CSE 573: Artificial Intelligence

Hanna Hajishirzi (

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

1

Review and Outline

- Adversarial Games
 - Minimax search
 - α-β search
 - Evaluation functions
 - Multi-player, non-0-sum
- Stochastic Games
 - Expectimax

Reinforcement Learning

Non-Deterministic Search

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North

(if there is no wall there)

- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Markov Decision Processes

Markov Decision Processes

- An MDP is defined by:
 - $\circ \ A \ set \ of \ states \ s \ \in S$
 - $\circ \ A \ set \ of \ actions \ a \in A$
 - A transition function T(s, a, s')
 - \circ Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - \circ Sometimes just R(s) or R(s')

Cost of breathing

R is also a Big Table!

For now, we also give this to the₈agent

Markov Decision Processes

- An MDP is defined by:
 - $\circ \ A \ set \ of \ states \ s \in S$
 - $\circ \ A \ set \ of \ actions \ a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - \circ Sometimes just R(s) or R(s')
 - o A start state
 - o Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - o We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

• This is just like search, where the successor function could only depend on the current state (not the history)

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \to A$
 - o A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.4 for all non-terminals s

Optimal Policies

Example: Racing

Example: Racing

MDP Search Trees

Utilities of Sequences

Utilities of Sequences

• What preferences should an agent have over reward sequences?

Discounting

Worth Next Step

Worth In Two Steps

19

• It's reasonable to maximize the sum of rewards

It's also reasonable to prefer rewards now to rewards later

• One solution: values of rewards decay exponentially

Worth Now

Discounting

20

• How to discount?

 Each time we descend a level, we multiply in the discount once

• Why discount?

- Think of it as a gamma chance of ending the process at every step
- Also helps our algorithms converge
- Example: discount of 0.5
 - O U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 O U([1,2,3]) < U([3,2,1])

Stationary Preferences

• Theorem: if we assume stationary preferences:

 $[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$

 $[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdot$
 - Discounted utility $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - Discounting: use $0 < \gamma < 1$

 $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\max}/(1-\gamma)$

Smaller γ means smaller "horizon" – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

Markov decision processes:

 Set of states S
 Start state s₀
 Set of actions A
 Transitions P(s' | s,a) (or T(s,a,s'))
 Rewards R(s,a,s') (and discount γ)

MDP quantities so far:
 Policy = Choice of action for each state
 Utility = sum of (discounted) rewards

Solving MDPs

MDP Search Trees

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

• The optimal policy: $\pi^*(s)$ = optimal action from state s

Snapshot of Gridworld Q Values

Values of States (Bellman Equations)

• Fundamental operation: compute the (expectimax) value of a state

s, a

S,a,S

Expected utility under optimal action
Average sum of (discounted) rewards

o This is just what expectimax computed!

 $Q^*(s,a) = \sum T(s,a,s') \left[R(s,a,s') + \right]$

 $V^*(s) = \max_{a} \sum T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$

• Recursive definition of value:

 $V^*(s) = \max_a Q^*(s,a)$

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea quantities: Only compute needed once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]

VALUES AFTER O ITERATIONS

k=1

○ ○ ○ Gridworld Display							
	• 0.00	• 0.00	0.00)	1.00			
	• 0.00		∢ 0.00	-1.00			
	• 0.00	• 0.00	• 0.00	0.00			
VALUES AFTER 1 ITERATIONS							

k=2

Gridworld Display						
	• 0.00	0.00 →	0.72 →	1.00		
	^		^			
	0.00		0.00	-1.00		
	^	^	^			
	0.00	0.00	0.00	0.00		
				-		
VALUES AFTER 2 ITERATIONS						

0 0	0	Gridworl	d Display			
	0.00 >	0.52 →	0.78 →	1.00		
	• 0.00		▲ 0.43	-1.00		
	• 0.00	• 0.00	• 0.00	0.00		
	VALUES AFTER 3 ITERATIONS					

k=4

000)	Gridwork	d Display			
	0.37 →	0.66)	0.83 →	1.00		
	•		• 0.51	-1.00		
	•	0.00 →	• 0.31	∢ 0.00		
	VALUES AFTER 4 ITERATIONS					

00	O O O Gridworld Display					
	0.51)	0.72 ▸	0.84)	1.00		
	• 0.27		• 0.55	-1.00		
	0.00	0.22 →	• 0.37	∢ 0.13		
	VALUES AFTER 5 ITERATIONS					

00	Gridworld Display				
	0.62)	0.74 →	0.85 →	1.00	
	• 0.50		• 0.57	-1.00	
	•	0.36)	• 0.45	• 0.24	
	VALUE	S AFTER	7 ITERA	LIONS	

0 0	0	Gridworl	d Display	
	0.63)	0.74 →	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	0.26
	VALUE	S AFTER	8 ITERA	FIONS

Gridworld Display					
0.64)	0.74 ♪	0.85)	1.00		
•		• 0.57	-1.00		
▲ 0.46	0.40 →	• 0.47	∢ 0.27		
VALUES AFTER 9 ITERATIONS					

00	Gridworld Display					
	0.64)	0.74 ▸	0.85 →	1.00		
	•		• 0.57	-1.00		
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27		
	VALUES AFTER 10 ITERATIONS					

0 0 0	Gridworl	d Display		
0.64)	0.74 →	0.85)	1.00	
• 0.56		• 0.57	-1.00	
• 0.48	◀ 0.42	• 0.47	∢ 0.27	
VALUES AFTER 11 ITERATIONS				

C C Gridworld Display					
0.64)	0.74)	0.85)	1.00		
• 0.57		• 0.57	-1.00		
▲ 0.49	∢ 0.42	• 0.47	∢ 0.28		
VALUES AFTER 12 ITERATIONS					

000	Gridwork	d Display	-	
0.64)	0.74 →	0.85)	1.00	NZ+(B)
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.43	• 0.48	∢ 0.28	
VALUES	AFTER 1	LOO ITERA	ATIONS	Noise = 0.2 Discount = 0.9 Living reward = 0

Computing Time-Limited Values

Value Iteration

Solving MDPs

Value Iteration

• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

 $T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

• Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

• Repeat until convergence

max

 V_{k+1}

- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

v_{k+1}(§

s, a

V_L(s'

Convergence*

 $V_k(s)$

 $V_{k+1}(s)$

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - $\circ~$ Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - $\circ~$ But everything is discounted by γ^k that far out
 - $\circ~So~V_k$ and V_{k+1} are at most γ^k max[R] different
 - So as k increases, the values converge

The Bellman Equations

• Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

 $V^*(s) = \max_a Q^*(s,a)$ $Q^*(s,a) = \sum T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]$ $V^{*}(s) = \max_{a} \sum_{i} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$

The Bellman Equations

Solving MDPs

o Finding the best policy → mapping of actions to states
o So far, we have talked about one method

o Value iteration: computes the **optimal** values of states

Policy Methods

Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state

• ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation): $V^{\pi}(s) \neq \sum T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

69

Example: Policy Evaluation

Example: Policy Evaluation

Policy Evaluation

 $\pi(s)$

s, $\pi(s)$

 $\pi(s),s$

• How do we calculate the V's for a fixed policy π ?

• Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ♪	0.96)	0.98 ▶	1.00
0 .94		∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act? • Completely trivial to decide! $\pi^*(s) = \arg \max_a Q^*(s, a)$

Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

• Problem 1: It's slow – $O(S^2A)$ per iteration

• Problem 2: The "max" at each state rarely changes

• Problem 3: The policy often converges long before the values

C C Gridworld Display					
0.64)	0.74)	0.85)	1.00		
• 0.57		• 0.57	-1.00		
▲ 0.49	∢ 0.42	• 0.47	∢ 0.28		
VALUES AFTER 12 ITERATIONS					

C Cridworld Display			
0.64)	0.74 →	0.85 →	1.00
• 0.57		• 0.57	-1.00
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

Policy Iteration

• Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- o Repeat steps until policy converges

• This is policy iteration

- o It's still optimal!
- o Can converge (much) faster under some conditions

Policy Iteration

Evaluation: For fixed current policy π, find values with policy evaluation:
 Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction
 One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

• Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

• So you want to....

o Compute optimal values: use value iteration or policy iteration

- o Compute values for a particular policy: use policy evaluation
- o Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

- They basically are they are all variations of Bellman updates
- o They all use one-step lookahead expectimax fragments
- o They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

Next Topic: Reinforcement Learning!