CSE 573 : Artificial Intelligence

Hanna Hajishirzi (+ R C Neural Networks (

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Reminder: Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Example

- Learning the OR function: 0, 1 inputs. 0, 1 outputs
- Draw a <u>straight</u> line separating the greens and reds (two classes)

Recap: How to get probabilistic decisions?

Activation: z = w ⋅ f(x)
If z = w ⋅ f(x) very positive → want probability going to 1
If z = w ⋅ f(x) very negative → want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

= Logistic Regression

Recap: Multiclass Logistic Regression

Best w?

Maximum likelihood estimation:

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$
with:
$$P(y^{(i)} | x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$
= Multi-Class Logistic Regression

Optimization

Hill Climbing

simple, general idea

- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

Optimization Procedure: Gradient Ascent

- $\alpha\colon$ learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes w about 0.1 1 %

How about computing all the derivatives?

 We'll talk about that once we covered neural networks, which are a generalization of logistic regression

Neural Networks

Multi-class Logistic Regression

Deep Neural Network = Also learn the features!

Deep Neural Network = Also learn the features!

Deep Neural Network = Also learn the features!

Common Activation Functions

Sigmoid Function

Rectified Linear Unit (ReLU)

[source: MIT 6.S191 introtodeeplearning.com]

Why non-linear activations?

- To understand, lets try to learn the XOR function
- Draw a <u>straight</u> line through the graph such that greens are on one side and reds are on another

Input 1	Input 2	Output
0	0	0
0	1	1
1	1	0
1	0	1

Deep Neural Network: Also Learn the Features!

Training the deep neural network is just like logistic regression:

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

just w tends to be a much, much larger vector 🙂

- \rightarrow just run gradient ascent
- + stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

- Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.
- Practical considerations
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:

If
$$f(x) = g(h(x))$$

Then
$$f'(x) = g'(h(x))h'(x)$$

→ Derivatives can be computed by following well-defined procedures

Automatic Differentiation

- Automatic differentiation software
 - e.g. Theano, TensorFlow, PyTorch, Chainer
 - Only need to program the function g(x,y,w)
 - Can automatically compute all derivatives w.r.t. all entries in w
- Need to know this exists
- How this is done? -- outside of scope of CSE573

Summary of Key Ideas

- Optimize probability of label given input
- $\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$

- Continuous optimization
 - Gradient ascent:
 - Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 - Take step in the gradient direction
 - Repeat (until held-out data accuracy starts to drop = "early stopping")
- Deep neural nets
 - Last layer = still logistic regression
 - Now also many more layers before this last layer
 - = computing the features
 - \rightarrow the features are learned rather than hand-designed
 - Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)

Deep Reinforcement Learning

Reinforcement Learning = Learning by Interaction

Reinforcement Learning = Learning by Interaction

Markov Decision Process

Mathematical formulation of the RL problem

Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$

- $\boldsymbol{\mathcal{S}}\,$: set of possible states
- \mathcal{A} : set of possible actions
- ${\cal R}$: distribution of reward given (state, action) pair
- ℙ : transition probability i.e. distribution over next state given (state, action) pair
- γ : discount factor

Markov property: Current state completely characterizes the state of the world

$$p(r, s'|s, a) = Prob\Big[R_{t+1} = r, S_{t+1} = s' \mid S_t = s, A_t = a\Big]$$

Recap: Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a')|s,a\right]$$

 Q_i will converge to Q^* as i -> infinity

Approximate MDP solvers

What's the problem with this?

- 1. Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!
- 2. Real problems do not give you transition matrix. Again, need to account for all possibilities.

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Deep Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s,a) = \mathbb{E}[r + \gamma \max_{a'} Q^*(s',a') \mid s,a]$$

Forward Pass Loss function: $L_i(\theta_i) = \mathbb{E}\left[(y_i - Q(s, a; \theta_i)^2)\right]$

where
$$y_i = \mathbb{E}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$$

Backward Pass

Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i)\right]$$

Breakout as an MDP

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state
Action: Game controls e.g. Start, Left, Right, Stay
Reward: Score increase/decrease at each time step

Deep Q-Learning for Breakout

- $\pi(s) = argmax_a Q(s, a)$ once trained
- Next questions:
 - What is the structure of this network?
 - How do we train this network?

Network Structure

Multi-class Logistic Regression

= special case of neural network

Pytorch Demo! Open those Colab Notebooks if you want to follow along!

https://colab.research.google.com/drive/1PR8wBdglJ10yikyUkU8fmjl7-WviWC_W?usp=sharing

https://tinyurl.com/cse573-dqn

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using **experience replay**

- Continually update a replay memory table of transitions (s_t, a_t, r_t, s_{t+1}) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples 37

Training the Q-network: Epsilon Greedy

• Epsilon is the term that decides how often the agent randomly picks an action

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from *D* Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ Every C steps reset $\hat{Q} = Q$ **End For** End For