CSE 573
Artificial Intelligence

Hanna Hajishirzi
Neural Networks

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer




Reminder: Linear Classifiers

" |nputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(z) =) w;- fi(z) =w- f(x)

" |f the activation is: =W
1
= Positive, output +1 ol Y = >0? =
= Negative, output -1 7,




Recap: How to get probabilistic decisions?

= Activation: 2 = wW - f(w)
" If z2=w-f(zx) verypositive 2 want probability going to 1
" If z=w-f(zx) verynegative 2 want probability goingto 0
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Recap: Multiclass Logistic Regression

" Multi-class linear classification wy - f biggest
w1
= A weight vector for each class: ’lUy
" Score (activation) of aclassy:  quy, - f(gj) wa
w2
" Prediction w/highest score wins: Yy = arg max wy - f(x) . f w3 - f
Y w2 biggest
biggest
= How to make the scores into probabilities?
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Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(“;w)

w

oWy () f(x(D)

. (4) [ (). o)) —
with: P(y*" |z w) Zyewy‘f(x(i))

= Multi-Class Logistic Regression



Optimization

= Optimization

= j.e., how do we solve:

max [l(w) = max ZlogP(y(i)\x(i);w)

w



Hill Climbing

" simple, general idea
= Start wherever
" Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What’s particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?



Optimization Procedure: Gradient Ascent

"= Init W

= for 1ter =1, 2, ..

w — w~+ a*x Vg(w)

= «v:learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes w about 0.1 -1 %



How about computing all the derivatives?

= \We'll talk about that once we covered neural networks, which
are a generalization of logistic regression



Neural Networks




Multi-class Logistic Regression

= = special case of neural network
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
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[source: MIT 6.5191 introtodeeplearning.com]



Deep Neural Network: Also Learn the Features!

" Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i)\az(i);w)

just w tends to be a much, much larger vector ©

—just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease



Neural Networks Properties

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

" Practical considerations
= Can be seen as learning the features
" Large number of neurons

= Danger for overfitting
= (hence early stopping!)



Fun Neural Net Demo Site

= Demo-site:
= http://playground.tensorflow.org/



http://playground.tensorflow.org/

How about computing all the derivatives?

= Derivatives tables: © (@)=0 ) = [1og,u] = 1
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[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

f f(z) = g(h(x))
Then f'(x) = g (h(z))h' (z)

— Derivatives can be computed by following well-defined procedures



Automatic Differentiation

" Automatic differentiation software
= e.g. Theano, TensorFlow, PyTorch, Chainer
= Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

" Need to know this exists
" How is this done? -- outside of scope of CSE573



Summary of Key ldeas

= Optimize probability of label given input ~ max ll(w) = max Zlogp(y“)\x(i);’w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
= Last layer = still logistic regression

= Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)



Deep Reinforcement Learning



