
CSE 573 :

Artificial Intelligence

Hanna Hajishirzi

Machine Learning, Perceptrons,

and Logistic Regression

Part 2

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer 1

Recap: Machine Learning

 Up until now: how use a model to make optimal decisions

 Machine learning: how to acquire a model from data /

experience

 Learning parameters (e.g. probabilities)

 Learning structure (e.g. graphs)

 Learning hidden concepts (e.g. clustering)

 First: model-based classification

Recap: Spam Filter

 Input: an email

 Output: spam/ham

 Setup:
 Get a large collection of example emails, each

labeled “spam” or “ham”

 Note: someone has to hand label all this data!

 Want to learn to predict labels of new, future
emails

 Features: The attributes used to make the
ham / spam decision
 Words: FREE!

 Text Patterns: $dd, CAPS

 Non-text: SenderInContacts, WidelyBroadcast

 …

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Recap: Feature Vectors in Linear Classifier

Hello,

Do you want free printr

cartriges? Why pay more

when you can get them

ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM

or

+

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Recap: Weights

 Binary case: compare features to a weight vector

 Learning: figure out the weight vector from examples

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

Dot product positive

means the positive class

Recap: Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

BIAS : -3

free : 4

money : 2

...
0 1

0

1

2

free
m

o
n
e
y

Recap: Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

free : 4

money : 2

0 1
0

1

2

free
m

o
n
e
y

Recap: Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

BIAS : -3

free : 4

money : 2

...
0 1

0

1

2

free
m

o
n
e
y

+1 = SPAM

-1 = HAM

Recap: Binary Perceptron

 Start with weights = 0

 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector

Recap: Binary Perceptron

 Start with weights = 0

 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

Recap: Multiclass Decision Rule

 If we have multiple classes:

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Recap: Multiclass Perceptron

 Start with all weights = 0

 Pick up training examples one by one

 Predict with current weights

 If correct, no change!

 If wrong: lower score of wrong
answer, raise score of right answer

Recap: Multiclass Perceptron

BIAS : 1

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

“win the vote”

“win the election”

“win the game”

[1 1 0 1 1]

1 0 0

1

1

0

1

1

0

-1

0

-1

-1

[1 1 0 0 1]

-2 3 0

[1 1 1 0 1]

-2 3

1

0

1

-1

0

0

0

-1

1

0

Properties of Perceptrons

 Separability: true if some parameters get the training
set perfectly correct

 Convergence: if the training is separable, perceptron
will eventually converge (binary case)

 Non-separable?

Separable

Non-Separable

Workflow

Workflow

 Phase 1: Train model on Training Data. Choice points for “tuning”
 Attributes / Features

 Model types: Naïve Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..

 Model hyperparameters

 E.g. Naïve Bayes – Laplace k

 E.g. Logistic Regression – weight regularization

 E.g. Neural Net – architecture, learning rate, …

 Make sure good performance on training data (why?)

 Phase 2: Evaluate on Hold-Out Data
 If Hold-Out performance is close to Train performance

 We achieved good generalization, onto Phase 3! 

 If Hold-Out performance is much worse than Train performance
 We overfitted to the training data! 

 Take inspiration from the errors and:

 Either: go back to Phase 1 for tuning (typically: make the model less expressive)

 Or: if we are out of options for tuning while maintaining high train accuracy, collect more data
(i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1

 Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data 

Training

Data

Held-Out

Data

Test

Data

Training and Testing

Underfitting and Overfitting

Overfitting

 Too many features
 Spam if contains “FREE!”

 Spam if contains $dd, CAPS

 …

 Spam if contains “Sir”

 Spam if contains address

 Spam if contains “OT”

 …

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Unseen Events

Generalization and Overfitting

 Relative frequency parameters will overfit the training data!

 Just because we never saw a non-spam email with an address during training doesn’t mean we won’t
see it at test time

 Unlikely that every occurrence of “minute” is 100% spam

 Unlikely that every occurrence of “seriously” is 100% ham

 What about all the words that don’t occur in the training set at all?

 In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only feature

 Would get the training data perfect (if deterministic labeling)

 Wouldn’t generalize at all

 Just making the bag-of-words assumption gives us some generalization, but isn’t enough

 To generalize better: we need to smooth or regularize the estimates

− | |

Regularization

 Limit the number of features

 Limit the norm of the vector w

 If w1 and w2 are equally good,
and |w1 |>|w2 |, then w2 is likely
to better generalize # free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

free : 8

YOUR_NAME :-2

MISSPELLED : 2

FROM_FRIEND :-6

...

w1

w2

Practical Tip: Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures

 Help determine how hard the task is

 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set

 E.g. for spam filtering, might label everything as ham

 Accuracy might be very high if the problem is skewed

 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline

Important Concepts

 Data: labeled instances, e.g. emails marked spam/ham
 Training set

 Held out set

 Test set

 Features: attribute-value pairs which characterize each x

 Experimentation cycle
 Learn parameters (e.g. model probabilities) on training set

 (Tune hyperparameters on held-out set)

 Compute accuracy on test set

 Very important: never “peek” at the test set!

 Evaluation
 Accuracy: fraction of instances predicted correctly

 Overfitting and generalization
 Want a classifier which does well on test data

 Overfitting: fitting the training data very closely, but not
generalizing well

 Underfitting: fits the training set poorly

Training

Data

Held-Out

Data

Test

Data

Tuning

Tuning on Held-Out Data

 Now we’ve got two kinds of unknowns

 Parameters: the probabilities P(X|Y), P(Y)

 Hyperparameters: e.g. the amount / type of
smoothing to do, k, 

 What should we learn where?

 Learn parameters from training data

 Tune hyperparameters on different data

 Why?

 For each value of the hyperparameters, train
and test on the held-out data

 Choose the best value and do a final test on
the test data

Practical Tip: Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures

 Help determine how hard the task is

 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set

 E.g. for spam filtering, might label everything as ham

 Accuracy might be very high if the problem is skewed

 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline

Improving the Perceptron

Problems with the Perceptron

 Noise: if the data isn’t separable,
weights might thrash
 Averaging weight vectors over time

can help (averaged perceptron)

 Mediocre generalization: finds a
“barely” separating solution

 Overtraining: test / held-out
accuracy usually rises, then falls
 Overtraining is a kind of overfitting

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

0.5 | 0.5

0.3 | 0.7

0.1 | 0.9

0.7 | 0.3

0.9 | 0.1

How to get probabilistic decisions?

 Perceptron scoring:

 If very positive  want probability going to 1

 If very negative  want probability going to 0

 Sigmoid function

A 1D Example

definitely blue definitely rednot sure

probability increases exponentially

as we move away from boundary

normalizer

The Soft Max

Best w?

 Maximum likelihood estimation:

with:

= Logistic Regression

Confidences from a Classifier

 The confidence of a probabilistic classifier:
 Posterior over the top label

 Represents how sure the classifier is of the
classification

 Any probabilistic model will have
confidences

 No guarantee confidence is correct

 Calibration
 Weak calibration: higher confidences mean

higher accuracy

 Strong calibration: confidence predicts
accuracy rate

 What’s the value of calibration?

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

Multiclass Logistic Regression

 Recall Perceptron:

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

 How to make the scores into probabilities?

original activations softmax activations

Best w?

 Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Best w?

 Optimization

 i.e., how do we solve:

Hill Climbing

 Simple, general idea

 Start wherever

 Repeat: move to the best neighboring state

 If no neighbors better than current, quit

 What’s particularly tricky when hill-climbing for
multiclass logistic regression?

• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?

1-D Optimization

 Could evaluate and

 Then step in best direction

 Or, evaluate derivative:

 Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

 Perform update in uphill direction for each coordinate

 E.g., consider:

 Updates:

 Updates in vector notation:

with: = gradient

 Idea:

 Start somewhere

 Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

 init

 for iter = 1, 2, …

 : learning rate --- tweaking parameter that needs to be
chosen carefully

 How? Try multiple choices

 Crude rule of thumb: update changes about 0.1 – 1 %

Batch Gradient Ascent on the Log Likelihood

Objective

 init

 for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

 init

 for iter = 1, 2, …

 pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood

Objective

 init

 for iter = 1, 2, …

 pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

 We’ll talk about that in neural networks, which are a

generalization of logistic regression

How about computing all the derivatives?

