CSE 573: Artificial Intelligence

Hanna Hajishirzi
Adversarial Search

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer
Agents Getting Along with Other Agents or Humans
Games 😊

- **Checkers:** 1950: First computer player. 1994: First computer champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame. 2007: Checkers solved!

- **Chess:** 1997: Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply. Current programs are even better, if less historic.

- **Go:** Human champions are now starting to be challenged by machines, though the best humans still beat the best machines. In go, b > 300! Classic programs use pattern knowledge bases, but big recent advances use Monte Carlo (randomized) expansion methods.
Games

- **Checkers**: 1950: First computer player. 1994: First computer champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame. 2007: Checkers solved!

- **Chess**: 1997: Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply. Current programs are even better, if less historic.

- **Go**: 2016: Alpha GO defeats human champion. Uses Monte Carlo Tree Search, learned evaluation function.

- **Pacman**
Pacman: Behavior From Computation
Games

- Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?
 - Perfect information (can you see the state)?

- Want algorithms for calculating a strategy (policy) which recommends a move in each state
Deterministic Games with Terminal Utilities

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P=\{1...N\}$ (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $S \times A \rightarrow S$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $S \times P \rightarrow R$

- Solution for a player is a policy: $S \rightarrow A$
Types of Games

- **Zero-Sum Games**
 - Agents have opposite utilities (values on outcomes)
 - Let's us think of a single value that one maximizes and the other minimizes
 - Adversarial, pure competition

- **General Games**
 - Agents have independent utilities (values on outcomes)
 - Cooperation, indifference, competition, and more are all possible
 - We don’t make AI to act in isolation, it should a) work around people and b) help people
 - That means that every AI agent needs to solve a game
Adversarial Games
Adversarial Search
573 News: Cost -> Utility!

- no longer minimizing cost!
- agent now wants to maximize its score/utility!
Single-Agent Trees
Value of a state: The best achievable outcome (utility) from that state

Non-Terminal States:

\[V(s) = \max_{s' \in \text{children}(s)} V(s') \]

Terminal States:

\[V(s) = \text{known} \]
Adversarial Game Trees

The diagram illustrates a game tree with a starting node marked by Pac-Man and ghost characters. The tree branches into several paths, each labeled with numerical values indicating potential rewards or penalties. The values include:

- Top level: 20
- Middle level: -8, -18, -5, -10, +4, +8
- Bottom level:
 - Left: -20
 - Middle: ... -18, -5, ...
 - Right: -10, +4
 - Far right: -20, +8

The tree shows a strategic choice, where the goal is to maximize the outcome for Pac-Man. The formula for the value function is given by:

\[V(s) = \begin{cases} \max_{a \in A} U(s) & \text{for Maximizer} \\ \min_{a \in A} U(s) & \text{for Opponent} \end{cases} \]
Minimax Values

States Under Agent’s Control:

\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]

States Under Opponent’s Control:

\[V(s') = \min_{s \in \text{successors}(s')} V(s) \]

Terminal States:

\[V(s) = \text{known} \]
Tic-Tac-Toe Game Tree
Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result

- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node’s minimax value: the best achievable utility against a rational (optimal) adversary
Minimax Implementation

```python
def min_value(state):
    initialize v = +∞
    for each successor of state:
        v = min(v, max_value(successor))
    return v

def max_value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, min_value(successor))
    return v
```

\[
V(s) = \max_{s' \in \text{successors}(s)} V(s')
\]

\[
V(s') = \min_{s \in \text{successors}(s')} V(s)
\]
Minimax Implementation (Dispatch)

def value(state):
- if the state is a terminal state: return the state’s utility
- if the next agent is **MAX**: return \(\max - \text{value(state)} \)
- if the next agent is **MIN**: return \(\min - \text{value(state)} \)

def max-value(state):
- initialize \(v = -\infty \)
- for each successor of state:
 - \(v = \max(v, \text{value(successor)}) \)
- return \(v \)

def min-value(state):
- initialize \(v = +\infty \)
- for each successor of state:
 - \(v = \min(v, \text{value(successor)}) \)
- return \(v \)
Minimax Properties

Optimal against a perfect player. Otherwise?
Video of Demo Min vs. Exp (Min)
Video of Demo Min vs. Exp (Exp)
How efficient is minimax?

- Just like (exhaustive) DFS
 - Time: $O(b^m)$
 - Space: $O(bm)$

Example: For chess, $b \approx 35$, $m \approx 100$

- Exact solution is completely infeasible
- But, do we need to explore the whole tree?
Resource Limits
Game Tree Pruning
Minimax Example
Minimax Example
Alpha-Beta Pruning

- General configuration (MIN version)
 - We’re computing the MIN-VALUE at some node n
 - We’re looping over n’s children
 - n’s estimate of the childrens’ min is dropping
 - Who cares about n’s value? MAX
 - Let a be the best value that MAX can get at any choice point along the current path from the root
 - If n becomes worse than a, MAX will avoid it, so we can stop considering n’s other children (it’s already bad enough that it won’t be played)

- MAX version is symmetric
Alpha-Beta Implementation

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state, α, β):

initialize v = $+\infty$

for each successor of state:

\[v = \min(v, \text{value}(\text{successor}, \alpha, \beta)) \]

if \(v \leq \alpha \) return \(v \)

\(\beta = \min(\beta, v) \)

return \(v \)

def max-value(state, α, β):

initialize v = $-\infty$

for each successor of state:

\[v = \max(v, \text{value}(\text{successor}, \alpha, \beta)) \]

if \(v \geq \beta \) return \(v \)

\(\alpha = \max(\alpha, v) \)

return \(v \)
This pruning has **no effect** on minimax value computed for the root!

- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won’t let you do action selection

- Good child ordering improves effectiveness of pruning

- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless…

- This is a simple example of **metareasoning** (computing about what to compute)
Alpha-Beta Quiz
Alpha-Beta Quiz 2

Diagram:
- Node a: \(x = 10 \)
- Node b: \(\beta = 10 \)
- Node e: \(10 \leq 10 \)
- Node i: Max value \(\geq 100 \)
- Node j: Max value \(\geq 100 \)
- Node l: Crossed out
- Values:
 - c: 10
 - d: 6
 - f: 100
 - g: 8
 - j: 1
 - k: 2
 - m: 20
 - n: 4
Alpha-Beta Quiz 2

Diagram:

- Node a: $q = 10$
- Node b: $q = 10$, $\beta = 10$
- Node c: $\gamma(n) \geq 10$
- Node d: $\beta = 10$
- Node e: $\gamma(n) \leq 10$
- Node f: $\beta = 10$
- Node g: $\beta = 10$
- Node h: $q = -\infty$, $\beta = +\infty$
- Node i: ≤ 2
- Node j: ≥ 100
- Node k: $\beta = 2$
- Node m: $\beta = 2$
- Node n: $\beta = 2$

Values:

- c: 10
- d: 6
- f: 100
- g: 8
- j: 1
- k: 2
- m: 20
- n: 4
Resource Limits
Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions

- Example:
 - Suppose we have 100 seconds, can explore 10K nodes/sec
 - So can check 1M nodes per move
 - $\alpha-\beta$ reaches about depth 8 – decent chess program

- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm
Evaluation Functions
Video of Demo Thrashing (d=2)
A danger of replanning agents!

- He knows his score will go up by eating the dot now (west, east)
- He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, two here)
- Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!
Video of Demo Thrashing -- Fixed (d=2)
Evaluation Functions

- Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

 $$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

- e.g. $$f_1(s) = (\text{num white queens} - \text{num black queens})$$, etc.
Evaluation for Pacman
Video of Smart Ghosts (Coordination)
Video of Demo Smart Ghosts (Coordination) – Zoomed In
Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation
Video of Demo Limited Depth (2)
Video of Demo Limited Depth (10)
Synergies between Alpha-Beta and Evaluation Function

- **Alpha-Beta:** amount of pruning depends on expansion ordering
 - Evaluation function can provide guidance to expand most promising nodes first

- **Alpha-beta:**
 - Value at a min-node will only keep going down
 - Once value of min-node lower than better option for max along path to root, can prune
 - Hence, IF evaluation function provides upper-bound on value at min-node, and upper-bound already lower than better option for max along path to root THEN can prune