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Reminder: Linear Classifiers

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:
 Positive, output +1

 Negative, output -1

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Recap: How to get probabilistic decisions?

 Activation:

 If very positive  want probability going to 1

 If  very negative  want probability going to 0

 Sigmoid function



Recap: Multiclass Logistic Regression

 Multi-class linear classification

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction w/highest score wins:

 How to make the scores into probabilities? 

original activations softmax activations



Best w? 

 Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



Optimization

 Optimization

 i.e., how do we solve:



Hill Climbing

 simple, general idea
 Start wherever

 Repeat: move to the best neighboring state

 If no neighbors better than current, quit

 What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?



Optimization Procedure: Gradient Ascent

 init

 for iter = 1, 2, …

 : learning rate --- tweaking parameter that needs to be 
chosen carefully

 How? Try multiple choices

 Crude rule of thumb: update changes       about 0.1 – 1 %



 We’ll talk about that once we covered neural networks, which 
are a generalization of logistic regression 

How about computing all the derivatives?



Neural Networks



Multi-class Logistic Regression

 = special case of neural network
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com] 



Deep Neural Network: Also Learn the Features!

 Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector 

just run gradient ascent 

+ stop when log likelihood of hold-out data starts to decrease



Neural Networks Properties

 Theorem (Universal Function Approximators).  A two-layer neural 
network with a sufficient number of neurons can approximate 
any continuous function to any desired accuracy.

 Practical considerations

 Can be seen as learning the features 

 Large number of neurons

 Danger for overfitting

 (hence early stopping!)



Fun Neural Net Demo Site

 Demo-site:

 http://playground.tensorflow.org/

http://playground.tensorflow.org/


 Derivatives tables:

How about computing all the derivatives?

[source:  http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

 But neural net f is never one of those?

 No problem: CHAIN RULE:

If 

Then

 Derivatives can be computed by following well-defined procedures



 Automatic differentiation software 

 e.g. Theano, TensorFlow, PyTorch, Chainer

 Only need to program the function g(x,y,w)

 Can automatically compute all derivatives w.r.t. all entries in w

 Need to know this exists

 How is this done?  -- outside of scope of CSE573

Automatic Differentiation



Summary of Key Ideas

 Optimize probability of label given input

 Continuous optimization
 Gradient ascent:

 Compute steepest uphill direction = gradient (= just vector of partial derivatives)

 Take step in the gradient direction

 Repeat (until held-out data accuracy starts to drop = “early stopping”)

 Deep neural nets
 Last layer = still logistic regression

 Now also many more layers before this last layer
 = computing the features

  the features are learned rather than hand-designed

 Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)



Deep Reinforcement Learning


