
CSE 573: Artificial Intelligence

Adversarial Search

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Outline

▪ History / Overview

▪ Minimax for Zero-Sum Games

▪ α-β Pruning

▪ Games with chance elements

A brief history
▪ Checkers:

▪ 1950: First computer player.
▪ 1959: Samuel’s self-taught program.
▪ 1994: First computer world champion: Chinook defeats Tinsley
▪ 2007: Checkers solved! Endgame database of 39 trillion states

▪ Chess:
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.
▪ 1960s onward: gradual improvement under “standard model”
▪ 1997: Deep Blue defeats human champion Gary Kasparov
▪ 2021: Stockfish rating 3551 (vs 2870 for Magnus Carlsen).

▪ Go:
▪ 1968: Zobrist’s program plays legal Go, barely (b>300!)
▪ 1968-2005: various ad hoc approaches tried, novice level
▪ 2005-2014: Monte Carlo tree search -> strong amateur
▪ 2016-2017: AlphaGo defeats human world champions

▪ Pacman

▪ Game = task environment with > 1 agent

▪ Axes:

▪ Deterministic or stochastic?

▪ Perfect information (fully observable)?

▪ One, two, or more players?

▪ Turn-taking or simultaneous?

▪ Zero sum?

▪ Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

Types of Games

“Standard” Games

▪ Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

▪ Game formulation:

▪ Initial state: s0

▪ Players: Player(s) indicates whose move it is

▪ Actions: Actions(s) for player on move

▪ Transition model: Result(s,a)

▪ Terminal (goal) test: Terminal-Test(s)

▪ Terminal values: Utility(s,p) for player p
▪ Or just Utility(s) for player making the decision at root

Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities

▪ Pure competition: what is better for one
player is worse for the other

▪ General Games
▪ Agents have independent utilities

▪ Cooperation, indifference, competition,
shifting alliances, and more are all possible

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Utility (value) of a State

8

2 0 2 6 4 6… …

Utility of a state:
The best achievable

outcome (value)
from that state

Terminal States:
U(s) = known

Non-Terminal States:
U(s) = max U(s’)

s’  successors(s)

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

-8 -10

-8

MAX nodes: under Agent’s control
U(s) = max U(s’)

s’  successors(s)

Terminal States:
U(s) = known

MIN nodes: under Opponent’s control
U(s) = min U(s’)

s’  successors(s)

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:

▪ Tic-tac-toe, chess, checkers

▪ One player maximizes result

▪ The other minimizes result

▪ Minimax search:

▪ A state-space search tree

▪ Players alternate turns

▪ Compute each node’s minimax value:
the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Implementation

function minimax_value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) minimax_value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) minimax_value(Result(s,a))

function minimax-decision(s) returns an action

 return the action a in Actions(s) with the highest
minimax_value(Result(s,a))

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

▪ Example: For chess, b  35, m  100
▪ Exact solution is completely infeasible

▪ Humans can’t do this either, so how do
we play chess?

Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any

MAX node on this path

The order of generation matters: more pruning

is possible if good moves come first

3

3

Alpha-Beta Quiz

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Alpha-Beta Quiz 2

10

10

>=100 2

<=2

Alpha-Beta Pruning

▪ General case (pruning children of MIN node)

▪ We’re computing the MIN-VALUE at some node n

▪ We’re looping over n’s children

▪ n’s estimate of the childrens’ min is dropping

▪ Who cares about n’s value? MAX

▪ Let α be the best value that MAX can get so far at any

choice point along the current path from the root

▪ If n becomes worse than α, MAX will avoid it, so we can

prune n’s other children (it’s already bad enough that it

won’t be played)

▪ Pruning children of MAX node is symmetric

▪ Let β be the best value that MIN can get so far at any

choice point along the current path from the root

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞

for each successor of state:
v = min(v, max-value(successor, α, β))
if v ≤ α
 return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α, β))
if v ≥ β
 return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞

for each successor of state:
v = min(v, max-value(successor, α, β))
if v ≤ α
 return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α, β))
if v ≥ β
 return v
α = max(α, v)

return v

function minimax-decision(s) returns an action

 return the action a in Actions(s) with the highest
max-value(Result(s,a), -∞, +∞)

Alpha-Beta Pruning Properties

▪ Theorem: This pruning has no effect on minimax value computed for the root!

▪ Good child ordering improves effectiveness of pruning
▪ Iterative deepening helps with this

▪ With “perfect ordering”:
▪ Time complexity drops to O(bm/2)

▪ Square root!

▪ Doubles solvable depth!

▪ This is a simple example of metareasoning (reasoning about reasoning)

▪ For chess: only 3550 instead of 35100! Yay!

10 10 0

max

min

Resource Limits

Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for non-

terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ - reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evaluation Functions

Video of Demo Thrashing (d=2)

Why Pacman Starves

▪ A danger of replanning agents!
▪ He knows his score will go up by eating the dot now (west, east)

▪ He knows his score will go up just as much by eating the dot later (east, west)

▪ There are no point-scoring opportunities after eating the dot (within the horizon, two here)

▪ Therefore, waiting seems just as good as eating: he may go east, then back west in the next
round of replanning!

Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

What features would be good for Pacman?

Which algorithm?

- depth  simple eval fun

Which algorithm?

- depth  better eval fun

Depth Matters

▪ Evaluation functions are always
imperfect

▪ The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

▪ An important example of the
tradeoff between complexity of
features and complexity of
computation

Video of Demo Limited Depth (2)

42

Video of Demo Limited Depth (10)

Synergies between
Alpha-Beta and Evaluation Function

▪ Alpha-Beta: amount of pruning depends on expansion ordering

▪ Evaluation function can provide guidance to expand most promising nodes
first

▪ Alpha-beta:

▪ Value at a min-node will only keep going down

▪ Once value of min-node lower than better option for max along path to
root, can prune

▪ Hence, IF evaluation function provides upper-bound on value at min-node,
and upper-bound already lower than better option for max along path to
root THEN can prune

44

	Slide 1: CSE 573: Artificial Intelligence
	Slide 2: Outline
	Slide 3: A brief history
	Slide 4: Types of Games
	Slide 5: “Standard” Games
	Slide 6: Zero-Sum Games
	Slide 7: Adversarial Search
	Slide 8: Single-Agent Trees
	Slide 9: Utility (value) of a State
	Slide 10: Adversarial Game Trees
	Slide 11: Minimax Values
	Slide 12: Tic-Tac-Toe Game Tree
	Slide 13: Adversarial Search (Minimax)
	Slide 14: Implementation
	Slide 15: Video of Demo Min vs. Exp (Min)
	Slide 16: Video of Demo Min vs. Exp (Exp)
	Slide 17: Minimax Efficiency
	Slide 18: Game Tree Pruning
	Slide 19: Minimax Example
	Slide 20: Alpha-Beta Example
	Slide 21: Alpha-Beta Quiz
	Slide 22: Alpha-Beta Quiz
	Slide 23: Alpha-Beta Quiz 2
	Slide 24: Alpha-Beta Quiz 2
	Slide 28: Alpha-Beta Pruning
	Slide 29: Alpha-Beta Implementation
	Slide 30: Alpha-Beta Implementation
	Slide 31: Alpha-Beta Pruning Properties
	Slide 32: Resource Limits
	Slide 33: Resource Limits
	Slide 34: Evaluation Functions
	Slide 35: Video of Demo Thrashing (d=2)
	Slide 36: Why Pacman Starves
	Slide 37: Evaluation Functions
	Slide 38: Evaluation for Pacman
	Slide 39: Which algorithm?
	Slide 40: Which algorithm?
	Slide 41: Depth Matters
	Slide 42: Video of Demo Limited Depth (2)
	Slide 43: Video of Demo Limited Depth (10)
	Slide 44: Synergies between Alpha-Beta and Evaluation Function

