CSE 573: Atrtificial Intelligence

Hanna Hajishirzi
Markov Decision Processes

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Review and Outline

= Adversarial Games

= Minimax search

= 0-3 search

= Evaluation functions

= Multi-player, non-0-sum
= Stochastic Games

= Expectimax

= Markov Decision Processes
* Reinforcement Learning

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= \Walls block the agent’s path

Noisy movement: actions do not always go as
planned

= 80% of the time, the action North takes the agent
North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10%
East

= |f there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

—Anl* MmMmavimizo ciirm nf rowarde

0.1

0.1

Grid World Actions

Deterministic Grid World Stochastic Grid World

l@v

/\

Markov Decision Processes

o An MDP is defined by:

o Asetofstatess € S
o Asetofactionsa e A

o A transition function T(s, a, S’)
o Probability that a from s leads to s’, i.e., P(s’| s, @)
o Also called the model or the dynamics

/T (5,4, \

T(s3,,MN,B,) ED
T(531,|3.f\i,@32)|3=|ZD.8 Tas@BigPlable!
T(s31,0N,3,,). 1 11 XEBEEIEES84REntries

/ ForBhow,MveFiveRhisGsinput@o®helgent

Markov Decision Processes

o An MDP is defined by:

o Asetofstatess € S
o Asetofactionsa e A
o A transition function T(s, a, S’)

o Probability that a from s leads to ', i.e., P(s’| s, @)
o Also called the model or the dynamics

o A reward function R(s, a, s)
o Sometimes just R(s) or R(s')

4 N

: 1 2 3 4
(s, BN, E,)E00.01 «—— Costidflbreathing
R(s3,,EN,B,,)Z#1.01 Ras@Iso@@BigtTable!
R(S 3, B, ;) D99

- Forfhow,AveIso@ivelhis@ohe@gent

Markov Decision Processes

o An MDP is defined by:

o Asetofstatess € S
o Asetofactionsa e A
o A transition function T(s, a, S’)

o Probability that a from s leads to ', i.e., P(s’| s, @)
o Also called the model or the dynamics

o A reward function R(s, a, s)
o Sometimes just R(s) or R(s')

o A start state

o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search
o We'll have a new tool soon

What 1s Markov about MDPs?

o “Markov” generally means that given the present state, the
future and the past are independent

o For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St+1 = 8’|5t — StaAt — Ay, St—1 = St—laAt—la ...50 = So)

Andrey Markov
P(St_|_1 — S’|St = Sy, A, = CLt) (1856-1922)

o This is just like search, where the successor function could
only depend on the current state (not the history)

Policies

o In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal
policy n*: S — A
o A policy n gives an action for each state
o An optimal policy is one that maximizes

ity if foll : :
expecte.d.utl 't}/ o (_)WEd Optimal policy when R(s, a, s’) = -0.4 for
o An explicit policy defines a reflex agent :
all non-terminals s

Optimal Policies

Example: Racing

O O O O

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-5

Slow

Overheated

Racing Search Tree

MDP Search Trees

o Each MDP state projects an expectimax-like search tree

A S a S is a state

~
~

(s,a,s) called a transition
T(s,a,s) =P(s’ |s,a)

R(s,a,s’)

2

Utilities of Sequences

Utilities of Sequences
o What preferences should an agent have over reward sequences?
o More orless? [1,2,2] or [2,3,4]

o Now or later? [0,0,1] or [1,0,0]

Discounting

o It's reasonable to maximize the sum of rewards
o It's also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

o How to discount?

o Each time we descend a level,
we multiply in the discount once

o Why discount?

o Think of it as a gamma chance
of ending the process at every
step

o Also helps our algorithms
converge

o Example: discount of 0.5
o U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
o U([1,2,3]) < U([3,2,1))

Quiz: Discounting

o Given: 10 1

a b C d e
o Actions: East, West, and Exit (only available in exit states a, e)

o Transitions: deterministic

o Quiz 1: For y = 1, what Is the optimal policy? 10| < | < | < | 1

o Quiz 2: For y = 0.1, what is the optimal policy? |10 < | < | - | 1

o Quiz 3: For which y are West and East equally good when in state d?

1y=10 3

Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite
rewards?

= Solutions:

* Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.qg. life)
* Policy = depends on time left

* Discounting: use0<y<1

U(lro, - rec]) = > 't < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus

» Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)

Recap: Defining MDPs

o Markov decision processes:
o Set of states S
o Start state s,
o Set of actions A
o Transitions P(s’[s,a) (or T(s,a,s)))
o Rewards R(s,a,s’) (and discount y) PR

o MDP quantities so far:
o Policy = Choice of action for each state
o Utility = sum of (discounted) rewards

Solving MDPs

MDP Search Trees

o Each MDP state projects an expectimax-like search tree

A S a S is a state

~
~

(s,a,s) called a transition
T(s,a,s) =P(s’ |s,a)

R(s,a,s’)

2

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

" The value (utility) of a g-state (s,a):

Q"(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

" The optimal policy:
n"(s) = optimal action from state s

Sis a
state

(s,a)isa
g-state

(s,a,s’) is a
transition

Snapshot Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Gridworld Q Values

MKI

WWWW ‘

Values of States (Bellman Equations)

o Fundamental operation: compute the (expectimax) value of a state
o Expected utility under optimal action
o Average sum of (discounted) rewards
o This Is just what expectimax computed!

o Recursive definition of value: ,
V*(S) —_ ma/ax Q*(S, a) ‘,,N

Q*(s,a) => T(s,a, s {R(S, a,s’) + *yV*(s’)]

V*i(s) = macijT(s, a,s’) {R(S,a, s + ’)/V*(S/)}

S

Racing Search Tree

Racing Search Tree

AAAAAGAN"

EEEEEEN R R

A

VAT CHEMREERI TR CRTEIRE TR TR

Racing Search Tree

o We’re doing way too much
work with expectimax!

o Problem: States are
repeated

o ldea quantities: Only compute
needed once

o Problem: Tree goes on
forever

o ldea: Do a depth-limited
computation, but with
Increasing depths until change
IS small

o Note: deep parts of the tree

L

i
'

W

i

Time-Limited Values

o Key idea: time-limited values

o Define V,(s) to be the optimal value of s if the game
ends in k more time steps

o Equivalently, it's what a depth-k expectimax would give from
S

& Va(@)
3‘/7\;
TR R AT E

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.72 » 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.78)» 1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

K=5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

K=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

K=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

H‘Hl!“ Hth“H'f” H‘Hl!“ H‘Hl!“fi‘f“ H‘Hl!“

AN N NN R R

VR L T | Y WY Y VR Y | O W Y| AV O Y o

H'i“

Value lteration

Solving MDPs

Value lteration

o Start with V4(s) = O0: no time steps left means an expected reward sum of zero

o Given vector of V,(s) values, do one ply of expectimax from each state:

Vk+1(s)
Viep1(s) & max 3T (s,a,8) [Rs,0,8) 47 Vie(s) %

S

o Repeat until convergence

o Complexity of each iteration: O(S?A)

o Theorem: will converge to unique optimal values
o Basic idea: approximations get refined towards optimal values
o Policy may converge long before values do

Example: Value Iteration

S: 1 . B ' O_vlerheated 4
Vil E: Bx+ 5%2=2 :
Assume no discount!
Yo [nO 0 J Vk_|_1(s) — mC{:IXZT(s, a,s’) [R(s, a,s’) + 'ka(s’)]
!/

U S

Example: Value Iteration

vV 2 S: .5*1+.5*1:1 | - ' O_vlerheated 4
! F:-10 '
Assume no discount!
v [0 0 J Vip1(s) & max > T(s,a,) [R(sa,5) +7 V(o)
!/

U S

Example: Value Iteration

! $ y b

1 J ' Overheated
0 | ;

Assume no discount!

° J Vieg1(s) Max S 7(s,a,) [Rs,a,) + 7 V()]

S

Example: Value Iteration

S: 1+2=3
F:

Vo
' Overheated
Wi [2 1 | .
Assume no discount!
Yo [0 0 J Vk_|_1(s) — mngT(s, a,s’) [R(s, a,s’) + 'ka(s’)]
N /
UJ S

Example: Value Iteration

2.5
Overheated
1
Assume no discount!
0 J Vk_|_1(s) — mngT(s, a,s’) [R(s, a,s’) + 'ka(s’)]
!/

S

The Bellman Equations

1 How to be optimal:

‘i& Step 1: Take correct first action
(e
Ve

Step 2§Keep being optimal

I

7

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead /
relationship amongst optimal utility values

V*(s) = max Q* (s, a)

Q*(s,0) = Y T(s,0,8) [R(s,a,8) + V(&)

V*(s) = mC?XZT(S, a,s’) {R(S,CL, s + ’)/V*(S/)}

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Value lteration

o Bellman equations characterize the optimal values:

V*(s) = mC?XZT(S, a,s’) {R(s,a, s") + ’)/V*(S,)}

o Value iteration computes them:

Vit1(s) maf;lXZT(s, a,s’) {R(s,a,, s + ’YV]{(S,)}

o Value iteration is just a fixed point solution method
o ...though the V, vectors are also interpretable as time-limited values

Convergence*

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

o Sketch: For any state V, and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

o The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

That last layer is at best all Ry;ax

It is at worst Ry, / \ /

But everything is discounted by y* that far out
SoV, and V,,, are at most yk max|R| different

O O O O O

So as k increases, the values converge

Recap: Markov Decision Processes

o An MDP is defined by:

o Asetofstatess € S
o Asetofactionsa e A
o A transition function T(s, a, S’)

o Probability that a from s leads to ', i.e., P(s’| s, @)
o Also called the model or the dynamics

o A reward function R(s, a, s)
o Sometimes just R(s) or R(s')

o A start state

o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search
o We'll have a new tool soon

Recap: MDPs

o Search problems in uncertain environments
o Model uncertainty with transition function
o Assign utility to states. How? Using reward functions

o Decision making and search in MDPs <-- Find a sequence of
actions that maximize expected sum of rewards
o Value of a state
o Q-Value of a state
o Policy for a state

66

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

V*(s) = max Q* (s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)}

V*(s) = mC?XZT(S, a,s’) {R(S,CL, s + ’)/V*(S,)}

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Solving MDPs

o Finding the best policy = mapping of actions to states
o So far, we have talked about one method

o Value iteration: computes the optimal values of states

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what = says to do

-s,a,8’

\\\
\\
~
'
L4
A s

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy n(s), then the tree would be simpler — only one action per
state
o ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

o Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy n:

V7(s) = expected total discounted rewards starting in s and
following =

o Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V(5]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

-10.00 100.00 -10.00 -10.00 100.00 -10.00
F
-10.00 1.09]| -10.00 -10.00 T70.20 -10.00

Y

-10.00 =7.88 p|| -10.00 -10.00 48 .74 -10.00
F

-10.00 -10.00 -10.00 -10.00

O

O

O

O

Policy Evaluation

How do we calculate the V's for a fixed policy nn? S
ldea 1: Turn recursive Bellman equations into updates m(S)
(like value iteration) s, 7(S)
Vo (s) =0 L O
A s

ka—l—l(s) — ZT(S,T&'(S), SH[R(s,n(s),s") + ’)/V];T(Sl)]

Efficiency: O(S?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
o Solve with Matlab (or your favorite linear system solver)

Let’s think...

o Take a minute, think about value iteration and policy
evaluation

o Write down the biggest questions you have about them.

Policy Extraction

—

i 1

_
ks J
D

Computing Actions from Values

o Let's imagine we have the optimal values V*(s) ﬂ
o How should we act? .
4 . 1.
o It's not obvious!
o] 0.92 4 0.91 0.80
o We need to do a mini-expectimax (one step))

7*(s) = arg QﬂaXZT(s, a,s')[R(s,a,s) +~vV*(s)]

S

o This Is called policy extraction, since it gets the policy implied by the
values

Computing Actions from Q-Values

Oq-b:’j ei:agine we have the optimal %%
o How should we act? M.m

o Completely trivial to decide!

m*(s) = argmaxQ*(s,a) MM

o Important lesson: actions are easier to select from g-values than
values!

Policy lteration

Problems with Value lteration

o Value Iiteration repeats the Bellman updates:

Vieg1(s) < m(?XZT(s, a,s) [R(s,a, s + W/Vk(s’)}

S

o Problem 1: It's slow — O(S?A) per iteration S

o Problem 2: The "max” at each state rarely changes

o Problem 3: The policy often converges long before the values

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy lteration

o Alternative approach for optimal values:

o Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

o Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

o Repeat steps until policy converges

o This Is policy Iteration
o It's still optimal!
o Can converge (much) faster under some conditions

Policy lteration

o Evaluation: For fixed current policy =, find values with policy evaluation:
o Iterate until values converge:

Vi1 (s) ZT(s mi(s),8") |R(s,mi(s),s") + vV (s))]

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) {R(s, a,s’) + ’)/Vﬂ-i(S,)}

SI

O

O

O

O

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
o Every iteration updates both the values and (implicitly) the policy
o We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

o We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

o The new policy will be better (or we're done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

o S0 you want to....
o Compute optimal values: use value iteration or policy iteration
o Compute values for a particular policy: use policy evaluation
o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!
o They basically are — they are all variations of Bellman updates
o They all use one-step lookahead expectimax fragments
o They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

1 How to be optimal:

‘i& Step 1: Take correct first action
(e
Ve

Step 2§Keep being optimal

I

7

Next Topic: Reinforcement Learning!

