CSE 573
Artificial Intelligence

Hanna Hajishirzi

Machine Learning, Perceptrons,
and Logistic Regression

Part 2

Agent Testing
Too\akj!

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Recap: Machine Learning

= Up until now: how use a model to make optimal decisions

= Machine learning: how to acquire a model from data /
experience
» |earning parameters (e.qg. probabilities)
» |earning structure (e.g. graphs)
» |earning hidden concepts (e.g. clustering)

= First: model-based classification

Recap: Spam Filter

Input: an emall
Output: spam/ham

Setup:

= Get a large collection of example emails, each
labeled “spam” or "ham”

= Note: someone has to hand label all this data!

= Want to learn to predict labels of new, future
emails

Features: The attributes used to make the
ham / spam decision

Words: FREE!

Text Patterns: $dd, CAPS

Non-text: SenderInContacts, WidelyBroadcast

X

X

\

Dear Sir.

First, | must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner,
but when | plugged it in, hit the power
nothing happened.

Recap: Feature Vectors in Linear Classifier

x X Y

e N
Hello, # free 2
YOUR NAME 0 SPAM
Do you want free printr MISSPELLED : 2
cartriges? Why pay more FROM FRIEND 0 C)r
when you can get them L
ABSOLUTELY FREE! Just g J +
e N
PIXEL-7,12 : 1
PIXEL-7,13 : 0 “”
NUM LOOPS : 1
L)

Recap: Weights

= Binary case: compare features to a weight vector
= Learning: figure out the weight vector from examples

s N
free : 4
YOUR NAME :-1 e B
MISSPELLED : 1 # free P2
. YOUR_NAME : 0
?I?C_)M_FRIEND T w MISSPELLED : 2
N y f L1 FROM_FRIEND : 0
e)
s N
free 0
f ('CU 2) YOUR_NAME 1
. MISSPELLED : 1
Dot product w - f positive FROM FRIEND : 1
means the positive class

- J

Recap: Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2 0

0 1 free

Recap: Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1

w

free : 4
money : 2
0)

0 1 free

Recap: Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1

o

2 2

£

w +1 = SPAM
BIAS : -3 3
free : 4
money : 2 0
1= HAM 0 1 free

Recap: Binary Perceptron

= Start with weights = 0 =R
= For each training instance: @ - i
» Classify with current weights 7 + -
+ * + -

= If correct (i.e., y=y*), no change!

» If wrong: adjust the weight vector

Recap: Binary Perceptron

= Start with weights = 0
= For each training instance: w
» Classify with current weights

| y*- f
1 it w- f(x) >0
y_{—l if w-f(z)<0

= If correct (i.e., y=y*), no change!

» If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

w=w+y"f

Recap: Multiclass Decision Rule

= If we have multiple classes: — - o 0O
= A weight vector for each class: + + T o+ Q0 ° O ©
2T Lo O >
w:y — =
= Score (activation) of a class y: w1 - f biggest
wy - f(x) o1
= Prediction highest score wins
w3
w9
y = argmax wy - f(x) ; w3 - f
wo - .
Y bigzgest biggest

Binary = multiclass where the negative class has weight zero

Recap: Multiclass Perceptron

Start with all weights = 0
Pick up training examples one by one
Predict with current weights

y = argmax, wy- f(x)

If correct, no change!

If wrong: lower score of wrong
answer, raise score of right answer

wy = wy — f(x)

Waept = Wy + f(z)

Recap: Multiclass Perceptron

“‘win the vote” [11011]

“win the election” [11001]

“win the game” [11101]

WSPORTS WpOLITICS WTECH
1 -2 -2 0 3 3

BIAS 1 0 1 BIAS 0 1 0 BIAS : O

win : 0 -1 0 win : 0 1 0 win : 0

game : O 0 1 game : O 0 -1 game : O

vote 0 -1 1 vote 0 1 1 vote 0

the 0 -1 0 the 0 1 0 the : 0

Properties of Perceptrons

- . . Separable
Separability: true if some parameters get the training P
set perfectly correct -
- vy,
Convergence: if the training is separable, perceptron - .
will eventually converge (binary case) -
Non-separable? Non-Separable
*
- .
- %

Workflow

Workflow

= Phase 1: Train model on Training Data. Choice points for “tuning”
= Attributes / Features
= Model types: Naive Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..
= Model hyperparameters
= E.g. Naive Bayes — Laplace k
= E.g. Logistic Regression — weight regularization
= E.g. Neural Net — architecture, learning rate, ...
= Make sure good performance on training data (why?)

= Phase 2: Evaluate on Hold-Out Data

= If Hold-Out performance is close to Train performance
= We achieved good generalization, onto Phase 3! ©
= If Hold-Out performance is much worse than Train performance
= We overfitted to the training data! ®
= Take inspiration from the errors and:
= Either: go back to Phase 1 for tuning (typically: make the model less expressive)

= Or:if we are out of options for tuning while maintaining high train accuracy, collect more data
(i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1

= Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data ©

Training
Data

Held-Out
Data

Test
Data

Training and Testing

Kactice
Exam

Underfitting and Overfitting

= Too many features

Spam if contains “FREE!"
Spam if contains $dd, CAPS

Spam if contains "“Sir”
Spam if contains address
Spam if contains "OT"

Overfitting

X

X

Dear Sir.

First, | must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner,
but when | plugged it in, hit the power
nothing happened.

Overfitting

30

25

20

15

10

-10

-15

I

Degree 15 polynomial

Overfitting

Unseen Events

Generalization and Overfitting

= Relative frequency parameters will overfit the training data!

= Just because we never saw a non-spam email with an address during training doesn't mean we won't
see it at test time

= Unlikely that every occurrence of “minute” is 100% spam

= Unlikely that every occurrence of “seriously” is 100% ham

= What about all the words that don't occur in the training set at all?

= In general, we can't go around giving unseen events zero probability

= As an extreme case, imagine using the entire email as the only feature
= Would get the training data perfect (if deterministic labeling)
» Wouldn't generalize at all
= Just making the bag-of-words assumption gives us some generalization, but isn't enough

= To generalize better: we need to smooth or regularize the estimates

Reqgularization

= Limit the number of features
= Limit the norm of the vector w

= If w, and w, are equally good,

~

and |w, |>|w, |, then w, is likely | #free 4
to better generalize YOUR NAME :-1

y = arg max,

MISSPELLED : 1
FROM_FRIEND :-3

~

wy - f(x)— | Wyl

#free :8
YOUR_NAME :-2
MISSPELLED : 2
FROM_FRIEND :-6

f(x1)

f(x2)

~
#free :2
YOUR_NAME :0
MISSPELLED : 2
FROM_FRIEND : 0

~
free
YOUR NAME
MISSPELLED

~

FROM FRIEND :

e

Practical Tip: Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
» Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything "ham” gets 66%, so a classifier that gets 70% isn’t very good...

» For real research, usually use previous work as a (strong) baseline

Important Concepts

= Data: labeled instances, e.g. emails marked spam/ham
= Training set
= Held out set
= Test set

= Features: attribute-value pairs which characterize each x Training

= Experimentation cycle Data

= Learn parameters (e.g. model probabilities) on training set
» (Tune hyperparameters on held-out set)

= Compute accuracy on test set

= Very important: never "peek” at the test set! Rractice (

= Evaluation Held-Out
= Accuracy: fraction of instances predicted correctly Data

= Qverfitting and generalization ' RIS
= Want a classifier which does well on test data

= Qverfitting: fitting the training data very closely, but not Test
generalizing well Data

= Underfitting: fits the training set poorly

Tuning

TWEAK-O - MAT\C 9000

Tuning on Held-Out Data

= Now we've got two kinds of unknowns

= Parameters: the probabilities P(X]Y), P(Y) training
» Hyperparameters: e.g. the amount / type of)
smoothing to do, k, a. ©
-
© lheld-out
= What should we learn where? o test
= Learn parameters from training data

= Tune hyperparameters on different data
= Why?
» For each value of the hyperparameters, train
and test on the held-out data

» Choose the best value and do a final test on
the test data

Practical Tip: Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
» Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything "ham” gets 66%, so a classifier that gets 70% isn’t very good...

» For real research, usually use previous work as a (strong) baseline

Improving the Perceptron

Problems with the Perceptron

= Noise: if the data isn't separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

= Mediocre generalization: finds a
"barely” separating solution

training
= Qvertraining: test / held-out >
accuracy usually rises, then falls ©
= Qvertraining is a kind of overfitting § test
T held-out

iterations

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake
o~

4.5
4tk
3.9 F
31
2.0
= |

1o

11

0.5 F

0

Non-Separable Case: Probabilistic Decision

T 0.9]0.1
4.5 0.7]0.3
4t 0.5] 0.5
3.5 0.3]0.7
!
25
o L
15}

How to get probabilistic decisions?

= Perceptron scoring:z = w - f(x)
» If z=w-f(z) very positive 2 want probability going to 1
» If z=w-f(z) verynegative 2> want probability going to 0

= Sigmoid function

1
1l +e %

p(z) =

A 1D Example

P(red|x)
| 19
S
[
=1 almost 1.0
£
Ry
|
I
I
I
I
almost 0.0 :
N I
o o o o—0 0 0 060 0606 6 @ »
\ J \ J \ J L
Y Y Y
definitely blue not sure definitely red

probability increases exponentially
. /
eWred T as we move away from boundary

P(red|x) =

eWred'T L eWhlue'T + normalizer

The Soft Max

P(red|x) 5Wred

eOWred & + edWhlue T

6100wr8d s

elOOwred T 4 B100wblue T

« —— looks like max, wy, -

ewred "L

ewred X —|— ewblue L

O O o0 0 0 6060 0600 @ >

ewred T

elljl"ed'$ —I— ewblue'x

P(red|z) =

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(“;w)

| . 1
o . (Z) p— (7’)' —
with: P(y _|_1|aj 7w) 1 + e—w f(z®)

1

= Logistic Regression

Confidences from a Classifier

= The confidence of a probabilistic classifier: >]
= Posterior over the top label ©
>
QO
confidence(x) = max P(y|x) & DD
Yy f==] B E] .
= Represents how sure the classifier is of the P(yle)
classification —
= Any probabilistic model will have 0
confidences <
= No guarantee confidence is correct o D
©
=

= (Calibration P(y|x)

= Weak calibration: higher confidences mean
higher accuracy —

= Strong calibration: confidence predicts
accuracy rate

= What's the value of calibration?

accuracy

P(y|x)

Separable Case: Deterministic Decision — Many Options

5_
5 - .
a5k
42 a5k
4L
T 2 + +
35t
A9 a5t
3_
3 3 e
25}
a8 25t
2_
2_
z QO QO
15}
15} sl
‘I_
‘I_
1 O QO
05}
05} asl
|:|_
0 . ,
0 1 7 3 4 5 0 1 . . P .

Separable Case: Probabilistic Decision — Clear Preference

0.7] 0.3 S

- T T - T T - T T - T T - T 1
on —t on ra on a4} on = on n
T T T T T T T T T 1

= |

Multiclass Logistic Regression

w1 - f biggest
= Recall Perceptron: w1
= A weight vector for each class: Wy
" Score (activation) of a classy: wy - f(aj) w3
w2
= Prediction highest score wins y = arg max wy, - f(x) ws - f w3 - f
Y biggest biggest
= How to make the scores into probabilities?
e~? e~? e~3

21,522,223 —7 9 y
e°l + e*2 + e*3 e*l 4 e*2 + e*3 €e*l 4 e*2 4 e*3

| J L]
| Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(“;w)

w

(%)) . (2) ewy(i)'f(x(i))
with: Py [z w) = Zy Wy f(z()

= Multi-Class Logistic Regression

Best w?

= Optimization

= |.e., how do we solve;

max [l(w) = max ZlogP(y(i)\x(i);w)

w

Hill Climbing

= Simple, general idea
= Start wherever
» Repeat: move to the best neighboring state
» If no neighbors better than current, quit

= What's particularly tricky when hill-climbing for
multiclass logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

1-D Optimization

= Could evaluate g(wo +h) and g(wo — h)
* Then step in best direction

= Or, evaluate derivative;

» Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

= Perform update in uphill direction for each coordinate

= E.g., consider:

= Updates: g(w17 w2)

= Updates in vector notation:
dg

wl%wl‘F@*a—wl(wlawZ) w — w~+ a*x Vy,g(w)

dg

Wo <— W9 + (¢ * 8—102 (w17 w2) with: Vyg(w) = [8“’1 (w)] = gradient

Gradient Ascent

= Idea:
» Start somewhere
» Repeat: Take a step in the gradient direction

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

"= Init W

= for 1ter =1, 2, ..

w — w~+ a*x Vg(w)

= «v:learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes w about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood
biect;

max [l(w) = max ZlogP(y(i)kz:(i);w)

w

\ J

g(w)

" nit W

= for 1ter =1, 2, ..

w 4— w + ok Z V log P(y' |2 w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)kz:(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= init w
= for 1ter =1, 2,

" pick random 7

w4 w~+ a * Viog P(yY |z w)

Mini-Batch Gradient Ascent on the Log Likelihood
Objective
max [l(w) = max Zlog P(y9z®; w)

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" Init w
" for i1ter = 1, 2,
" pick random subset of tralning examples J

W — W+ Q * ZVIogP(y(j)]a:(j);w)
jedJ

How about computing all the derivatives?

= \We'll talk about that in neural networks, which are a
generalization of logistic regression

