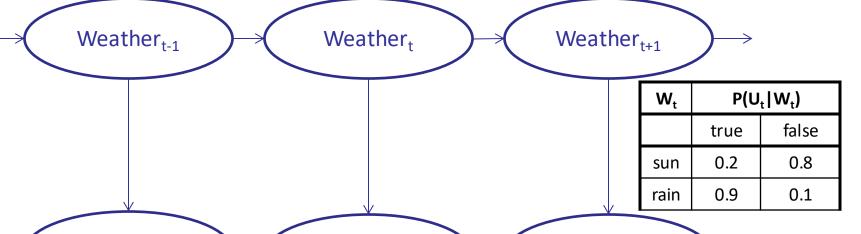
• Initial distribution: $P(X_0)$

■ Transition model: $P(X_t | X_{t-1})$

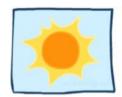
■ Sensor model: $P(E_t | X_t)$



Umbrella_{t-1}



Umbrella_t



HMM as probability model

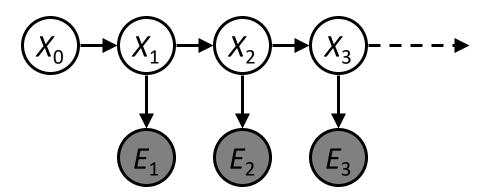
Joint distribution for Markov model:

$$P(X_0,...,X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$$

Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, ..., X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Question: Are evidence variables independent of each other?



Useful notation:

$$X_{a:b} = X_a, X_{a+1}, ..., X_b$$

Real HMM Examples

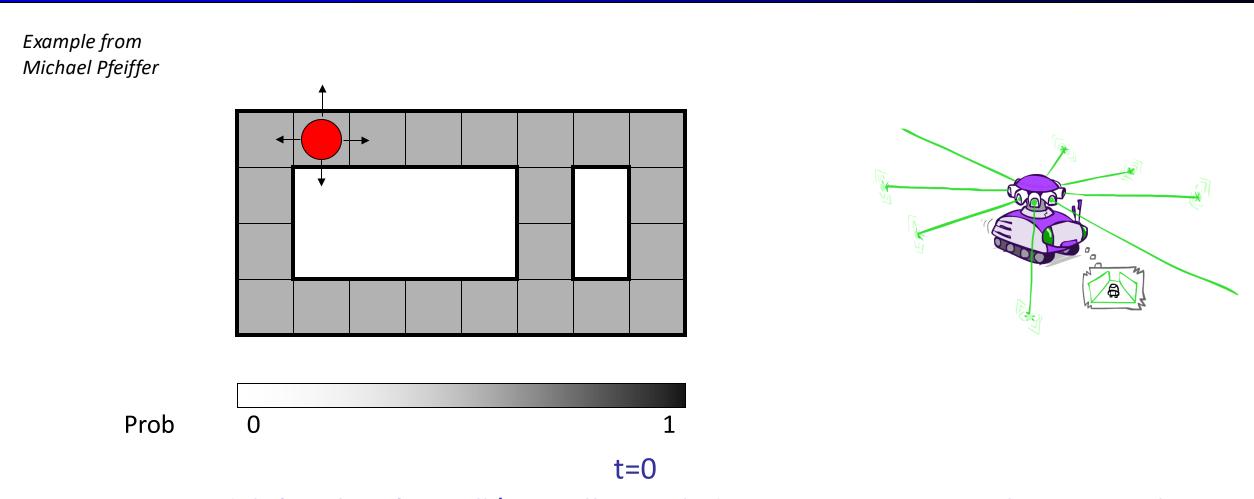
- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)
- Molecular biology:
 - Observations are nucleotides ACGT
 - States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

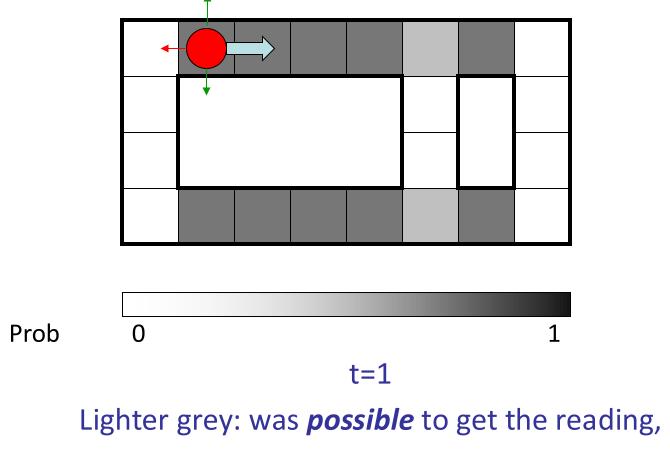
- Filtering: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k} | e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: $arg max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel

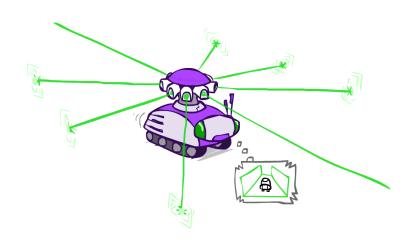
Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1:t} = P(X_t | e_{1:t})$ over time
- We start with f_0 in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations

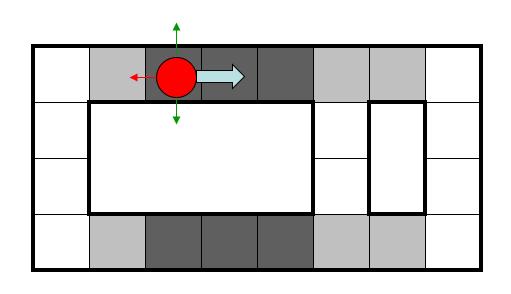


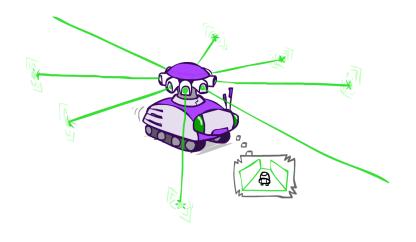
Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake Transition model: action may fail with small prob.

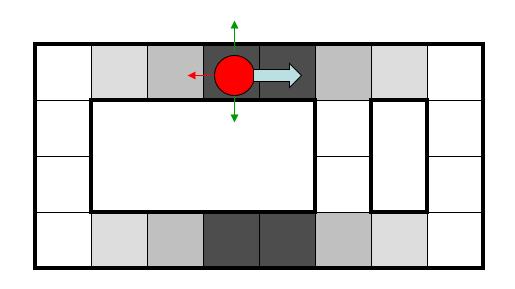


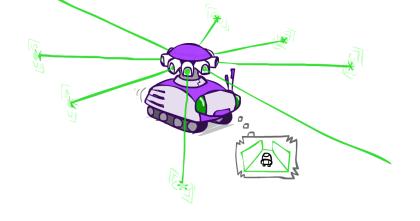


but *less likely* (required 1 mistake)

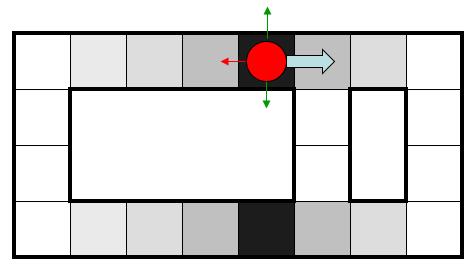




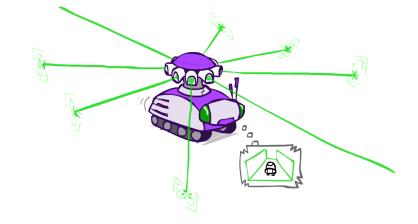


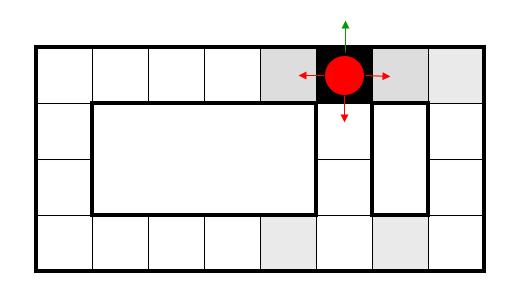


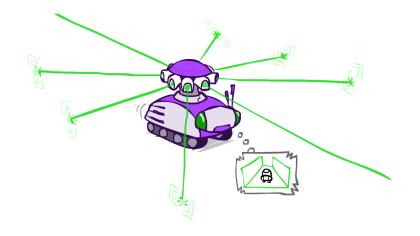
Prob 0 1



Prob







Filtering algorithm

Aim: devise a recursive filtering algorithm of the form

■
$$P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t}))$$
 Marginal Probability

■ $P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$ Normalization Trick / Bayes Rule

$$= \sum_{X_t} P(x_t, X_{t+1} | e_{1:t}, e_{t+1})$$

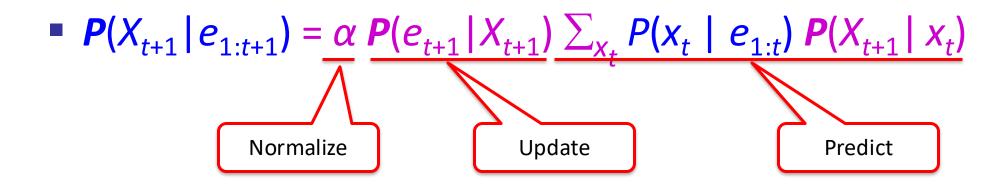
$$= \sum_{X_t} \alpha P(x_t, X_{t+1}, e_{t+1} | e_{1:t})$$

$$= \sum_{X_t} \alpha P(e_{t+1} | X_{t+1}) P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t})$$

$$= \alpha P(e_{t+1} | X_{t+1}) \sum_{X_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$$

Simple factoring of a constant

Filtering algorithm



- $f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$
- Cost per time step: $O(|X|^2)$ where |X| is the number of states
- Time and space costs are constant, independent of t
- $O(|X|^2)$ is infeasible for models with many state variables
 - Will introduce approximate filtering algorithms soon

Summary: Filtering

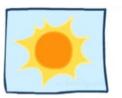
- Filtering is the inference process of finding a distribution over X_T given e_1 through e_T : $P(X_T \mid e_{1:t})$
- We first compute P($X_1 \mid e_1$): $P(x_1 \mid e_1) \propto P(x_1) \cdot P(e_1 \mid x_1)$
- For each t from 2 to T, we have P($X_{t-1} \mid e_{1:t-1}$)
- Elapse time: compute P(X_t | e_{1:t-1})

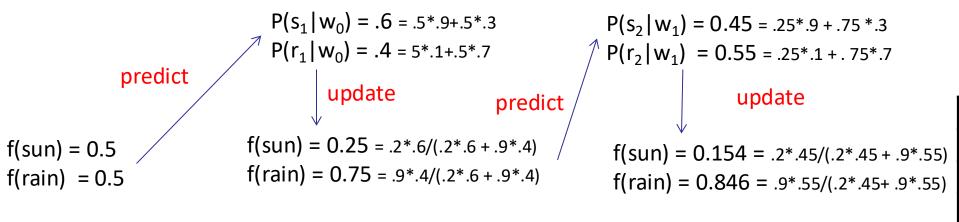
$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• **Observe:** compute $P(X_t | e_{1:t-1}, e_t) = P(X_t | e_{1:t})$

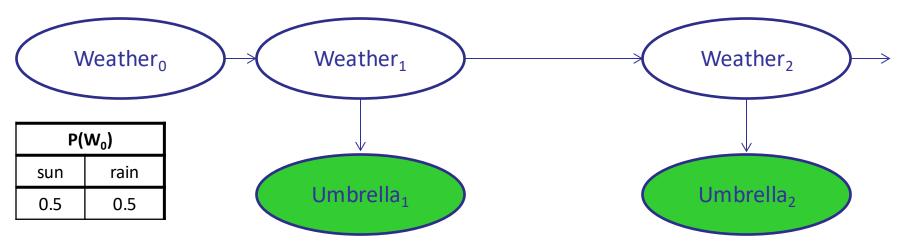
$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

Example: Weather HMM





W _{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7



W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{X_t} P(X_t | e_{1:t}) P(X_{t+1} | X_t)$$

Video of Demo Pacman – Sonar

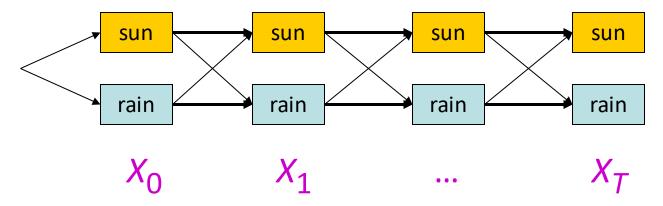
Most Likely Explanation

Inference tasks

- Filtering: $P(X_t|e_{1:t})$
 - belief state—input to the decision process of a rational agent
- *Prediction*: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: $arg max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel

Most likely explanation = most probable path*

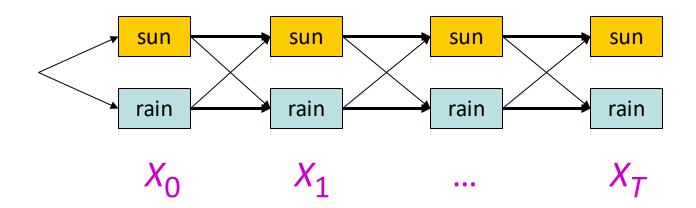
State trellis: graph of states and transitions over time



```
 \begin{aligned} &\arg\max_{\mathsf{X}_{1:t}}\mathsf{P}(\mathsf{x}_{1:t}\mid\mathsf{e}_{1:t})\\ &=\arg\max_{\mathsf{X}_{1:t}}\alpha\;\mathsf{P}(\mathsf{x}_{1:t}\,,\mathsf{e}_{1:t})\\ &=\arg\max_{\mathsf{X}_{1:t}}\;\mathsf{P}(\mathsf{x}_{1:t}\,,\mathsf{e}_{1:t})\\ &=\arg\max_{\mathsf{X}_{1:t}}\mathsf{P}(\mathsf{x}_0)\prod_{\mathsf{t}}\;\mathsf{P}(\mathsf{x}_t\mid\mathsf{x}_{t-1})\;\mathsf{P}(e_t\mid\mathsf{x}_t) \end{aligned}
```

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t \mid x_{t-1}) P(e_t \mid x_t)$ (arcs to initial states have weight $P(x_0)$)
- The product of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Forward / Viterbi algorithms*



Forward Algorithm (sum)

For each state at time *t*, keep track of the *total probability of all paths* to it

$$f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1} | X_{t+1}) \sum_{X_t} P(X_{t+1} | X_t) f_{1:t}$

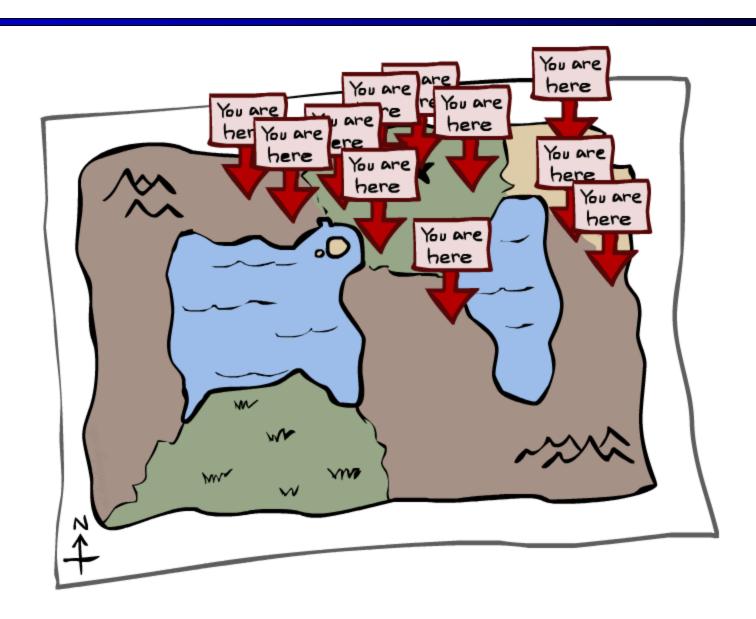
Viterbi Algorithm (max)

For each state at time *t*, keep track of the *maximum probability of any path* to it

$$m_{1:t+1} = VITERBI(m_{1:t}, e_{t+1})$$

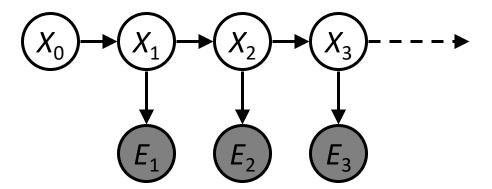
= $P(e_{t+1}|X_{t+1}) \max_{X_t} P(X_{t+1}|X_t) m_{1:t}$

Particle Filtering



We need a new algorithm!

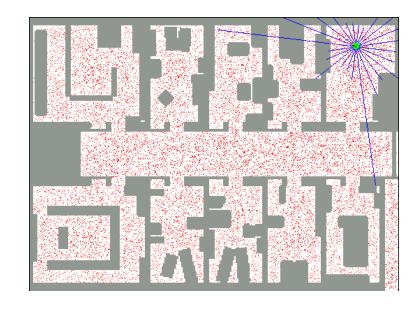
- When | X | is grows, exact inference becomes infeasible
 - $O(|X|^2)$ cost per time step
 - (e.g., 3 ghosts in a 10x20 world, continuous domains)

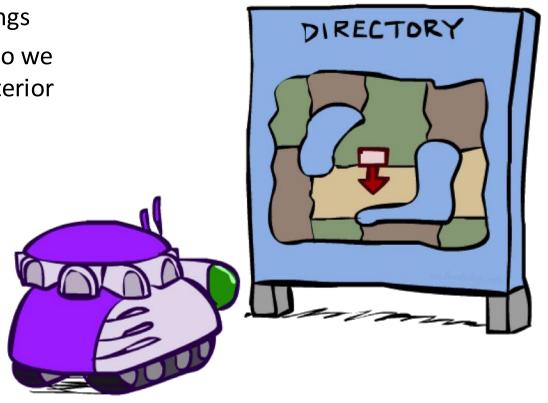


Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous so we cannot usually represent or compute an exact posterior
- Particle filtering is a main technique





Particle Filter Localization (Sonar)

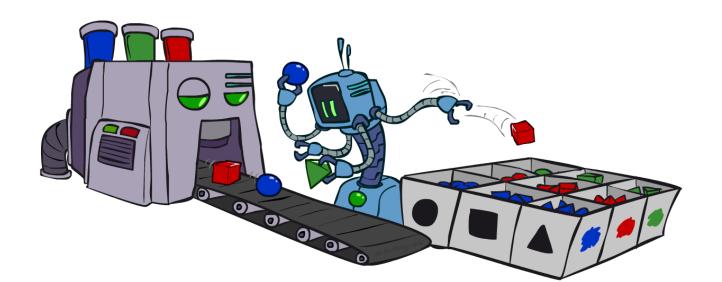
Sampling

Basic idea

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P

Why sample?

- Often very fast to get a decent approximate answer
- The algorithms are very simple and general (easy to apply to fancy models)
- They require very little memory (O(n))
- They can be applied to large models, whereas exact algorithms blow up



Sampling basics: discrete (categorical) distribution

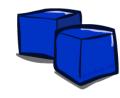
- To simulate a biased d-sided coin:
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample u into an outcome for the given distribution by associating each outcome x with a P(x)-sized sub-interval of [0,1)

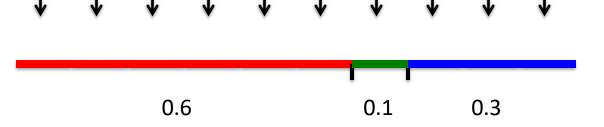
Exa	m	pl	le

С	<i>P</i> (<i>C</i>)
red	0.6
green	0.1
blue	0.3

$0.0 \le u < 0.6$, $\rightarrow C=red$
$0.6 \le u < 0.7$, $\rightarrow C=greer$
$0.7 \le u < 1.0$, $\rightarrow C=blue$

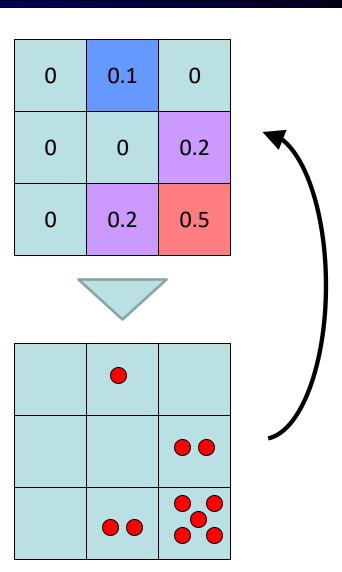
- If random() returns u = 0.83, then the sample is C = blue
- E.g, after sampling 8 times:





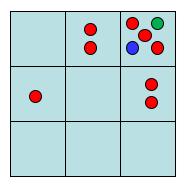
Particle Filtering

- Represent belief state by a set of samples
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
- This is how robot localization works in practice



Representation: Particles

- Our representation of P(X) is now a list of N << |X| particles
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles => more accuracy (cf. frequency histograms)
 - Usually we want a *low-dimensional* marginal
 - E.g., "Where is ghost 1?" rather than "Are ghosts 1,2,3 in [2,6], [5,6], and [8,11]?"



Particles:

(1,2)

(2,3)

(2,3)

(3,2)

(3,2)

(3,3)

(3,3)

(3,3)

(3,3)

(3,3)

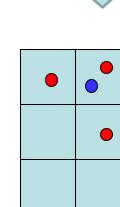
Particle Filtering: Prediction step

- Particle j in state $x_t^{(j)}$ samples a new state directly from the transition model:
 - $x_{t+1}^{(j)} \sim P(X_{t+1} \mid x_t^{(j)})$
 - Here, most samples move clockwise, but some move in another direction or stay in place
- For example:

```
x_{t+1}^{(j)} \sim P(X_{t+1} \mid x_t^{(green)}) = \langle P((3,3) \mid (3,3)), P((2,3) \mid (3,3)), P((3,2) \mid (3,3)) \rangle
= \langle 1/3, 1/3, 1/3 \rangle
```

Particles: (1,2)(2,3)(2,3)(3,2)(3,2)(3,3)(3,3)(3,3)(3,3)(3,3)Particles: (1,3)(2,2)(2,3)(2,3)

(3,1) (3,2) (3,2) (3,2) (3,3) (3,3)



Particle Filtering: Update step

- After observing e_{t+1} :
 - As in likelihood weighting, weight each sample based on the evidence
 - $\mathbf{w}^{(j)} = P(e_{t+1} | \mathbf{x}_{t+1}^{(j)})$
 - Normalize the weights: particles that fit the data better get higher weights, others get lower weights
- For example, say $e_{t+1} = (3,2)$
 - $w^{(green)} = P((3,2)|(3,2)) = .9$
 - $w^{(blue)} = P((3,2)|(2,3)) = .2$

Pa	rti	۵	c.
Га	ıu	ıc	э.

(2,3)

(2,3)

(3,2)

(3,3)

(3,3)

(3,3)

(3,3)

(1,2)

(3,2)

(3,3)

Particles:

(1,3) w=.1

(2,2) w=.4

(2,3) w=.2

(2,3) w=.2

(3,1) w=.4

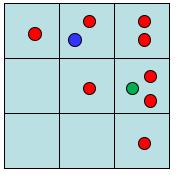
(3.2) w=.9

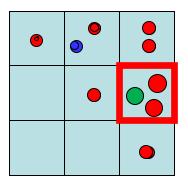
(3,2) w=.9

(3,2) w=.9

(3,3) w=.4

(3,3) w=.4





Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution
 - $x_{t+1}^{(j)} \sim N(X_{t+1} | e_{1:t}) / N = \alpha W(X_{t+1} | e_{1:t})$
 - (i.e., draw with replacement)
- Now the update is complete for this time step, continue with the next one (with weights reset to 1)

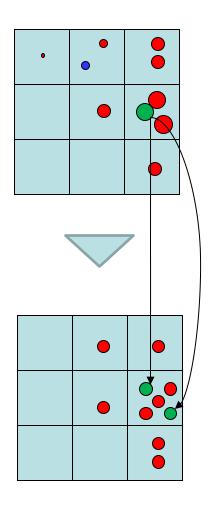
.02	.08	.17
0	.08	.56
0	0	.08

routine weighted-sample: return random() in α $W(X_{t+1} | e_{1:t})$

Particles	S:	
(1,3)	w=.1	
(2,2)	w=.4	
(2,3)	w=.2	
(2,3)	w=.2	
(3,1)	w=.4	
(3,2)	w=.9	
(3,2)	w=.9	
(3,2)	w=.9	
(3,3)	w=.4	
(3,3)	w=.4	
(New) Pa	rticles:	
(2,2	2)	
(2,3	3)	
(3,1	L)	
(3,1	L)	
(3,2	2)	
(3,2)		
(3,2)		
(3,2	2)	

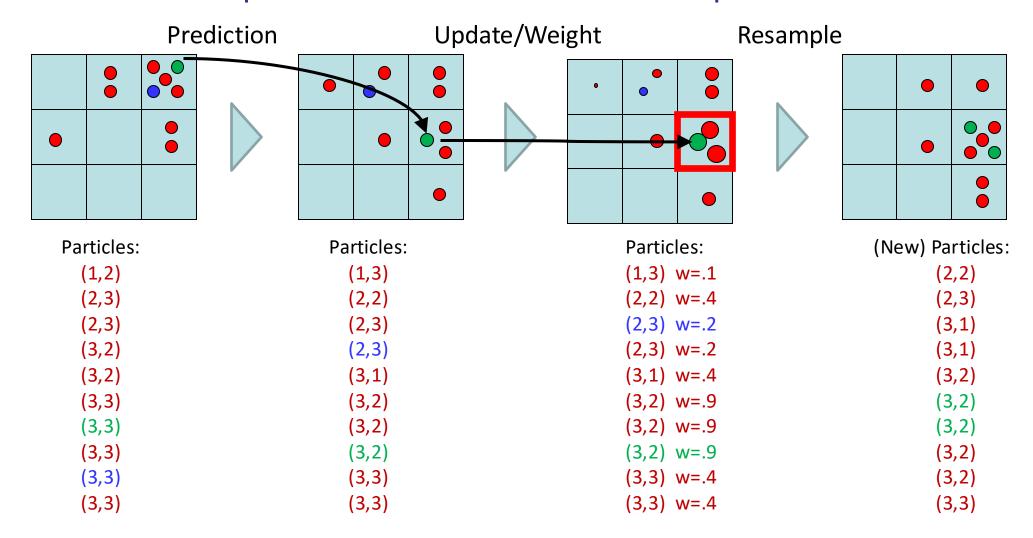
(3,2)

(3,3)



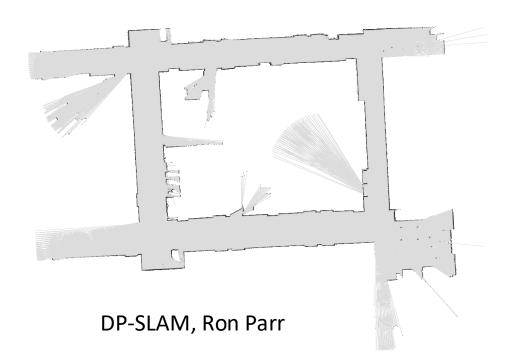
Summary: Particle Filtering

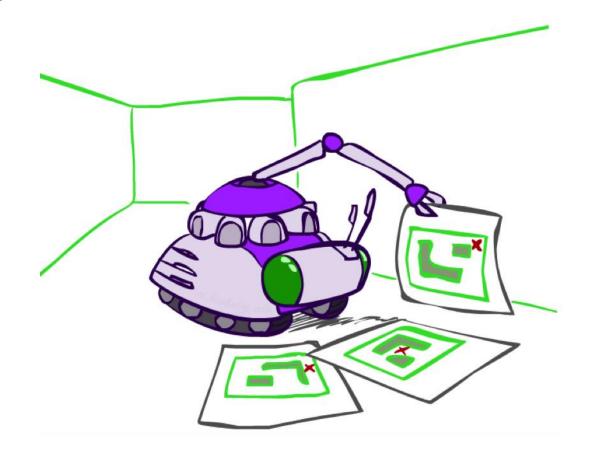
Particles: track samples of states rather than an explicit distribution



Robot Mapping

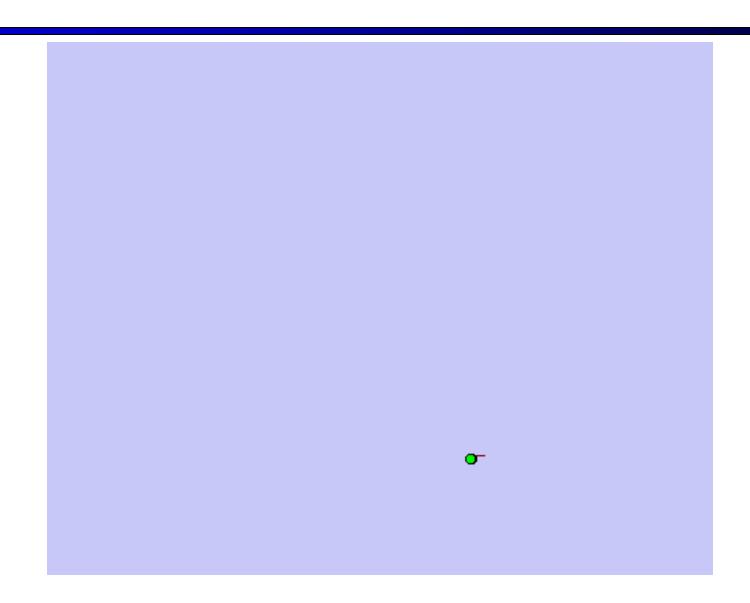
- SLAM: Simultaneous Localization And Mapping
 - Robot does not know map or location
 - State $x_t^{(j)}$ consists of position+orientation, map!
 - (Each map usually inferred exactly given sampled position+orientation sequence)



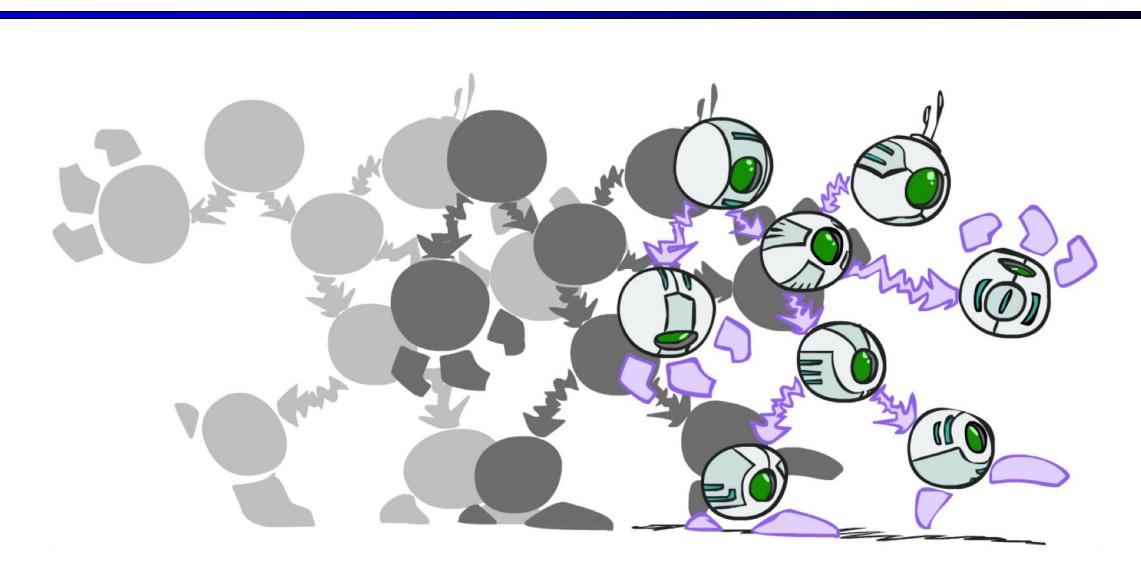


[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video

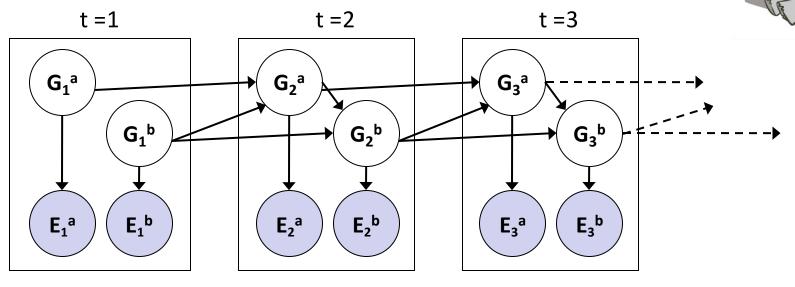


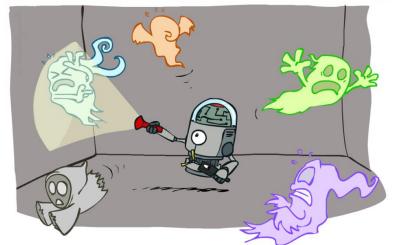
Dynamic Bayes' Nets



Dynamic Bayes Nets (DBNs)

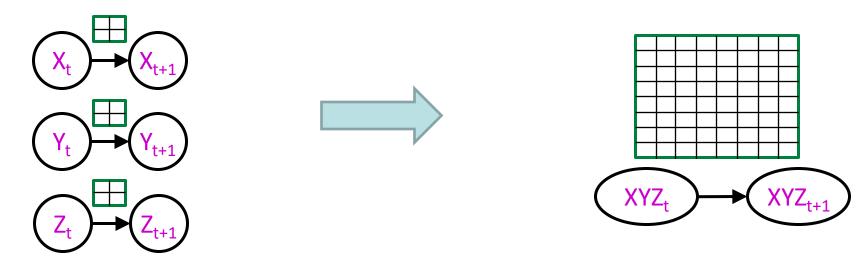
- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables at time t can have parents at time t-1





DBNs and HMMs

- Every HMM is a single-variable DBN
- Every discrete DBN is an HMM
 - HMM state is Cartesian product of DBN state variables

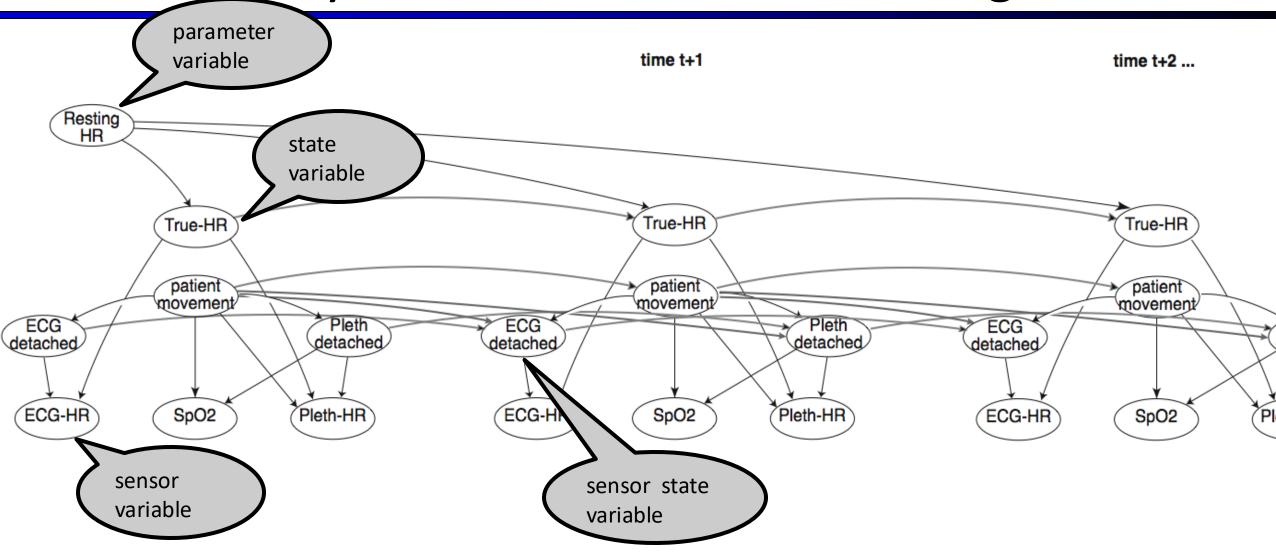


- Sparse dependencies => exponentially fewer parameters in DBN
 - E.g., 20 state variables, 3 parents each; DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} = 10^{12}$ parameters

Application: ICU monitoring

- State: variables describing physiological state of patient
- Evidence: values obtained from monitoring devices
- Transition model: physiological dynamics, sensor dynamics
- Query variables: pathophysiological conditions (a.k.a. bad things)

Toy DBN: heart rate monitoring



The enhanced heart-rate DBN's inferences on data from a healthy 40-year-old man

