CSE 573: Artificial Intelligence

Markov Decision Processes

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Non-Deterministic Search

Example: Grid World

= A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |fthereisa wallinthe direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Bigrewards come at the end (good or bad) 0.8

= Goal: maximize sum of rewards 0.1 0.1

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

= An MDP is defined by:

m Asetofstatess € S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

/T(sll,m,.. \

T(s5,MN,B,,)BD
T(s3,N,B,)EM.8 Tas@BigETable!
T(s34,0N,B,)EMD.1 11 XEEEIEES84Rntries

T(s31,EN,|341)|E=|ZD. 1
/ Forthow,Ave@iveRhisGsAnput@oRhegent

Markov Decision Processes

= An MDP is defined by:

m Asetofstatess € S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

4 N

. 1 2 3 A
R(S32;EN;E33)E:@O.01 1 Costlj)ﬂzjreathlng
R(53,,N,B,,)221.01 RS Iso@BigkTable!
R(S331|3E;|343)|§:|m.99

- ForBhow,Ave|soEiveRhis@o®hegent

Markov Decision Processes

An MDP is defined by:

m Asetofstatess € S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, ')
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St+1 = 3/|St — StaAt — Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(Siy1 = 8|St = s, A = ay) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal
policy t*: S 2> A

= A policy & gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

Optimal policy when R(s, a, s’) =-0.4 for
all non-terminals s

= An explicit policy defines a reflex agent

Optimal Policies

Example: Racing

Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward 0-5

Slow

Overheated

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s) called a transition
T(s,a,s) =P(s’ |s,a)
R(s,a,s’)

é\

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1, 2, 2] or [2,3,4]

= Now or later? [0, 0, 1] or [1,0,0]

Discounting

" [t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

x]v(
v @9

1 gl v

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Think of it as a gamma chance of
ending the process at every step

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Given:

Quiz: Discounting

10

1

d

b

C

d

e

= Actions: East, West, and Exit (only available in exit states a, €e)

= Transitions: deterministic

Quiz 1: Fory =1, what is the optimal policy?
Quiz 2: Fory =0.1, what is the optimal policy?

Quiz 3: For which y are West and East equally good when in state d?

1y=10 v3

10

10

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

" Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Policy m depends on time left

= Discounting:use0<y<1

Ulros--- o) = 3 4'r < Rmax/(1 - 7)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount y) s,

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s) called a transition
T(s,a,s) =P(s’ |s,a)
R(s,a,s’)

é\

Optimal Quantities

= The value (utility) of a state s:

V*(s) = expected utility starting in s and sis a
acting optimally state
a (s,a)isa
= The value (utility) of a g-state (s,a): P < g-state
Q'(s,a) = expected utility starting out o N
having taken action a from state s and (s,a,8') is a
transition

(thereafter) acting optimally

= The optimal policy:
n"(s) = optimal action from state s

Snapshot Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Sn phth idworld Q Values

MKI

WWWW ‘

Values of States (Bellman Equations)

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s,a) -

Q*(s,a) =) T(s,a,5") {R(Sa a,s') + VV*(S’)]

V*(s) = m(?XZT(S, a,s') [R(S,a,, s + ’)/V*(S,)}

S

Racing Search Tree

Racing Search Tree

mmm

NN SRR RN

A

VAT CREMEERI TR TR TR T

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea quantities: Only compute
needed once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited oy RN RN

computation, but with increasing
depths until change is small Hﬁﬂ Hﬁﬂ Hﬁﬂ
= Note: deep parts of the tree

eventually don’t matterify<1 THITRIN IR TR TIRELL THTIRLLL

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it's what a depth-k expectimax would give from s

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

0.72)» 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

0.51 »| 0.72 »| 0.84) 1.00

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

T T I O O BRI B A I O

VT || O Y | VT | O O Y | VO O e

ORI CUCRNEPRRE CHENAT TR LILRNE TR

Example: y=0.9, living

Bel I Man U pd ates reward=0, noise=0.2

Visa(s maxzm a,5') [R(s,a,5) + YVi(s')]= max Qi (s, a)

Q1((3,3),right) = ZT (3,3),right, s") [R((3, 3),right, s') + vV;(s")]

= 0.8 % [0.0 + 0.9 % 1.0] + 0.1 % [0.0 4+ 0.9 % 0.0] 4 0.1 % [0.0 -+ 0.9 0.0]

Value Iteration

Solving MDPs

Value Iteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vig1(s) < mC?XZT(s, a,s) {R(s,a,) + f}/Vk(s')}

Repeat until convergence

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

SI 1 Overheated
Vi | F 542450
Assume no discount!
Vo [0 0 0 J Vip1(s) mC?XZT(S, a,s’) [R(s,a,, s + nyk(s’)]
!/

S

Example: Value Iteration

V 2 SI .5*1"‘.5*1:1 Overheated
! F: -10
Assume no discount!
v
0 [0 0 0 J Vip1(s) mC?XZT(S, a,s’) [R(s,a,, s + nyk(s’)]
!

S

Example: Value Iteration

A 1 LA

]

Overheated

Assume no discount!

0 : J Vit1(s) ¢ max) T(s,a,s") {R(S’a”)+ ”Vvk(s,)]

S

Example: Value Iteration

A 1 LA

S: 1+2=3
V2 | B 54(242)+.54(2+1)=3.5

Overheated

Assume no discount!

Vo [O O O J Vk_|_1(8) < maasz(Saaa S,) {R(&a” S,) —I—"ka(S,)]

S

Example: Value Iteration

Overheated

Assume no discount!

Vo [O O O J Vk_|_1(8) < maasz(Saaa S,) {R(&a” S,) —I—"ka(S,)]

S

Value Iteration

= Bellman equations characterize the optimal values:

V*(s) = ma’?IXZT(s, a,s') [R(s,a,, s + ny*(s')}

= Value iteration computes them:

Vig1(s) < mC?XZT(s, a,s) {R(s,a,) + f}/Vk(s')}

= Value iteration is just a fixed point solution method

= _..though the V, vectors are also interpretable as time-limited values

Convergence®

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,; can be viewed as depth
k+1 expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual
rewards while V| has zeros

" That last layer is at best all Ry;ax

= |tis at worst Ry, / \ /

= But everything is discounted by yk that far out
= SoV,andV,,; are at most yk max|R| different
= So as kincreases, the values converge

Policy Methods

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vie1(8) < mC?XZT(S, a,s) [R(s,a, N + ’)/Vk(s’)}

S

= Problem 1: It's slow — O(S?A) per iteration

" Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

Do the optimal action Do what & says to do

“"s,a,8

’\A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 7t(s), then the tree would be simpler — only one action per state
= ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy n:

V7(s) = expected total discounted rewards starting in s and following ©

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,m(s),s") + V™ (s)]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy t?

ldea 1: Turn recursive Bellman equations into updates m(s)
(like value iteration) s, T(s)

Vo (s) =0 ‘/S’,”a/t/(/S),S’
Vig1(s) <= > T(s,m(s),s)[R(s,7(s),5") + 7V ()]

S
Efficiency: O(S?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

= Let’s imagine we have the optimal values V*(s)

= How should we act?

= |t’s not obvious!

= We need to do a mini-expectimax (one step)

7*(s) = arg QﬂaXZT(S, a,s')[R(s,a,s) +~vV*(s)]

S

= This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

" Let’s imagine we have the optimal vv
a-values: ANV =
—
= How should we act:
= Completely trivial to decide! A A

m*(s) = argmax Q*(s, a) m%

= |mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1(s) ZT(S mi(s),s') |R(s,mi(s),s") 4+~ V(sh]

" |mprovement: For fixed values, get a better policy using policy extraction
" One-step look-ahead:

mi4+1(s) = arg ;naXZT(s, a,s) [R(s, a,s) + nyWi(S’)}

8,

Comparison

= Both value iteration and policy iteration compute the same thing (all optimal values)

" |nvalue iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

" |n policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
"= The new policy will be better (or we’re done)

= Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
" They basically are — they are all variations of Bellman updates
= They all use one-step lookahead expectimax fragments
* They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

#

	Slide 1: CSE 573: Artificial Intelligence
	Slide 2: Non-Deterministic Search
	Slide 3: Example: Grid World
	Slide 4: Grid World Actions
	Slide 5: Markov Decision Processes
	Slide 6: Markov Decision Processes
	Slide 7: Markov Decision Processes
	Slide 9: What is Markov about MDPs?
	Slide 10: Policies
	Slide 11: Optimal Policies
	Slide 12: Example: Racing
	Slide 13: Example: Racing
	Slide 14: Racing Search Tree
	Slide 15: MDP Search Trees
	Slide 16: Utilities of Sequences
	Slide 17: Utilities of Sequences
	Slide 18: Discounting
	Slide 19: Discounting
	Slide 21: Quiz: Discounting
	Slide 22: Infinite Utilities?!
	Slide 23: Recap: Defining MDPs
	Slide 24: Solving MDPs
	Slide 25: MDP Search Trees
	Slide 26: Optimal Quantities
	Slide 27: Snapshot Gridworld V Values
	Slide 28: Snapshot of Gridworld Q Values
	Slide 29: Values of States (Bellman Equations)
	Slide 30: Racing Search Tree
	Slide 31: Racing Search Tree
	Slide 32: Racing Search Tree
	Slide 33: Time-Limited Values
	Slide 34: k=0
	Slide 35: k=1
	Slide 36: k=2
	Slide 38: k=3
	Slide 39: k=4
	Slide 40: k=5
	Slide 41: k=6
	Slide 42: k=7
	Slide 43: k=8
	Slide 44: k=9
	Slide 45: k=10
	Slide 46: k=11
	Slide 47: k=12
	Slide 48: k=100
	Slide 49: Computing Time-Limited Values
	Slide 50: Bellman Updates
	Slide 51: Value Iteration
	Slide 52: Solving MDPs
	Slide 53: Value Iteration
	Slide 54: Example: Value Iteration
	Slide 55: Example: Value Iteration
	Slide 56: Example: Value Iteration
	Slide 57: Example: Value Iteration
	Slide 58: Example: Value Iteration
	Slide 61: Value Iteration
	Slide 62: Convergence*
	Slide 67: Policy Methods
	Slide 68: Problems with Value Iteration
	Slide 69: k=12
	Slide 70: k=100
	Slide 71: Policy Iteration
	Slide 72: Policy Evaluation
	Slide 73: Fixed Policies
	Slide 74: Utilities for a Fixed Policy
	Slide 75: Example: Policy Evaluation
	Slide 76: Example: Policy Evaluation
	Slide 77: Policy Evaluation
	Slide 78: Policy Extraction
	Slide 79: Computing Actions from Values
	Slide 80: Computing Actions from Q-Values
	Slide 81: Policy Iteration
	Slide 82: Policy Iteration
	Slide 83: Policy Iteration
	Slide 84: Comparison
	Slide 85: Summary: MDP Algorithms
	Slide 86: The Bellman Equations

