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Our Status in CSE57/3

= We' re done with Search and planning
= \We are done with learning to make decisions

= Probabilistic Reasoning and Machine Learning
= Diagnosis
= Speech recognition
" Tracking objects
= Robot mapping
= Genetics
" Error correcting codes
= .. lots more!




Today

" Probability

= Bayes Nets

= You’ll need all this stuff for the next few
weeks, so make sure you go over it now!




Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=lIsitraining?

= T=lIsit hotorcold?

= D =How long will it take to drive to work?
= L =Whereis the ghost?

= We denote random variables with capital letters

= Random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, o)

= Lin possible locations, maybe {(0,0), (0,1), ...} 7



= Associate a probability with each outcome

= Temperature:

Probability Distributions

P(T)
T P
hot 0.5
cold | 0.5

= \Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W =rain) = 0.1

Ve P(X =x2)>0

and

Y P(X==z)=1 .



Joint Distributions

" A joint distribution over a set of random variables: X4, X»,... X,

specifies a real number for each assignment (or outcome):

P(X1=z1,Xo=xo,... Xy, = xn)

P(T,W)
P(x1,20,...2n)
T W P
= Must obey: P(xz1,25,...2n) >0 hot | sun | 0.4
hot | rain 0.1
Z P(fﬁlana e xn) =1 cold | sun 0.2
(21,22,...0n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!
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Events

= An event is a set E of outcomes

P(E)Y= )  P(z1...zn)

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

——-
P(t) =) P(ts)

—
P(s) = Z P(t, s)
t

P(X1=uz1) =) P(X1=u11,Xo =)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4

12



Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) =) P(z,y)

P(X)

X

P

+X

-X

P(Y)

Y

P

ty

-y
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Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) =) P(z,y)

P(X)

X P

+X

-X

P(Y)
Y P
ty
-y A4
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Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = P ()

P(T, W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

— — 2
P(W:SlT:(j):P(W S’T C>:O_
P(T = ¢) 0.5

_——

=P(W=s,T=c)+P(W=nr,T=c)
=0.2403 =0.5

= 0.4
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Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y)?

= P(-x|+y)?

" Py | +x)?

16



P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

iz: Conditional Probabilities

= P(+x | +y)?

2/.6=1/3

= P(-x|+y)?

4/.6=2/3

" Py | +x)?

.3/.5=.6
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Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

P(W|T)

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)

W P

T W P
sun

hot sun 0.4
rain _

hot rain 0.1

P(W|T = cold) cold | sun 0.2

W P cold rain 0.3
sun
rain
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Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

P(W|T = hot) P(T. W)
2
W P
T W P
Q >un 0.8 hot sun 0.4
' 0.2
g e hot rain 0.1
E: P(W|T = cold) cold | sun 0.2
W P cold rain 0.3
sun 0.4
rain 0.6
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The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(x,y) < ram=""

~ =l
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The Product Rule

P(y)P(zly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W | P D W
R p wet sun 0.1 wet sun
sun | 0.8 ary sun | 09 <:> ary el
ain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(xz|x1)P(x3|z1, x2)

P(z1,x2,...xn) = || P(ailzy ... 2-1)
7
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Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)

30



Independence
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Independence

= Two variables are independent if:

Vo,y : P(z,y) = P(z)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

v,y P(zly) = P(x)

= Wewrite: X [| Y

" |ndependence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}? 32



Example: Independence?

P1(T, W)

T W P
hot sun | 0.4
hot rain | 0.1
cold sun 0.2
cold rain | 0.3

P>(T, W)

T W P
hot sun | 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6
rain 0.4
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Example: Independence

" N fair, independent coin flips:

P(X1) P(X5) P(Xp)
H |05 H | o5 o H |05
T 0.5 T 0.5 T 0.5

N

—




Conditional Independence
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Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily
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Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z Xj_Y’Z

if and only if:
Va,y,z : P(z,y|z) = P(x|2) P(y|2)
or, equivalently, if and only if

Va,y, 2 P(alz,y) = Pa|2)
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Conditional Independence

= What about this domain: = What about this domain:
= Traffic " Fire
= Umbrella = Smoke
= Raining = Alarm




Conditional Independence

= \What about this domain:

= Traffic
= Umbrella
= Raining

40



Conditional Independence

= \What about this domain:

W (T e
§§ AN
= Fire | >

. 5
Smoke %
= Alarm (

41



Conditional Independence and the Chain Rule

* Chain rule: P(X1,X2,... Xn) = P(X1)P(X2|X1)P(X3]X1,X2) ...

" Trivial decomposition:

P(Traffic, Rain,Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain,Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= We can represent joint distributions by multiplying these simpler local distributions.
= Bayes’nets / graphical models help us express conditional independence assumptions 42



Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified




Net: Insurance

Example Bayes’

46



Example Bayes’ Net: Car

battery fuel line starter
flat blockeg broke

battery
dead
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Graphical Model Notation

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved)

= Arcs: interactions

®» |ndicate “direct influence” between variables @

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean Toothache @

direct causation (in general, they don’t!)
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Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence
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Example: Traffic

= Variables:
= R:I[trains
= T:There is traffic

= Model 1: independence = Model 2: rain causes traffic

®
Q O

= Why is an agent using model 2 better?

50



Example: Traffic I

= Variables
= T: Traffic
= R:ltrains
L: Low pressure
D: Roof drips
B: Ballgame
C: Cavity

51



Example: Alarm Network

= \ariables
= B: Burglary

r
JE\
vy

= A: Alarm goes off

= M: Mary calls

= J:John calls
= E: Earthquake!

52



Example: Alarm Network

= \ariables
B: Burglary

A: Alarm goes off

J: John calls
E: Earthquake!

Burglary

= M: Mary calls
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Bayes’ Net Semantics

———
o\d Your .
e :
23
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Bayes’ Net Semantics

= Aset of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(Xl|aqy...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probczlbilit‘ies56



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

n
P(z1,%2,...2n) = || P(=z;|parents(X;))
i=1

= Example: @
Toothache @

P(+cavity, 4+catch, -toothache)

=P(-toothache|+cavity)P(+catch|+cavity) P(+cavity)

57



Bayes Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1




Probabilities in BNs

= Why are we guaranteed that setting

n
P(z1,%2,...2n) = || P(=z;|parents(X;))
i=1
results in a proper joint distribution?

n
* Chain rule (valid for all distributions): P(z1,x2,...zn) = |[| P(xlzy ... zi-1)
i=1
= Assume conditional independences: P(xzilxq,...xj_1) = P(x;|parents(X;))

n
- Consequence:  P(zy,xo,...2n) = || P(z;|parents(X;))
i=1

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies >9



Example: Coin Flips

P(X1) P(X2) P(Xn)
h |05 h |05 o h |05
t |05 t |05 t |05

P(h,h,t, h) = Ph)PH)PH)P(h)

Only distributions whose variables are absolutely independent can be
represented by a Bayes ’ net with no arcs. 60



O

P(R)

Example: Traffic

+r

1/4

3/4

+r

P(T|R)

+t

3/4

1/4

+t

1/2

1/2

P(+r, —t) = P@HnP(-t|+r) = ¥a*1/4




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M | P(M]A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002

-e | 0.998

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b -e -a 0.999

P(MIA)P(J|A)
P(A|B,E)
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©

= Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2
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Example: Reverse Traffic

R

= Reverse causality? =
i |

P(T)
+t 9/16
t | 7/16 P(T, R)
P(R‘T) +r +t 3/16
+r -t 1/16
+t +r 1/3
P 2/3 -r +t 6/16
-r -t 6/16
-t +r 1/7
-r 6/7 64




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)
= E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(z;|T,...xi_1) = P(=z;|parents(X;))
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Bayes Rule
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(x|y)P(y) = P(ylz)P(x)

That’s my rule! 1

= Dividing, we get:

P(aly) = 292 py

P(y)
= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

" |n the running for most important Al equation! 67


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P (effect)

= Example:

= M: meningitis, S: stiff neck

P(+m) = 0.0001 o

xample
P(+S‘ + m) =08 givens
P(+s| —m) =0.01

P(+m]| +s) = P(t+s|+m)P(+m) _ P(+s|+m)P(+m) 0.8 x 0.0001

P(+s) " P(+s|+m)P(+m) + P(+s| — m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why? 68



Quiz: Bayes’ Rule

. P(D|W)
= Jlven:
P(W) D W P
R P wet sun 0.1
cun 08 dry sun 0.9
cain 02 wet rain 0.7
dry rain 0.3

= Whatis P(W | dry) ?



Quiz: Bayes’ Rule

. P(D|W)
= Jlven:
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
cain 0.2 wet rain 0.7
dry rain 0.3

= Whatis P(W | dry) ?

P(sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72
P(rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06
P(sun|dry)=12/13

P(rain|dry)=1/13



Uncertainty Summary

"y . oy Plzy)
Conditional probability P(zly) = PO
Product rule P(z,y) = P(z|y) P(y)
Chain rule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3]X1,X2)...

i
[T P(XilX1,-- -, Xiz1)
p= 1

X, Y independent if and only if: Vz,y: P(z,y) = P(2)P(y)

X and Y are conditionally independent given Z if and only if:
Vz,y,z . P(x,y|z) = P(z|z)P(y|z)

X1Y|Z

BN lecture
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Bayes Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1




