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Review and Outline

» Adversarial Games

* Minimax search

" 0-f3 search

= Evaluation functions

= Multi-player, non-0-sum
» Stochastic Games

* Expectimax

* Markov Decision Processes
» Reinforcement Learning



Non-Deterministic Search




Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as

pl DR ec
80%0f the time, the action North takes the agent
North

(if there is no wall there)
= 10% of the time, North takes the agent West; 10% East

= [f there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step ;.
= Small “living” reward each step (can be negativé
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards 5

0.1



Grid World Actions

Deterministic Grid World Stochastic Grid World




Markov Decision Processes

o An MDP is defined by:

o A setofstatess €S
o A setof actions a €

o A transition functi
o Probability t

o Also called th7

G(sll, E, ... [/\

sleadsto s, i.e., P(s’| s, a)
odlel or the dynamics

0
=0.8 Tis a Big Table! ( (\/
=0.1 11 X4 x 11 = 484 entries > J \ Y
=0.1 / —
For now, we give this as input to the agent S
[ NS




Markov Decision Processes 6& /7’//7
/

o An MDP is defined by:

o A setofstatess €S
o A setofactionsa € A

o A transition function T¢(s, a, s”)
o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s")
o Sometimes just R(s) or R(s")

4 N

Cost of breathin 1 2 3 4
R(s32, N, 533'_ f J

R(s32, N, 545) =-1.01 R is also a Big Table!
R(Sa, E, Sa3) = 0.99

- For now, we also give this to the,agent




Markov Decision Processes

o An MDP is defined by:

o A setofstatess € S

o A setof actionsa € A

o A transition function T¢(s, a, s”)
o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s")
o Sometimes just R(s) or R(s")

o A start state

o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search
o We'll have a new tool soon



What is Markov about MDDPs?

o “Markov” generally means that given the present state, the
future and the past are independent

o For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si+ D= 5"|St = s¢, Ar = al{ Stn= 5t—1, Ar—1,...50 = 805

— = —_—

Andrey Mackov

P(Sii1 = 8|S = 84, Ay = ay) 5 /6 g (1856-192
- ‘L/’ )

o This is just like search, where the successor function could
only depend on the current state (not the history)
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Policies

e —

o In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

e ———
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o For MDPs, we want an optimal

S

policy n*: S — A

o A policy &t gives an action for each state

\___

o An optimal policy is one that maximizes

ted utility it followed : :
XpECTEa HHHLY THIOTOWE Optimal policy when R(s, a, s’) =-0.4 for

o An explicit policy defines a reflex agent Al non-terminals s ==
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Optimal Policies




Example: Racing




Example: Racing

A robot car wants to travel far, quickly

Three states: Cool




Racing Search Tree

(pc)/
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MDP Search Trees
%

/
o Each MDP state projects an ex@-l@arch tree
/—> s,a,s ) called a transition
7 sa,8 T(s,a,s’ ) = P(s’ |s,a)
5,a,S U
o — “ R(s,a,s”)
s \ 4

~~
~
~
~
~
~
~
~
~
~~
~

16



Utilities of Sequences




Utilities of Sequences

o What preferences should an agent have over reward sequences?

=
o More or less? [1, 2, 2] or
_ = - _

—

o Now or later? [0,0,1] or
= —

i




Dlscountmg%{ U Q & 7

o It’s reasonable to maximize the sum of rewards (

o It's also reasonable to prefer rewards now to rewards 191-/pr 5

o One solution: values of rewards decay ex@ 2@/ j l

7

ﬂb

2
~

Worth Now Worth Next Step Worth In Two Steps

R
C e e



Discounting N \0

o How to discount?

o Each time we descend a level,
we multiply in the discount once

o Why discount?

o Think of it as a gamma chance of
ending the process at every step

o Also helps our algorithms
converge >~
Rt
~ A,/ | SA
0 Example dlscount of 0.5 2 p 4
o U([L23]) =1*1+0.5%2 +0.25"3 A&;—M

o U(T23]) < U([3,2,1])

e L)



Stationary Preferences

o Theorem: if we assume stationary preferences: :
[al,ag,...] — [bl,bg,...] @ 2
—_— —— Q
ﬁ

7 a1, a9,...) = [, b1, o, ]
T —

o Then: there are only two ways to define uthﬁeﬁ/ —~
o Additive utility: U([rg,r1,792,...]) =710+ 71 + 10 + - i 8 g

o Discounted utilityU ([rg, r1, 72, . ]) = rg + yr1 + v%ro &K




Quiz: Discountj
. Qj A = & \—
o Given: 10 1 ‘j’

a_b_c_d_e

o Actions: East, West, and Exit (only available in exit states a, e)

o Transitions: deterministic %’

o Quiz 1: For y =1, what is the optimal policy? <r <4-<

=L —

—_— 2D NS i

o Quiz 2: For y 0.1, what is the optimal po%ém < | < E‘J @Q//
- O, |~

o Quiz 3: For whlch y are We & nin state d?
17=10 42 / /D ] D — /



Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite
rewards?

= Solutions:

* Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)

= Policy n depends on time left

* Discounting: use 0<y<1

U([rg,...Toc]) = K Rmax/(1 —7) DD// o
=8 _—
——— — T=

= Smaller vy means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a tesgninal state will
eventually be reached (like “overheated” for racing)



Recap: Detining MDPs

o Markov decision processes:
o Set of states S
o Start state s,
o Set of actions
o Transitions P(s’|s,a) (or T(s,a,s’)l///

o Rewards R(s,a,s”) (and di%%t Y) s
~— >

o MDP quantities so far:
o Policy = Choice of action for each state
o Utility = sum of (discounted) rewards

24



Solving MDPs




MDP Search Trees

o Each MDP state projects an expectimax-like search tree

S is a state

[J/\Q\/\Cg

(s,a,s’ ) called a transition

e

T(s,a,s’ ) = P(s’ |s,a)
: N\
R(s,a,s )
V\

26
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Optimal Quantities

* The value (@yb‘ a state s:

expected utility starting in s and
acting optimally

sisa
tate

s,a)isa
* The value (utility) of a g-state (s,a): g-state
Q’(s,a) = expected utility starting out
(s,a,s’) is a

having taken action a from state s and 4 as)
(thereafter) acting optimally / o transition

" The optimal policy: S @?&(
R*(S) optimal action from state s Q ¢ [\'\ % éﬁ
7 =




Snapshot Gridworlc

Cridworld Display

0.64 »| 0.74 )

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Snapshot of Gridworld Q Values

Cridworl

s




Values of States (Bellman Equations)

o Fundamental operation: compute the (expectimax) value of a state
o Expected utility under optimal action
o Average sum of (discounted) rewards
o This is just what expectimax computed!

o Recursive definition of value:
V*(s) ma Q* (s, a)
—

~ —

Q" (s, a)—ZT(S a,s’) {R(s a,s) 4= aV*(
/ Vi(s) = max 2 T(s,a,5) R(s,a,8") + 7 V*(s)]

W ME_%EBO f \

N—
[




Racing Search Tree

31



Racing Search Tree

A0 0 080N
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Racing Search Tree

o We're doing way too much
work with expectimax!

o Problem: States are repeated

o Idea quantities: Only compute
needed once

o Problem: Tree goes on
forever

o Idea: Do a depth-limited ﬂﬂﬁﬂﬁ ﬂﬁﬂ mm HH .
computation, but with .
increasing depths until change
is small CLEUIR YL LU T VI U TN EU U U T /

o Note: deep parts of the tree 1 23 \p@

1

eventually don’t matter if y <




Time-Limited Values

o Key idea: i‘u’,‘)liﬁ lues \)d;( Q) -

o Define V ’Qe th optlm 1 lue of s if the game
ends in Kmore tim stepsK

o Equ1valently, it's what a depth-k expectimax would give
from s

S
n gy P

34
[Demo — time-limited values (L8D6)]



Noise = 0.2
Discount = 0.9
Living reward =0




VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




0.72 )» 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




0.78 )» 1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=5

Cridworld Display

~
.H
~ ~

0.00 | 0.22 )

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=£/

Cridworld Display

035>||100

| 0.31 )

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS N_Oise =0.2
Discount =0.9

Living reward =0




k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=100

Cridworld Display

VALUES AFTER

100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Computing Time-Limited Values

AN N NN R

AV L T O | Y W VO | O O Y | AV O Y o

y/—
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Value Iteration




Solving MDPs




Value Iteration

o Start with V(s) = 0: no time steps left means an expected reward sum of zero S

o Given vector of V,(s) values, do one ply of expectimax from each state:

o
o Complexity of each iterationf O(S?A)

o Theorem: will converge to unique optimal Vaﬂ{ej{
o Basicidea: approximations get refined towards optimal V&ilues

o Policy may converge long before VM
52




Example: Value Iteration

3 $ b

€l

S: 1
F: .5*2+5%2=2




Example: Value Iteration

S: .5*1"‘.5*1:1 Overheated
& [ 2 F:-10 ]
-
Assume no discount!
v
’ [ 0 0 0 ] Vip1(s) < max Y T(s,a,s") |R(s,a,s") + v V(s
!/

S

54



Example: Value Iteration

Overheated

Assume no discount!

: [ ’ ) O] Vir1(s) & max 3 T(s,0,8) [R5, a,5) + 7 V()]

S

55



Example: Value Iteration

S

1+2=3
5*%(2+2)+.5*(2+1)=3.5
=

NS

e
6

+1 ’ . a
low *%;i R ar
g ‘, Fast 05 +2
O 0 +1 Coo .
"
/__) Assume 1o discount!
0 0 0 J +1(S)<—maxZT(sas) R(sa,s)—l—'ka(s

= (z@%}/\?



Example: Value Iteration

Overheated

Assume no discount!

: [ ’ ) O] Vir1(s) & max 3 T(s,0,8) [R5, a,5) + 7 V()]

S

57



Convergence*

é

o How do we know the V, vectors are going to converge?

| Vk—|—1
Case 1: If the tree has maximum depth M, then V, holds

the actual untruncated values O é E
— —

o Case 2: If the discount is less than 1

o Sketch: For any state V, and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

o The difference is that on the bottom layer, V,,, has actual
rewards while V, has ze

best w Ryiax

That lastTayer is

It is at worgt Ry,

But everything is discounted by y* that far out

So V, and V,,, are at most y* max|R| different

O O O O O

: ——————
So as k increases, the valuesconverge




The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

V*(s) = max Q* (s, a)

Q*(s,a) =Y T(s,a,5") |R(s,a,s") +V*(5)] -

——

V*(s) = mC?XZT(S, a,s’) [R(S,a,, s + ’}/V*(S,)}

/

o These are the BeI{ma eguations,\and they?{ acterize—

optimal values ina wiwe "Il use over ind

59




The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2fKeep being optimal

h
/

60




Solving MDPs

o Finding the best policy = mapping of actions to states
o So far, we have talked about one method

o Value iteration: computes the optimal values of states




Policy Methods




Policy Evaluation




Fixed Policies

Do the optimal action Do what © says to do

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy n(s), then the tree would be simpler — only one action
per state -
o ... though the tree’s value would depend on which policy we fixed



Utilities for a Fixed Policy

o Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy n:

V7(s) = expected total discounted rewards starting in s and
following w

A s
o Recursive relation (one-step look-ahead / Bellman Q < g 2 71}

equation): \Sx(g ) — %
@@ T m(s) MR 760, ) 4 VO D / §2

e




Example: Policy Evaluation

Always Go Right Always Go Forward

70



Example: Policy Evaluation

Always Go Right

Always Go Forward

—
100.00 \
I

71




O

O

O

O

Policy Evaluation /

How do we calculate the V’s for a fixed policy n?

§

Idea 1: Turn recursive Bellman equations into updates

(like value iteration)

Vo(s) =0

S T(s),8’

Vkﬂ@T(s,w(s), SH[R(s,7(s),s") + ’)/V];T(Sl)]
—_—

Efficiency: O(S?) per iteration
-

Idea 2: Without the maxes, the Bellman equations are just a linear system

o Solve with Matlab (or your favorite linear system solver)

72



Policy Extraction

—

i 1
_ |
ks J




Computing Actions from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?

o It's not obvious!

o We need to do a mini-expectimax (one step)

7*(s) = arg QﬂaXZT(s, a,s')[R(s,a,s) +~vV*(s)]

S

o This is called policy extraction, since it gets the policy implied by the

values
75



Computing Actions from Q-Values

o Let’s imagine we have the optimal
g-values:

o How should we act?
o Completely trivial to decide!

7m*(s) = argmax Q*(s,a)

o Important lesson: actions are easier to select from g-values than
values!

76



Policy Iteration




Problems with Value Iteration

o Value iteration repeats the Bellman updates:

Vieg1(s) < m(?XZT(s, a,s') [R(s,a, s + W/Vk(s’)}

S

o Problem 1: It’s slow — O(S?A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

78



k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Policy Iteration

o Alternative approach for optimal values:

o Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

o Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

o Repeat steps until policy converges

o This is policy iteration
o It’s still optimal!
o Can converge (much) faster under some conditions

81



Policy Iteration

o Evaluation: For fixed current policy =, find values with policy evaluation:

o Iterate until values converge:

Vi1 (s) ZT(s mi(s),8") |R(s,mi(s),s") + vV (s))]

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) [R(s, a,s’) + nyWi(s’)}

SI

82



Comparison

o Both value iteration and policy iteration compute the same thing (all optimal values)

o In value iteration:
o Every iteration updates both the values and (implicitly) the policy
o We don’t track the policy, but taking the max over actions implicitly recomputes it

o In policy iteration:

o We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
o The new policy will be better (or we’re done)

o Both are dynamic programs for solving MDPs
83



Summary: MDP Algorithms

o So you want to....
o Compute optimal values: use value iteration or policy iteration
o Compute values for a particular policy: use policy evaluation
o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!
o They basically are — they are all variations of Bellman updates
o They all use one-step lookahead expectimax fragments
o They ditfer only in whether we plug in a fixed policy or max over actions

84



The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2fKeep being optimal

h
/
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Next Topic: Reinforcement Learning!

86
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