
CSE 573 :

Artificial Intelligence

Hanna Hajishirzi

Neural Networks

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer 1

Reminder: Linear Classifiers

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:
 Positive, output +1

 Negative, output -1


f1

f2

f3

w1

w2

w3

>0?

Recap: How to get probabilistic decisions?

 Activation:

 If very positive  want probability going to 1

 If very negative  want probability going to 0

 Sigmoid function

Recap: Multiclass Logistic Regression

 Multi-class linear classification

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction w/highest score wins:

 How to make the scores into probabilities?

original activations softmax activations

Best w?

 Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Optimization

 Optimization

 i.e., how do we solve:

Hill Climbing

 simple, general idea
 Start wherever

 Repeat: move to the best neighboring state

 If no neighbors better than current, quit

 What’s particularly tricky when hill-climbing for multiclass
logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?

Optimization Procedure: Gradient Ascent

 init

 for iter = 1, 2, …

 : learning rate --- tweaking parameter that needs to be
chosen carefully

 How? Try multiple choices

 Crude rule of thumb: update changes about 0.1 – 1 %

 We’ll talk about that once we covered neural networks, which
are a generalization of logistic regression

How about computing all the derivatives?

Neural Networks

Multi-class Logistic Regression

 = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Deep Neural Network = Also learn the features!

s

o

f

t

m

a

x
…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

 Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector 

just run gradient ascent

+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

 Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

 Practical considerations

 Can be seen as learning the features

 Large number of neurons

 Danger for overfitting

 (hence early stopping!)

Fun Neural Net Demo Site

 Demo-site:

 http://playground.tensorflow.org/

http://playground.tensorflow.org/

 Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

 But neural net f is never one of those?

 No problem: CHAIN RULE:

If

Then

 Derivatives can be computed by following well-defined procedures

 Automatic differentiation software

 e.g. Theano, TensorFlow, PyTorch, Chainer

 Only need to program the function g(x,y,w)

 Can automatically compute all derivatives w.r.t. all entries in w

 Need to know this exists

 How is this done? -- outside of scope of CSE573

Automatic Differentiation

Summary of Key Ideas

 Optimize probability of label given input

 Continuous optimization
 Gradient ascent:

 Compute steepest uphill direction = gradient (= just vector of partial derivatives)

 Take step in the gradient direction

 Repeat (until held-out data accuracy starts to drop = “early stopping”)

 Deep neural nets
 Last layer = still logistic regression

 Now also many more layers before this last layer
 = computing the features

  the features are learned rather than hand-designed

 Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)

Deep Reinforcement Learning

