
CSE 573:

Artificial Intelligence

Hanna Hajishirzi

Reinforcement Learning

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Reinforcement Learning

Double Bandits

Double-Bandit MDP

o Actions: Blue, Red

o States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75

$2

0.75 $2

0.25

$0

No discount

10 time steps
Both states

have the same
value

Offline Planning

o Solving MDPs is offline planning

o You determine all quantities through computation

o You need to know the details of the MDP

o You do not actually play the game!

Play Red

Play Blue

Value

No discount

10 time steps

15

10

W L
$1

1.0

$1

1.0

0.25 $0

0.75

$2

0.75 $2

0.25

$0

Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

Online Planning

o Rules changed! Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

??

$2

?? $2

??

$0

Let’s Play!

$0 $0 $2

$0 $2 $2 $0 $0

$0

$0

What Just Happened?

o That wasn’t planning, it was learning!

o Specifically, reinforcement learning

o There was an MDP, but you couldn’t solve it with just computation

o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up

o E xploration: you have to try unknown actions to get information

o E xploitation: eventually, you have to use what you know

o Regret: even if you learn intelligently, you make mistakes

o Sampling: because of chance, you have to try things repeatedly

o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of states s  S

o A set of actions (per state) A

o A model T(s,a,s ’)

o A reward function R(s,a,s ’)

o Still looking for a policy (s)

o New twist: don’t know T or R

o I.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Reinforcement Learning

o Basic idea:
o Receive feedback in the form of rewards

o Agent’s utility is defined by the reward function

o Must (learn to) act so as to maximize expected rewards

o All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

E xample: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

E xample: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

Robotics Rubik Cube

o https://www.youtube.com/watch?v=x4O8pojMF0w

https://www.youtube.com/watch?v=x4O8pojMF0w

CSE 573:

Artificial Intelligence

Hanna Hajishirzi

Reinforcement Learning

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Announcements

o PS2: April 29

o Project proposals: May 6th

o Paper review: May 13

20

Project Proposal

o Project proposals: May 6th

o Pick projects close to you interest, or select from here: list of

potential projects. Your final project can also be a re-

implementation of one of the recent papers from

AI/ML/NLP/Computer vision conferences.

o The project proposal is a 1-page summary of the project

topic, motivation, definition, dataset, and resources. It

should also include the milestones, detailed experiment

plan, and the timeline to complete each milestone.

21

https://docs.google.com/document/d/1InXtHeGvRzno42P2kafMHrqC5UyxRYRhnPNV4AiDMa4/edit?usp=sharing

Paper Review

o Paper review:

o 1. Describe what problem or question this paper addresses, and

the main contributions that it makes towards a solution or answer.

a. Problem/Question:

o b. Solution/approach:

o c. Contributions (list at least two):

o 2. E valuate the paper in terms of novelty, significance, and

empirical results. 3. Describe the main strengths you see in

the paper. 4. Describe critiques and weaknesses you see in

the paper.
22

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of states s  S

o A set of actions (per state) A

o A model T(s,a,s ’)

o A reward function R(s,a,s ’)

o Still looking for a policy (s)

o New twist: don’t know T or R

o I.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

o Model-Based Idea:
o Learn an approximate model based on experiences

o Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a

o Normalize to give an estimate of

o Discover each when we experience (s, a, s’)

o Step 2: Solve the learned MDP
o For example, use value iteration, as before

E xample: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Model-Free Learning

Direct E valuation

o Goal: Compute values for each state under



o Idea: Average together observed sample

values

o Act according to 

o E very time you visit a state, write down what the

sum of discounted rewards turned out to be

o Average those samples

o This is called direct evaluation

E xample: Direct E valuation

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1

C, east, D, -1

D, exit, x, +10

B, east, C, -1

C, east, D, -1

D, exit, x, +10

E , north, C, -1

C, east, A, -1

A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E , north, C, -1

C, east, D, -1

D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how

can their values be
different?

Problems with Direct E valuation

o What’s good about direct evaluation?

o It’s easy to understand

o It doesn’t require any knowledge of T, R

o It eventually computes the correct average

values, using just sample transitions

o What bad about it?

o It wastes information about state connections

o E ach state must be learned separately

o So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how

can their values be
different?

Passive Reinforcement Learning

o Simplified task: policy evaluation
o Input: a fixed policy (s)

o You don’t know the transitions T(s,a,s ’)

o You don’t know the rewards R(s,a,s ’)

o Goal: learn the state values

o In this case:
o Learner is “along for the ride”

o No choice about what actions to take

o Just execute the policy and learn from experience

o This is NOT offline planning! You actually take actions in the world.

Why Not Use Policy E valuation?

o Simplified Bellman updates calculate V for a fixed policy:
o Each round, replace V with a one-step-look-ahead layer over V

o This approach fully exploited the connections between the states

o Unfortunately, we need T and R to do it!

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s ’

s’

Sample-Based Policy E valuation?

o We want to improve our estimate of V by computing these averages:

o Idea: Take samples of outcomes s’ (by doing the action!) and
average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost! But we can’t
rewind time to get

sample after sample
from state s.

Temporal Difference Learning

o Big idea: learn from every experience!

o Update V(s) each time we experience a transition (s, a, s’, r)

o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values

o Policy still fixed, still doing evaluation!

o Move values toward value of whatever successor occurs: running

average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

E xponential Moving Average

o E xponential moving average

o The running interpolation update:

o Makes recent samples more important

o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages

E xample: Temporal Difference Learning

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,

mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’re sunk:

o Idea: learn Q-values, not values

o Makes action selection model-free too!

a

s

s, a

s,a,s ’

s’

Recap: Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of states s  S

o A set of actions (per state) A

o A model T(s,a,s ’)

o A reward function R(s,a,s ’)

o Still looking for a policy (s)

o New twist: don’t know T or R

o I.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

o Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  Value Learning

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s ’)

o You don’t know the rewards R(s,a,s ’)

o You choose the actions now

o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens…

Model-Free Learning

o act according to current optimal (based on Q-Values)

o but also explore…

Detour: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V0(s) = 0, which we know is right

o Given Vk, calculate the depth k+1 values for all states:

o But Q-values are more useful, so compute them instead
o Start with Q0(s,a) = 0, which we know is right

o Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go

o Receive a sample (s,a,s ’,r)

o Consider your old estimate:

o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

no longer policy

evaluation!

Q-Learning Demo

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning:

act according to current optimal (and also explore…)

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s ’)

o You don’t know the rewards R(s,a,s ’)

o You choose the actions now

o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens…

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --

even if you’re acting suboptimally!

o This is called off-policy learning

o Caveats:

o You have to explore enough

o You have to eventually make the learning rate

small enough

o … but not decrease it too quickly

o Basically, in the limit, it doesn’t matter how you select actions (!)

E xploration vs. E xploitation

How to E xplore?

o Several schemes for forcing exploration

o Simplest: random actions (-greedy)
oE very time step, flip a coin

oWith (small) probability , act randomly

oWith (large) probability 1-, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep

thrashing around once learning is done

oOne solution: lower  over time

oAnother solution: exploration functions

E xploration Functions

o When to explore?

o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

o E xploration function

o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states

as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Q-Learn Eps ilon Greedy

Video of Demo Q-learning – Eps ilon-Greedy – Crawler

Video of Demo Q-learning – E xploration Function – Crawler

Regret

o Even if you learn the optimal policy,

you still make mistakes along the

way!

o Regret is a measure of your total

mistake cost: the difference

between your (expected) rewards

and optimal (expected) rewards

o Minimizing regret goes beyond

learning to be optimal – it requires

optimally learning to be optimal

o E xample: random exploration and

exploration functions both end up

optimal, but random exploration

has higher regret

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all q-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training

o Too many states to hold the q-tables in memory

o Instead, we want to generalize:
o Learn about some small number of training states

from experience

o Generalize that experience to new, similar situations

o This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo – RL pacman]

Video of Demo Q-Learning Pacman –

Tiny – Watch All

Video of Demo Q-Learning Pacman –

Tiny – S ilent Train

Video of Demo Q-Learning Pacman –

Tricky – Watch All

E xample: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)
o Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

o Example features:
o Distance to closest ghost

o Distance to closest dot

o Number of ghosts

o 1 / (dist to dot)2

o Is Pacman in a tunnel? (0/1)

o … … etc.

o Is it the exact state on this slide?

o Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

CSE 573:

Artificial Intelligence

Hanna Hajishirzi

Reinforcement Learning

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Approximate Q-Learning

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features

o E .g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s

Approximate Q’s

E xample: Q-Pacman

𝛼 = 2/501

Video of Demo Approximate

Q-Learning -- Pacman

Q-Learning and Least Squares

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Minimizing E rror

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help

New in Model-Free RL

Playing Atari Games

87

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
o E .g. your value functions from project 2 were probably horrible estimates of future rewards,

but they still produced good decisions

o Q-learning’s priority: get Q-values close (modeling)

o Action selection priority: get ordering of Q-values right (prediction)

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:

o Start with an initial linear value function or Q-function

o Nudge each feature weight up and down and see if your policy is better than

before

o Problems:

o How do we tell the policy got better?

o Need to run many sample episodes!

o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change

multiple parameters…

RL: Learning Soccer

[Bansal et al, 2017]

Summary: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  Value Learning

*use features
to generalize

*use features
to generalize

Conclusion

o We’ve seen how AI methods can solve
problems in:
o Search

o Games

o Markov Decision Problems

o Reinforcement Learning

o Next up: Uncertainty and Learning!

