Review and Outline

- Adversarial Games
 - Minimax search
 - \(\alpha-\beta\) search
 - Evaluation functions
 - Multi-player, non-0-sum

- Stochastic Games
 - Expectimax

- Markov Decision Processes
- Reinforcement Learning
Non-Deterministic Search
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of rewards
Grid World Actions

Deterministic Grid World

Stochastic Grid World

[Diagram showing transitions and actions in both deterministic and stochastic grid worlds]
An MDP is defined by:
- A set of states \(s \in S \)
- A set of actions \(a \in A \)
- A transition function \(T(s, a, s') \)
 - Probability that \(a \) from \(s \) leads to \(s' \), i.e., \(P(s' \mid s, a) \)
 - Also called the model or the dynamics

\[
\begin{align*}
T(s_{11}, E, \ldots) \\
\ldots \\
T(s_{31}, N, s_{11}) = 0 \\
\ldots \\
T(s_{31}, N, s_{32}) = 0.8 \\
T(s_{31}, N, s_{21}) = 0.1 \\
T(s_{31}, N, s_{41}) = 0.1 \\
\ldots
\end{align*}
\]

\(T \) is a Big Table!
11 \(\times 4 \times 11 = 484 \) entries

For now, we give this as input to the agent.
An MDP is defined by:

- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
- A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$

Cost of breathing

$R(s_{32}, N, s_{33}) = -0.01$

$R(s_{32}, N, s_{42}) = -1.01$

$R(s_{33}, E, s_{43}) = 0.99$

R is also a Big Table!

For now, we also give this to the agent.
Markov Decision Processes

○ An MDP is defined by:
 ○ A set of states $s \in S$
 ○ A set of actions $a \in A$
 ○ A transition function $T(s, a, s')$
 ○ Probability that a from s leads to s', i.e., $P(s' | s, a)$
 ○ Also called the model or the dynamics
 ○ A reward function $R(s, a, s')$
 ○ Sometimes just $R(s)$ or $R(s')$
 ○ A start state
 ○ Maybe a terminal state

○ MDPs are non-deterministic search problems
 ○ One way to solve them is with expectimax search
 ○ We’ll have a new tool soon
What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent.

- For Markov decision processes, “Markov” means action outcomes depend only on the current state:

$$P(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0)$$

$$= P(S_{t+1} = s'|S_t = s_t, A_t = a_t)$$

- This is just like search, where the successor function could only depend on the current state (not the history).

Andrey Markov (1856-1922)
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$:
 - A policy π gives an action for each state.
 - An optimal policy is one that maximizes expected utility if followed.
 - An explicit policy defines a reflex agent.

Optimal policy when $R(s, a, s') = -0.4$ for all non-terminals s.
Optimal Policies

\[R(s) = -2.0 \]
\[R(s) = -0.4 \]
\[R(s) = -0.03 \]
\[R(s) = -0.01 \]

\[R(s) = -0.4 \]
\[R(s) = -0.03 \]
\[R(s) = -0.01 \]

\[R(s)^2 = -2.0 \]
Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

<table>
<thead>
<tr>
<th>State</th>
<th>Fast Action</th>
<th>Slow Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool</td>
<td>+2</td>
<td>+1</td>
</tr>
<tr>
<td>Warm</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>Overheated</td>
<td>-10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

0.5

1.0

+1

0.5

14
Racing Search Tree
MDP Search Trees

- Each MDP state projects an expectimax-like search tree

(s, a, s') called a transition

\[T(s, a, s') = P(s' | s, a) \]

\[R(s, a, s') \]
Utilities of Sequences
Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? \([1, 2, 2]\) or \([2, 3, 4]\)
- Now or later? \([0, 0, 1]\) or \([1, 0, 0]\)
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth Now
Worth Next Step
Worth In Two Steps
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Think of it as a gamma chance of ending the process at every step
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - \(U([1,2,3]) = 1\times1 + 0.5\times2 + 0.25\times3 \)
 - \(U([1,2,3]) < U([3,2,1]) \)
Theorem: if we assume stationary preferences:

\[[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots] \]

\[\Downarrow \]

\[[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots] \]

Then: there are only two ways to define utilities

- Additive utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \ldots \)
- Discounted utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \)
Quiz: Discounting

- Given:
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- Quiz 1: For $\gamma = 1$, what is the optimal policy?

- Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

- Quiz 3: For which γ are West and East equally good when in state d?

 $1_{\gamma} = 10 \gamma^3$
Infinite Utilities?!

- **Problem:** What if the game lasts forever? Do we get infinite rewards?

- **Solutions:**
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - Discounting: use $0 < \gamma < 1$
 $$U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma)$$
 - Smaller γ means smaller “horizon” – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' \mid s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs
Each MDP state projects an expectimax-like search tree as (s, a, s') called a transition $T(s, a, s') = P(s' | s, a)$ and $R(s, a, s')$. s is a state.
Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
Snapshot Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Q-VALUES AFTER 100 ITERATIONS
Values of States (Bellman Equations)

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Recursive definition of value:

\[
V^*(s) = \max_a Q^*(s, a)
\]

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

\[
V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]
Racing Search Tree
Racing Search Tree
Racing Search Tree

- We’re doing way too much work with expectimax!

- Problem: States are repeated
 - Idea quantities: Only compute needed once

- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Time-Limited Values

- Key idea: time-limited values

- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps.
 - Equivalently, it’s what a depth-k expectimax would give from s
$k=0$

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=1$

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=3$

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=4$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=5$

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>0.73</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.41</td>
<td></td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.21</td>
<td>0.31</td>
<td>0.43</td>
<td>0.19</td>
</tr>
</tbody>
</table>

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=7$

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 8

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=9$

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 100 ITERATIONS

k=100
Computing Time-Limited Values

$V_4(\text{ }, \text{ }, \text{ })$ $V_4(\text{ }, \text{ }, \text{ })$ $V_4(\text{ }, \text{ }, \text{ })$

$V_3(\text{ }, \text{ }, \text{ })$ $V_3(\text{ }, \text{ }, \text{ })$ $V_3(\text{ }, \text{ }, \text{ })$

$V_2(\text{ }, \text{ }, \text{ })$ $V_2(\text{ }, \text{ }, \text{ })$ $V_2(\text{ }, \text{ }, \text{ })$

$V_1(\text{ }, \text{ }, \text{ })$ $V_1(\text{ }, \text{ }, \text{ })$ $V_1(\text{ }, \text{ }, \text{ })$

$V_0(\text{ }, \text{ }, \text{ })$ $V_0(\text{ }, \text{ }, \text{ })$ $V_0(\text{ }, \text{ }, \text{ })$
Value Iteration
Solving MDPs
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma V_k(s') \right) \]
- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Value Iteration

\[V_0\]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\end{array}
\]

\[V_1\]

\[
\begin{array}{c}
S: 1 \\
F: 0.5 \times 2 + 0.5 \times 2 = 2 \\
\end{array}
\]

\[V_2\]

Assume no discount!

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]
Example: Value Iteration

V₂

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S: (0.5 \times 1 + 0.5 \times 1 = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F: -10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V₁

| 2 |

V₀

| 0 | 0 | 0 | 0 |

Assume no discount!

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]
Example: Value Iteration

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
Convergence

- How do we know the V_k vectors are going to converge?

- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values.

- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees.
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros.
 - That last layer is at best all R_{max}.
 - It is at worst R_{min}.
 - But everything is discounted by γ^k that far out.
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different.
 - So as k increases, the values converge.
The Bellman Equations

- Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal
Solving MDPs

- Finding the best policy \rightarrow mapping of actions to states
- So far, we have talked about one method

- Value iteration: computes the optimal values of states
Policy Methods
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values.
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state.
 - ... though the tree's value would depend on which policy we fixed.

Do the optimal action

Do what π says to do
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

- Define the utility of a state s, under a fixed policy π:
 $$V_\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi$$

- Recursive relation (one-step look-ahead / Bellman equation):
 $$V_\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_\pi(s') \right]$$
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

- How do we calculate the V's for a fixed policy π?

- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^\pi(s) = 0$$
$$V_{k+1}^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Efficiency: $O(S^2)$ per iteration

- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)
Policy Extraction
Let’s imagine we have the optimal values $V^*(s)$.

How should we act?
- It’s not obvious!

We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called **policy extraction**, since it gets the policy implied by the values.
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

 \[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!
Policy Iteration
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A) \) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
$k = 12$

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Iteration

- Evaluation: For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 \[
 V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]
 \]

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:
 \[
 \pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
 \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
So you want to….
- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!
- They basically are – they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions
The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal
Next Topic: Reinforcement Learning!