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Outline

▪ History / Overview

▪ Minimax for Zero-Sum Games

▪ α-β Pruning 

▪ Games with chance elements



A brief history
▪ Checkers: 

▪ 1950: First computer player.  
▪ 1959: Samuel’s self-taught program. 
▪ 1994: First computer world champion: Chinook defeats Tinsley 
▪ 2007: Checkers solved! Endgame database of 39 trillion states

▪ Chess: 
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, 

McCarthy. 
▪ 1960s onward: gradual improvement under “standard model”
▪ 1997: Deep Blue defeats human champion Gary Kasparov
▪ 2021: Stockfish rating 3551 (vs 2870 for Magnus Carlsen).

▪ Go: 
▪ 1968: Zobrist’s program plays legal Go, barely (b>300!)
▪ 1968-2005: various ad hoc approaches tried, novice level
▪ 2005-2014: Monte Carlo tree search -> strong amateur
▪ 2016-2017: AlphaGo defeats human world champions

▪ Pacman



▪ Game = task environment with > 1 agent

▪ Axes:

▪ Deterministic or stochastic?

▪ Perfect information (fully observable)?

▪ One, two, or more players?

▪ Turn-taking or simultaneous?

▪ Zero sum?

▪ Want algorithms for calculating a contingent plan (a.k.a. strategy or policy) 
which recommends a move for every possible eventuality

Types of Games



“Standard” Games

▪ Standard games are deterministic, observable, 
two-player, turn-taking, zero-sum

▪ Game formulation:

▪ Initial state: s0

▪ Players: Player(s) indicates whose move it is

▪ Actions: Actions(s) for player on move

▪ Transition model: Result(s,a)

▪ Terminal (goal) test: Terminal-Test(s)

▪ Terminal values: Utility(s,p) for player p
▪ Or just Utility(s) for player making the decision at root



Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities 

▪ Pure competition: what is better for one 
player is worse for the other

▪ General Games
▪ Agents have independent utilities

▪ Cooperation, indifference, competition, 
shifting alliances, and more are all possible



Adversarial Search



Single-Agent Trees
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Utility (value) of a State
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Utility of a state: 
The best achievable 

outcome (value) 
from that state

Terminal States:
U(s) = known

Non-Terminal States:
U(s) =      max      U(s’)

s’   successors(s)



Adversarial Game Trees
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Minimax Values
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MAX nodes: under Agent’s control
U(s) =      max      U(s’)

s’   successors(s)

Terminal States:
U(s) = known

MIN nodes: under Opponent’s control
U(s) =      min      U(s’)

s’   successors(s)



Tic-Tac-Toe Game Tree



Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:

▪ Tic-tac-toe, chess, checkers

▪ One player maximizes result

▪ The other minimizes result

▪ Minimax search:

▪ A state-space search tree

▪ Players alternate turns

▪ Compute each node’s minimax value: 
the best achievable utility against a 
rational (optimal) adversary
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Terminal values:
part of the game 

Minimax values:
computed recursively



Implementation

function minimax_value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) minimax_value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) minimax_value(Result(s,a))

function minimax-decision(s) returns an action

    return the action a in Actions(s) with the highest       
minimax_value(Result(s,a))

    



Video of Demo Min vs. Exp (Min)



Video of Demo Min vs. Exp (Exp)



Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

▪ Example: For chess, b  35, m  100
▪ Exact solution is completely infeasible

▪ Humans can’t do this either, so how do 
we play chess?



Game Tree Pruning



Minimax Example
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3 2 2
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Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any 

MAX node on this path

The order of generation matters: more pruning

is possible if good moves come first

3

3



Alpha-Beta Quiz



Alpha-Beta Quiz



Alpha-Beta Quiz 2



Alpha-Beta Quiz 2
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Alpha-Beta Pruning

▪ General case (pruning children of MIN node)

▪ We’re computing the MIN-VALUE at some node n

▪ We’re looping over n’s children

▪ n’s estimate of the childrens’ min is dropping

▪ Who cares about n’s value?  MAX

▪ Let α be the best value that MAX can get so far at any 

choice point along the current path from the root

▪ If n becomes worse than α, MAX will avoid it, so we can 

prune n’s other children (it’s already bad enough that it 

won’t be played)

▪ Pruning children of MAX node is symmetric

▪ Let β be the best value that MIN can get so far at any 

choice point along the current path from the root

MAX

MIN

MAX

MIN

a

n



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞

for each successor of state:
v = min(v, max-value(successor, α, β))
if v ≤ α 
        return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α, β))
if v ≥ β 
        return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞

for each successor of state:
v = min(v, max-value(successor, α, β))
if v ≤ α 
        return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α, β))
if v ≥ β 
        return v
α = max(α, v)

return v

function minimax-decision(s) returns an action

    return the action a in Actions(s) with the highest       
max-value(Result(s,a), -∞, +∞)

    



Alpha-Beta Pruning Properties

▪ Theorem: This pruning has no effect on minimax value computed for the root!

▪ Good child ordering improves effectiveness of pruning
▪ Iterative deepening helps with this

▪ With “perfect ordering”:
▪ Time complexity drops to O(bm/2)

▪ Square root!

▪ Doubles solvable depth!

▪ This is a simple example of metareasoning (reasoning about reasoning)

▪ For chess: only 3550 instead of 35100! Yay!

10 10 0

max

min



Resource Limits



Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for non-

terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ - reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Use iterative deepening for an anytime algorithm
? ? ? ?
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Evaluation Functions



Video of Demo Thrashing (d=2)



Why Pacman Starves

▪ A danger of replanning agents!
▪ He knows his score will go up by eating the dot now (west, east)

▪ He knows his score will go up just as much by eating the dot later (east, west)

▪ There are no point-scoring opportunities after eating the dot (within the horizon, two here)

▪ Therefore, waiting seems just as good as eating: he may go east, then back west in the next 
round of replanning!



Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ e.g.  f1(s) = (num white queens – num black queens), etc.



Evaluation for Pacman

What features would be good for Pacman?



Which algorithm?

- depth  simple eval fun



Which algorithm?

- depth  better eval fun



Depth Matters

▪ Evaluation functions are always 
imperfect

▪ The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters

▪ An important example of the 
tradeoff between complexity of 
features and complexity of 
computation



Video of Demo Limited Depth (2)
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Video of Demo Limited Depth (10)



Synergies between 
Alpha-Beta and Evaluation Function

▪ Alpha-Beta: amount of pruning depends on expansion ordering

▪ Evaluation function can provide guidance to expand most promising nodes 
first

▪ Alpha-beta:

▪ Value at a min-node will only keep going down

▪ Once value of min-node lower than better option for max along path to 
root, can prune

▪ Hence, IF evaluation function provides upper-bound on value at min-node, 
and upper-bound already lower than better option for max along path to 
root THEN can prune

44
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