CSE 573: Artificial Intelligence

Markov Decision Processes
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Non-Deterministic Search




Example: Grid World

= A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |fthereisa wallinthe direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
=  Small “living” reward each step (can be negative)
= Bigrewards come at the end (good or bad) 0.8

= Goal: maximize sum of rewards 0.1 0.1



Grid World Actions

Deterministic Grid World Stochastic Grid World




Markov Decision Processes

= An MDP is defined by:

m Asetofstatess € S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics
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Markov Decision Processes

= An MDP is defined by:

m Asetofstatess € S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
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Markov Decision Processes

An MDP is defined by:

m Asetofstatess € S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, ')
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon



What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St+1 = 3/|St — StaAt — Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(Siy1 = 8|St = s, A = ay) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)



Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal
policy t*: S 2> A

= A policy & gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

Optimal policy when R(s, a, s’) =-0.4 for
all non-terminals s

= An explicit policy defines a reflex agent



Optimal Policies




Example: Racing




Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward 0-5

Slow

Overheated




Racing Search Tree




MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s ) called a transition
T(s,a,s ) =P(s’ |s,a)
R(s,a,s’)
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Utilities of Sequences




Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1, 2, 2] or [2,3,4]

= Now or later? [0, 0, 1] or [1,0,0]




Discounting

" [t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially
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Worth Now Worth Next Step Worth In Two Steps




Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Think of it as a gamma chance of
ending the process at every step

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])




Given:

Quiz: Discounting
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= Actions: East, West, and Exit (only available in exit states a, €e)

= Transitions: deterministic

Quiz 1: Fory =1, what is the optimal policy?
Quiz 2: Fory =0.1, what is the optimal policy?

Quiz 3: For which y are West and East equally good when in state d?

1y=10 v3
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10




Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

" Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Policy m depends on time left

= Discounting:use0<y<1

Ulros--- o) = 3 4'r < Rmax/(1 - 7)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)



Recap: Defining MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount y) s,

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards



Solving MDPs




MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s ) called a transition
T(s,a,s ) =P(s’ |s,a)
R(s,a,s’)
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Optimal Quantities

= The value (utility) of a state s:

V*(s) = expected utility starting in s and sis a
acting optimally state
a (s,a)isa
= The value (utility) of a g-state (s,a): P < g-state
Q'(s,a) = expected utility starting out o N
having taken action a from state s and (s,a,8') is a
transition

(thereafter) acting optimally

= The optimal policy:
n"(s) = optimal action from state s



Snapshot Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




Sn phth idworld Q Values
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Values of States (Bellman Equations)

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s,a) -

Q*(s,a) = ) T(s,a,5") {R(Sa a,s') + VV*(S’)]

V*(s) = m(?XZT(S, a,s') [R(S,a,, s + ’)/V*(S,)}

S



Racing Search Tree




Racing Search Tree
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Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea quantities: Only compute
needed once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited oy RN RN

computation, but with increasing
depths until change is small Hﬁﬂ Hﬁﬂ Hﬁﬂ
= Note: deep parts of the tree

eventually don’t matterify<1 THITRIN IR TR TIRELL THTIRLLL




Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it's what a depth-k expectimax would give from s




VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0




VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0




0.72 )» 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=5

Cridworld Display

0.51 »| 0.72 »| 0.84 ) 1.00

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Computing Time-Limited Values
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Example: y=0.9, living

Bel I Man U pd ates reward=0, noise=0.2

Visa(s maxzm a,5') [R(s,a,5) + YVi(s')]= max Qi (s, a)

Q1((3,3),right) = ZT (3,3),right, s") [R((3, 3),right, s') + vV;(s")]

= 0.8 % [0.0 + 0.9 % 1.0] + 0.1 % [0.0 4+ 0.9 % 0.0] 4 0.1 % [0.0 -+ 0.9  0.0]



Value Iteration




Solving MDPs




Value Iteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vig1(s) < mC?XZT(s, a,s) {R(s,a, ) + f}/Vk(s')}

Repeat until convergence

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do




Example: Value Iteration

SI 1 Overheated
Vi | F 542450
Assume no discount!
Vo [ 0 0 0 J Vip1(s) mC?XZT(S, a,s’) [R(s,a,, s + nyk(s’)]
!/

S



Example: Value Iteration

V 2 SI .5*1"‘.5*1:1 Overheated
! F: -10
Assume no discount!
v
0 [ 0 0 0 J Vip1(s) mC?XZT(S, a,s’) [R(s,a,, s + nyk(s’)]
!

S



Example: Value Iteration

A 1 LA

]

Overheated

Assume no discount!

0 : J Vit1(s) ¢ max) T(s,a,s") {R(S’a” )+ ”Vvk(s,)]

S




Example: Value Iteration

A 1 LA

S: 1+2=3
V2 | B 54(242)+.54(2+1)=3.5

Overheated

Assume no discount!

Vo [ O O O J Vk_|_1(8) < maasz(Saaa S,) {R(&a” S,) —I—"ka(S,)]

S




Example: Value Iteration

Overheated

Assume no discount!

Vo [ O O O J Vk_|_1(8) < maasz(Saaa S,) {R(&a” S,) —I—"ka(S,)]

S




Value Iteration

= Bellman equations characterize the optimal values:

V*(s) = ma’?IXZT(s, a,s') [R(s,a,, s + ny*(s')}

= Value iteration computes them:

Vig1(s) < mC?XZT(s, a,s) {R(s,a, ) + f}/Vk(s')}

= Value iteration is just a fixed point solution method

= _..though the V, vectors are also interpretable as time-limited values



Convergence®

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,; can be viewed as depth
k+1 expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual
rewards while V| has zeros

" That last layer is at best all Ry;ax

= |tis at worst Ry, / \ /

= But everything is discounted by yk that far out
= SoV,andV,,; are at most yk max|R| different
= So as kincreases, the values converge



Policy Methods




Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vie1(8) < mC?XZT(S, a,s) [R(s,a, N + ’)/Vk(s’)}

S

= Problem 1: It's slow — O(S?A) per iteration

" Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values



k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions



Policy Evaluation




Fixed Policies

Do the optimal action Do what & says to do

“"s,a,8

’\A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 7t(s), then the tree would be simpler — only one action per state
= ... though the tree’s value would depend on which policy we fixed



Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy n:

V7(s) = expected total discounted rewards starting in s and following ©

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,m(s),s") + V™ (s)]



Example: Policy Evaluation

Always Go Right Always Go Forward




Example: Policy Evaluation

Always Go Right Always Go Forward




Policy Evaluation

How do we calculate the V’s for a fixed policy t?

ldea 1: Turn recursive Bellman equations into updates m(s)
(like value iteration) s, T(s)

Vo (s) =0 ‘/S’,”a/t/(/S),S’
Vig1(s) <= > T(s,m(s),s)[R(s,7(s),5") + 7V ()]

S
Efficiency: O(S?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)



Policy Extraction




Computing Actions from Values

= Let’s imagine we have the optimal values V*(s)

= How should we act?

= |t’s not obvious!

= We need to do a mini-expectimax (one step)

7*(s) = arg QﬂaXZT(S, a,s')[R(s,a,s) +~vV*(s)]

S

= This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

" Let’s imagine we have the optimal vv
a-values: ANV =
—
= How should we act:
= Completely trivial to decide! A A

m*(s) = argmax Q*(s, a) m%

= |mportant lesson: actions are easier to select from g-values than values!




Policy Iteration




Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions



Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1(s) ZT(S mi(s),s') |R(s,mi(s),s") 4+~ V(sh]

" |mprovement: For fixed values, get a better policy using policy extraction
" One-step look-ahead:

mi4+1(s) = arg ;naXZT(s, a,s) [R(s, a,s) + nyWi(S’)}

8,



Comparison

= Both value iteration and policy iteration compute the same thing (all optimal values)

" |nvalue iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

" |n policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
"= The new policy will be better (or we’re done)

= Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
" They basically are — they are all variations of Bellman updates
= They all use one-step lookahead expectimax fragments
* They differ only in whether we plug in a fixed policy or max over actions



The Bellman Equations

#
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