
CSE 573:
Artificial Intelligence

Hanna Hajishirzi

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Search
(Un-informed, Informed Search)

Recap: Search

o Search problem:
o States (configurations of the world)
o Actions and costs
o Successor function (world dynamics)
o Start state and goal test

o Search tree:
o Nodes: represent plans for reaching states

o Search algorithm:
o Systematically builds a search tree
o Chooses an ordering of the fringe (unexplored nodes)
o Optimal: finds least-cost plans

General Tree Search

Uniform Cost Issues

o Remember: UCS explores increasing
cost contours

o The good: UCS is complete and
optimal!

o The bad:
o Explores options in every “direction”
o No information about goal location

o We’ll fix that soon!

Start Goal

…

c £ 3
c £ 2

c £ 1

Up next: Informed Search

o Uninformed Search
o DFS
o BFS
o UCS

§ Informed Search
§ Heuristics
§ Greedy Search
§ A* Search
§ Graph Search

Search Heuristics
§ A heuristic is:

§ A function that estimates how close a state is to a goal
§ Designed for a particular search problem
§ Pathing?
§ Examples: Manhattan distance, Euclidean distance for

pathing

10

5
11.2

Example: Heuristic Function

h(x)

Greedy Search

Greedy Search

o Expand the node that seems closest…

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!

Greedy Search

o Strategy: expand a node that you think is
closest to a goal state
o Heuristic: estimate of distance to nearest goal

for each state

o A common case:
o Best-first takes you straight to the (wrong)

goal

o Worst-case: like a badly-guided DFS

…
b

…
b

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small
Maze)

A* Search

A* Search

UCS Greedy

A*

Combining UCS and Greedy
o Uniform-cost orders by path cost, or backward cost g(n)
o Greedy orders by goal proximity, or forward cost h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

o Should we stop when we enqueue a goal?

o No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S 0 3 3

g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

g h +

S 0 7 7
S->A 1 6 7
S->G 5 0 5

Idea: Admissibility

Inadmissible (pessimistic) heuristics
break optimality by trapping

good plans on the fringe

Admissible (optimistic) heuristics
slow down bad plans but
never outweigh true costs

Admissible Heuristics
o A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s
involved in using A* in practice.

15 11.5
0.0

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

o Uniform-cost expands equally in
all “directions”

o A* expands mainly toward the
goal, but does hedge its bets to
ensure optimality

Start Goal

Start Goal

Comparison

Greedy Uniform Cost A*

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

A*: Summary

A*: Summary

o A* uses both backward costs and (estimates of) forward
costs

o A* is optimal with admissible (optimistic) heuristics

o Heuristic design is key: often use relaxed problems

Video of Demo Empty Water Shallow/Deep
– Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics

o Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

o Inadmissible heuristics are often useful too

15
366

Example: 8 Puzzle

o What are the states?
o How many states?
o What are the actions?
o How many successors from the start state?
o What should the costs be?

Start State Goal StateActions

Admissible
heuristics?

8 Puzzle I
o Heuristic: Number of tiles misplaced
o Why is it admissible?
o h(start) =
o This is a relaxed-problem heuristic

8

Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

o What if we had an easier 8-puzzle
where any tile could slide any direction
at any time, ignoring other tiles?

o Total Manhattan distance

o Why is it admissible?

o h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

o How about using the actual cost as a heuristic?
o Would it be admissible?
o Would we save on nodes expanded?
o What’s wrong with it?

o With A*: a trade-off between quality of estimate and work per
node
o As heuristics get closer to the true cost, you will expand fewer nodes but

usually do more work per node to compute the heuristic itself

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3
4

3

4

2

Example: Heuristic Function
Heuristic: the number of the largest pancake that is still out of place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

o Dominance: ha ≥ hc if

o Heuristics form a semi-lattice:
o Max of admissible heuristics is admissible

o Trivial heuristics
o Bottom of lattice is the zero heuristic

(what does this give us?)
o Top of lattice is the exact heuristic

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
o A is an optimal goal node
o B is a suboptimal goal node
o h is admissible

Claim:
o A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the

fringe, too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the

fringe, too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the

fringe, too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

o All ancestors of A expand before B
o A expands before B
o A* search is optimal

…

Graph Search

Tree Search: Extra Work!
o Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

o Idea: never expand a state twice

o How to implement:
o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but…
o Before expanding a node, check to make sure its state has never

been expanded before
o If not new, skip it, if new add to closed set

o Important: store the closed set as a set, not a list

o Can graph search wreck completeness? Why/why not?

o How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4
h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Closed Set:S B C A

Consistency of Heuristics

o Main idea: estimated heuristic costs ≤ actual costs

o Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

o Consistency: heuristic “arc” cost ≤ actual cost for each

arc

h(A) – h(C) ≤ cost(A to C)

o Consequences of consistency:

o The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

o A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

A* Graph Search

o Sketch: consider what A* does with a
consistent heuristic:

o Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

o Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

o Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1

Optimality of A* Search

o With a admissible heuristic, Tree A* is optimal.
o With a consistent heuristic, Graph A* is optimal.
o With h=0, the same proof shows that UCS is optimal.

Pseudo-Code

A* Applications

o Video games
o Pathing / routing problems
o Resource planning problems
o Robot motion planning
o Language analysis
o Machine translation
o Speech recognition
o …

A* in Recent Literature

o Joint A* CCG Parsing and
Semantic Role Labeling (EMLN’15)

o Diagram
Understanding (ECCV’17)

Lexical Category Choice
xi !NP | S\NP | (S\NP)/PP | . . .
One dependency is created for every argument of the category
S\NP ! S\NP
(S\NP)/PP ! (S\NP)/PP, (S\NP)/PP
. . .
Preposition choice for PP arguments
(S\NP)/PP ! (S\NP)/PPin | (S\NP)/PPfor | . . .
. . .
Semantic role label choice for the argument
S\NP ! S\NPARG0 | S\NPARG1 | . . .
(S\NP)/PP ! (S\NPARG0)/PP | (S\NPARG1)/PP . . .
(S\NP)/PPX ! (S\NP)/PPX

ARG0 | (S\NP)/PPX
ARG1 . . .

. . .
Attachment choice
ARG0 ! x0 | . . . | xi�1 | xi+1 | . . . | xN

ARG1 ! x0 | . . . | xi�1 | xi+1 | . . . | xN

. . .

(a) The grammar GENLEX (xi)

confirm

S\NP (S\NP)/NP NP

S\NP (S\NP)/NP (S\NP)/NP

ARG0 ARG1 ?

He reports refused

(b) Visualization of a fragment of GENLEX (confirm)

Figure 4: (a) The grammar GENLEX (xi), which defines the space of extended lexical entries,
and (b) a visualization of a fragment of GENLEX (confirm). Extended lexical entries, including
confirm `(S\NPARG0=he)/NPARG1=reports and confirm `NP , are specified by choosing one cate-
gory (top level in both a and b), enumerating all arguments (second level), selecting the preposition for
PP arguments (when present), selecting a semantic role label for each, and finally choosing the argument
head word. The features are local to the grammar rules, enabling efficient dynamic programs for upper
bound computations on partially specified entries, such as confirm `(S\NPr=a)/NPARG1=reports .

then create an upper bound for the parse as a sum
of upper bounds for words. The bound is not exact,
because the grammar may not allow the combina-
tion of the best lexical entry for each word.

Section 5.1 gives a declarative definition of h
for any partial parse, and 5.2 explains how to effi-
ciently compute h during parsing.

5.1 Upper Bounds for Partial Parses

This section defines the upper bound on the Viterbi
outside score h(yi,j) for any partial parse yi,j of
span i . . . j. For example, in the parse in Figure
3, y3,5 is the partial parse of confirm or deny with
category (S\NP)/NP .

As explained in Section 4, a parse can be de-
composed into a series of extended lexical entries.
Similarly, a partial parse can be viewed as a se-
ries of partially specified extended lexical entries
y0 . . . yN . For example, in Figure 3, the partial
parse of the span confirm or deny reports, the ex-
tended lexical entries for the words outside the
span (He, refused and to) are completely unspeci-
fied. The extended lexical entries for words inside
the span have specified categories, but can contain
underspecified dependencies:

confirm ` (S\NPr=a)/NPARG1=reports

or ` conj
deny ` (S\NPr 0=a0)/NPARG1=reports

reports ` NP

Therefore, we can compute an upper bound for

the outside score of a partial parse as a sum of
the upper bounds of the unspecified components of
each extended lexical entry. Note that because the
derivation features are constrained to be  0, they
do not affect the calculation of the upper bound.

We can then find an upper bound for completely
unspecified spans using by summing the upper
bounds for the words. We can pre-compute an up-
per bound for the span hi,j for every span i, j as:

hi,j =
jX

k=i

max
yk2GENLEX (xk)

✓ · �(x, yk)

The max can be efficiently computed using the
Viterbi algorithm on GENLEX (xk) (as described
in Section 4).

The upper bound on the outside score of a par-
tial parse is then the sum of the upper bounds of
the words outside the parse, and the sum of the
scores of the best possible specifications for each
underspecified dependency:

h(yi,j) =
X

hf,c,n,?,?,?i2deps(yi,j)

max
a0,p0,r0

✓ · �(hf, c, n, p0, a0, r0i)

+ h0,i�1 + hj+1,N

where deps(y) returns the underspecified depen-
dencies from partial parse.

For example, in Figure 3, the upper bound for
the outside score of the partial parse of confirm

or deny reports is the sum of the upper bounds

1448

A Diagram Is Worth A Dozen Images 9

Arrowheads

Arrows

Text

Blobs

Interobject	Linkage

Tree

Intraobject	Linkage

Section	Title

Food	Web
Image	Title

Intraobject	Label

Tree

FoodWeb

From	the	above	food	web	diagram,	what	will	lead	to	an	increase	in	the	population
of	deer?	a)	increase	in	lion	b)	decrease	in	plants	c)	decrease	in	lion	d)	increase	in	pikaMultiple	Choice	Question:

Fig. 4. An image from the AI2D dataset showing some of its rich annotations and a
multiple choice question.

15000 multiple choice questions associated to the diagrams. We divide the AI2D
dataset into a train set with 4000 images and a blind test set with 1000 images
and report our numbers on this blind test set.

The images are collected by scraping Google Image Search with seed terms
derived from the chapter titles in Grade 1 - 6 science textbooks. Each image is
annotated using Amazon Mechanical Turk (AMT). Annotating each image with
rich annotations such as ours, is a rather complicated task and must be broken
down into several phases to maximize the level of agreement obtained from turk-
ers. Also, these phases need to be carried out sequentially to avoid conflicts in the
annotations. The phases involve (1) annotating the four low-level constituents,
(2) categorizing the text boxes into one of four categories: relationship with the
canvas, relationship with a diagrammatic element, intra-object relationship and
inter-object relationship, (3) categorizing the arrows into one of three categories:
intra-object relationship, inter-object relationship or neither, (4) labelling intra-
object linkage and inter-object linkage relationships. For this step, we display
arrows to turkers and have them choose the origin and destination constituents
in the diagram, (5) labelling intra-object label, intra-object region label and ar-
row descriptor relationships. For this purpose, we display text boxes to turkers
and have them choose the constituents related to it, and finally (6) multiple
choice questions with answers, representing grade school science questions are
then obtained for each image using AMT. Figure 4 shows some of the rich an-
notations obtained for an image in the dataset along with one of its associated
multiple choice questions.

Search and Models

o Search operates over
models of the world
o The agent doesn’t

actually try all the
plans out in the real
world!

o Planning is all “in
simulation”

o Your search is only as
good as your models…

Search Gone Wrong?

