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Our Status in CSE573

 We’re done with Search and planning

 We are done with learning to make decisions

 Probabilistic Reasoning and Machine Learning
 Diagnosis

 Speech recognition

 Tracking objects

 Robot mapping

 Genetics

 Error correcting codes

 … lots more!
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Today

 Probability

 Bayes Nets

 You’ll need all this stuff for the next few 
weeks, so make sure you go over it now!
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Random Variables

 A random variable is some aspect of the world about 
which we (may) have uncertainty

 R = Is it raining?

 T = Is it hot or cold?

 D = How long will it take to drive to work?

 L = Where is the ghost?

 We denote random variables with capital letters

 Random variables have domains

 R in {true, false}   (often write as {+r, -r})

 T in {hot, cold}

 D in [0, )

 L in possible locations, maybe {(0,0), (0,1), …} 7



Probability Distributions

 Associate a probability with each outcome

 Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

 Weather: 
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Shorthand notation:

OK if all domain entries are unique

Probability Distributions

 Unobserved random variables have distributions

 A distribution is a TABLE of probabilities of values

 A probability (lower case value) is a single number

 Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0
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Joint Distributions

 A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

 Must obey:

 Size of distribution if n variables with domain sizes d?

 For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Events

 An event is a set E of outcomes

 From a joint distribution, we can 
calculate the probability of any event

 Probability that it’s hot AND sunny?

 Probability that it’s hot?

 Probability that it’s hot OR sunny?

 Typically, the events we care about 
are partial assignments, like P(T=hot)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Marginal Distributions

 Marginal distributions are sub-tables which eliminate variables 

 Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y
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Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x .5

-x .5

Y P

+y .6

-y .4
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Conditional Probabilities

 A simple relation between joint and conditional probabilities
 In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)
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Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

 P(+x | +y) ?

 P(-x | +y) ?

 P(-y | +x) ?
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Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

 P(+x | +y) ?

 P(-x | +y) ?

 P(-y | +x) ?

.2/.6=1/3

.4/.6=2/3

.3/.5=.6
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Conditional Distributions

 Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun

rain

W P

sun

rain

Conditional Distributions
Joint Distribution
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Conditional Distributions

 Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions
Joint Distribution
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The Product Rule

 Sometimes have conditional distributions but want the joint
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The Product Rule

 Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06
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The Chain Rule

 More generally, can always write any joint distribution as an 
incremental product of conditional distributions
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Probabilistic Models

 Models describe how (a portion of) the world works

 Models are always simplifications
 May not account for every variable
 May not account for all interactions between variables
 “All models are wrong; but some are useful.”

– George E. P. Box

 What do we do with probabilistic models?
 We (or our agents) need to reason about unknown 

variables, given evidence
 Example: explanation (diagnostic reasoning)
 Example: prediction (causal reasoning)
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Independence
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 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption

 Empirical joint distributions: at best “close” to independent

 What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence

32



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Example: Independence

 N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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Conditional Independence
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Conditional Independence

 P(Toothache, Cavity, Catch)

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+catch | +toothache, -cavity) = P(+catch| -cavity)

 Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 One can be derived from the other easily
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Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

 X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if
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Conditional Independence

39

 What about this domain:

 Traffic
 Umbrella
 Raining

 What about this domain:

 Fire
 Smoke
 Alarm



Conditional Independence

 What about this domain:

 Traffic
 Umbrella
 Raining
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Conditional Independence

 What about this domain:

 Fire
 Smoke
 Alarm
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Conditional Independence and the Chain Rule

 Chain rule: 

 Trivial decomposition:

 With assumption of conditional independence:

 We can represent joint distributions by multiplying these simpler local distributions.
 Bayes’nets / graphical models help us express conditional independence assumptions 42



Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables 
as our probabilistic models:
 Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
 Hard to learn (estimate) anything empirically about more 

than a few variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions
 For about 10 min, we’ll be vague about how these 

interactions are specified
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Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car
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Graphical Model Notation

 Nodes: variables (with domains)
 Can be assigned (observed) or unassigned 

(unobserved)

 Arcs: interactions
 Indicate “direct influence” between variables
 Formally: encode conditional independence 

(more later)

 For now: imagine that arrows mean 
direct causation (in general, they don’t!)

48



Example: Coin Flips

 N independent coin flips

 No interactions between variables: absolute independence

X1 X2 Xn
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Example: Traffic

 Variables:
 R: It rains

 T: There is traffic

 Model 1: independence

 Why is an agent using model 2 better?

R

T

R

T

 Model 2: rain causes traffic
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 Variables
 T: Traffic

 R: It rains

 L: Low pressure

 D: Roof drips

 B: Ballgame

 C: Cavity

Example: Traffic II
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Example: Alarm Network

 Variables
 B: Burglary

 A: Alarm goes off

 M: Mary calls

 J: John calls

 E: Earthquake!
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Example: Alarm Network

 Variables
 B: Burglary

 A: Alarm goes off

 M: Mary calls

 J: John calls

 E: Earthquake!

Burglary Earthqk

Alarm

John 
calls

Mary 
calls 54



Bayes’ Net Semantics
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Bayes’ Net Semantics

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node

 A collection of distributions over X, one for each 
combination of parents’ values

 CPT: conditional probability table

 Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
56



Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

 Example:

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity) 57



Bayes’ Net Representation

 A directed, acyclic graph, one node per random variable

 A conditional probability table (CPT) for each node

 A collection of distributions over X, one for each combination 
of parents’ values

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:

A1

X

An
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Probabilities in BNs

 Why are we guaranteed that setting

results in a proper joint distribution?  

 Chain rule (valid for all distributions): 

 Assume conditional independences: 

 Consequence:

 Not every BN can represent every joint distribution

 The topology enforces certain conditional independencies 59



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)
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Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

P(+r)P(-t|+r) = ¼*1/4 
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|A)

P(A|B,E)
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Example: Traffic

 Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Example: Reverse Traffic

 Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Causality?

 When Bayes’ nets reflect the true causal patterns:

 Often simpler (nodes have fewer parents)
 Often easier to think about
 Often easier to elicit from experts

 BNs need not actually be causal

 Sometimes no causal net exists over the domain 
(especially if variables are missing)

 E.g. consider the variables Traffic and Drips
 End up with arrows that reflect correlation, not causation

 What do the arrows really mean?

 Topology may happen to encode causal structure
 Topology really encodes conditional independence
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Bayes Rule
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Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

 Why is this at all helpful?

 Lets us build one conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we’ll see later (e.g. ASR, MT)

 In the running for most important AI equation!

That’s my rule!
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Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Example:
 M: meningitis, S: stiff neck

 Note: posterior probability of meningitis still very small

 Note: you should still get stiff necks checked out!  Why?

Example
givens
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Quiz: Bayes’ Rule

 Given:

 What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3
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Quiz: Bayes’ Rule

 Given:

 What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

P(sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72

P(rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06

P(sun|dry)=12/13

P(rain|dry)=1/13
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Uncertainty Summary
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Bayes’ Net Representation

 A directed, acyclic graph, one node per random variable

 A conditional probability table (CPT) for each node

 A collection of distributions over X, one for each combination 
of parents’ values

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:
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