CSE 573
Artificial Intelligence

Hanna Hajishirzi
Neural Networks

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Reminder: Linear Classifiers

" |nputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(z) =) w;- fi(z) =w- f(x)

" |f the activation is: =W
1
= Positive, output +1 ol Y = >0? =
= Negative, output -1 7,

Recap: How to get probabilistic decisions?

= Activation: 2 = wW - f(w)
" If z2=w-f(zx) verypositive 2 want probability going to 1
" If z=w-f(zx) verynegative 2 want probability goingto 0

- Singid funCtiOn L0
@(z) = 1T ez

e

22) = 1= J

Recap: Multiclass Logistic Regression

" Multi-class linear classification wy - f biggest
w1
= A weight vector for each class: ’lUy
" Score (activation) of aclassy: quy, - f(gj) wa
w2
" Prediction w/highest score wins: Yy = arg max wy - f(x) . f w3 - f
Y w2 biggest
biggest
= How to make the scores into probabilities?
Z Z Z
el e~? e~

21,522,223 —7 9 y
e°l + e*2 + e*3 e*l 4 e*2 + e*3 €e*l 4 e*2 4 e*3

| J L]
| Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(“;w)

w

oWy () f(x(D)

. (4) [(). o)) —
with: P(y*" |z w) Zyewy‘f(x(i))

= Multi-Class Logistic Regression

Optimization

= Optimization

= j.e., how do we solve:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

Hill Climbing

" simple, general idea
= Start wherever
" Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What’s particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

Optimization Procedure: Gradient Ascent

"= Init W

= for 1ter =1, 2, ..

w — w~+ a*x Vg(w)

= «v:learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes w about 0.1 -1 %

How about computing all the derivatives?

= \We'll talk about that once we covered neural networks, which
are a generalization of logistic regression

Neural Networks

Multi-class Logistic Regression

= = special case of neural network

f,(x)

el

e*l + e*2 + e*3

z, > S }— Plulzw) =

f,(x)

e*2

e*1l + e*2 + e*3

—— P(y2|z;w) =
f3(X)

<3

X O 3 t Hh O

&

e*l + e*2 + e*3

Zz3 | 1 P(ys|le; w) =

f(x)

Deep Neural Network = Also learn the features!

Tc1()()

eZ
2, TS — Py |z;w) = e*1l 4 e*2 + e3
f,(x) ©
f
2. — T L L Plplrw) =)
f5(x) 2 m el 4 e*2 + e*3
a
X e

Z3 | — P(ys|lz;w) = el 1 o2 1+ o7

f(x)

Deep Neural Network = Also learn the features!

21 <1 1
(1) (2) .
Z5 Zs zé 1)
1 2 n—1
zé) z§) z§)
(1) (2) o
2 (1) Z K (2) 20,

k k—1,k) (k—1
50 =g Wi VgY)

J

f,(x)

f,(x)

f3(x)

f(x)

AU s L P(yi]zw)

@)
f
OV B L P(gfasw)
m
a
X
L0V = —— P(ys|z;w)

g = nonlinear activation function

Deep Neural Network = Also learn the features!

21 <1 1
(1) (2) .
Z5 Zs zé 1)
1 2 n—1
zé) z§) z§)
(1) (2) o
2 (1) Z K (2) 20,

k k—1,k) (k—1
50 =g Wi VgY)

J

(n)
2 g (n)

AU s L P(yi]zw)

@)
f
OV B L P(gfasw)
m
a
X
L0V = —— P(ys|z;w)

g = nonlinear activation function

Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 . . 1 — 5 _
0.8} g"f;] | 0.5 | ?fi; | 41 3‘&
0.6 | : 3|
0
0.4} 2
0.2} - | | 1|
0 : -1 — : 0 .
5 0 5 5 0 b -5 0
1 e —e™*
= = z)=max (0, z
9G@)= 0= 9@) = —5——= g(z) (0,2)
()= 91— g(2) (2)= 1- 92 (D =10 otoris
g (z)= g(z)(1-g(2) g (z)=1-g(2) g — 10, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

" Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i)\az(i);w)

just w tends to be a much, much larger vector ©

—just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

" Practical considerations
= Can be seen as learning the features
" Large number of neurons

= Danger for overfitting
= (hence early stopping!)

Fun Neural Net Demo Site

= Demo-site:
= http://playground.tensorflow.org/

http://playground.tensorflow.org/

How about computing all the derivatives?

= Derivatives tables: © (@)=0) = [1og,u] = 1
dx dx det ¢ u dx
d
—'[-1’}= 1 d [I:Jg u]zlﬂg e L du

dx i "o dx
—f{ u) = a@ ig” E”dj
dx dx dlx dx
£{1f+1»'—w]=ﬁ+ﬁ—di ia a' lnc{rE
dx de de dx dx dx
¢ dv du _ . dv
—Un»}-u—+v— i[u‘)zw‘_'ﬁ+lnu u‘ﬂ
dx dx dx dx dx dx
d (;) 1 du u dv d . du
—| === —sinu = cosu—
dx vde v odx dx dx
i[u”} = "™ du icusu = —sinu du
d,r dx dx dx
1 du d s du
—{ —tlany = sec” u——
2'\ u dx dx dx
£(1)= _L?ﬂ d u:mrr=—::sc3ud”
dx\u u” dx dx dx
d(l ___n du isccu = sccutalmd—“
-:ix: H” Mu+l {f.l {!rx .::’,r
du d CsCu = —cscucotu du
['[”J'] = _[flu }] dx dx

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

f f(z) = g(h(x))
Then f'(x) = g (h(z))h' (z)

— Derivatives can be computed by following well-defined procedures

Automatic Differentiation

" Automatic differentiation software
= e.g. Theano, TensorFlow, PyTorch, Chainer
= Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

" Need to know this exists
" How is this done? -- outside of scope of CSE573

Summary of Key ldeas

= Optimize probability of label given input ~ max ll(w) = max Zlogp(y“)\x(i);’w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
= Last layer = still logistic regression

= Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)

Deep Reinforcement Learning

