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Reminder: Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1
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Example

▪ Learning the OR function: 0, 1 inputs. 0, 1 outputs

▪ Draw a straight line separating the greens and reds (two classes)



Recap: How to get probabilistic decisions?

▪ Activation:

▪ If very positive → want probability going to 1

▪ If  very negative → want probability going to 0

▪ Sigmoid function



Best w? 

▪ Maximum likelihood estimation:

with:

= Logistic Regression



Recap: Multiclass Logistic Regression

▪ Multi-class linear classification

▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction w/highest score wins:

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



Optimization

▪ Optimization

▪ i.e., how do we solve:



Hill Climbing

▪ simple, general idea
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?



Optimization Procedure: Gradient Ascent

▪ init

▪ for iter = 1, 2, …

▪ : learning rate --- tweaking parameter that needs to be 
chosen carefully

▪ How? Try multiple choices

▪ Crude rule of thumb: update changes       about 0.1 – 1 %



▪ We’ll talk about that once we covered neural networks, which 
are a generalization of logistic regression 

How about computing all the derivatives?



Neural Networks



Multi-class Logistic Regression

▪ = special case of neural network
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com] 



Why non-linear activations?

▪ To understand, lets try to learn the XOR function

▪ Draw a straight line through the graph such that greens are on 
one side and reds are on another



Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector ☺

→just run gradient ascent 

+ stop when log likelihood of hold-out data starts to decrease



Neural Networks Properties

▪ Theorem (Universal Function Approximators).  A two-layer neural 
network with a sufficient number of neurons can approximate 
any continuous function to any desired accuracy.

▪ Practical considerations

▪ Can be seen as learning the features 

▪ Large number of neurons

▪ Danger for overfitting

▪ (hence early stopping!)



How about computing all the derivatives?

◼ But neural net f is never one of those?

◼ No problem: CHAIN RULE:

If 

Then

→ Derivatives can be computed by following well-defined procedures



▪ Automatic differentiation software 

▪ e.g. Theano, TensorFlow, PyTorch, Chainer

▪ Only need to program the function g(x,y,w)

▪ Can automatically compute all derivatives w.r.t. all entries in w

▪ Need to know this exists

▪ How this is done?  -- outside of scope of CSE573

Automatic Differentiation



Summary of Key Ideas

▪ Optimize probability of label given input

▪ Continuous optimization
▪ Gradient ascent:

▪ Compute steepest uphill direction = gradient (= just vector of partial derivatives)

▪ Take step in the gradient direction

▪ Repeat (until held-out data accuracy starts to drop = “early stopping”)

▪ Deep neural nets
▪ Last layer = still logistic regression

▪ Now also many more layers before this last layer
▪ = computing the features

▪ → the features are learned rather than hand-designed

▪ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)



Deep Reinforcement Learning



Reinforcement Learning 
= Learning by Interaction
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Reinforcement Learning 
= Learning by Interaction
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AGENT GOAL: FIND POLICY π: S → A

TO MAXIMIZE REWARD 



Markov Decision Process
Mathematical formulation of the RL problem

Defined by: 

: set of possible states

: set of possible actions

: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

: discount factor

Markov property: Current state completely characterizes the state of the world
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Recap: Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update



Approximate MDP solvers
What’s the problem with this?

1. Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current 
game state pixels, computationally infeasible to compute for entire state space!

2. Real problems do not give you transition matrix. Again, need to account for all 
possibilities.

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network! 
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Remember: want to find a Q-function that satisfies the Bellman Equation: 

Deep Q-learning 

Loss function:

where

Forward Pass

Backward Pass

Gradient update (with respect to Q-function parameters θ):



Breakout as an MDP
• Objective: Complete the game with the highest score

• State: Raw pixel inputs of the game state

• Action: Game controls e.g. Start, Left, Right, Stay

• Reward: Score increase/decrease at each time step



Deep Q-Learning for Breakout

• π(s) = argmaxa Q(s, a) once trained

• Next questions:

• What is the structure of this network?

• How do we train this network?



Network Structure
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Multi-class Logistic Regression

▪ = special case of neural network
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Pytorch Demo! Open those 
Colab Notebooks if you want 

to follow along!
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https://colab.research.google.com/drive/1PR8wBdglJ10yikyUkU8fmjl7-

WviWC_W?usp=sharing

https://tinyurl.com/cse573-dqn

https://colab.research.google.com/drive/1PR8wBdglJ10yikyUkU8fmjl7-WviWC_W?usp=sharing
https://tinyurl.com/cse573-dqn


Training the Q-network: Experience Replay

36

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning

- Current Q-network parameters determines next training samples 

(e.g. if maximizing action is to move left, training samples will be 

dominated by samples from left-hand size) => can lead to bad 

feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Training the Q-network: Experience Replay
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Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning

- Current Q-network parameters determines next training samples 

(e.g. if maximizing action is to move left, training samples will be 

dominated by samples from left-hand size) => can lead to bad 

feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions (st, at, rt, 

st+1) as game (experience) episodes are played

- Train Q-network on random minibatches of transitions from the 

replay memory, instead of consecutive samples 

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Training the Q-network: Epsilon Greedy
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• Epsilon is the term that decides how often the agent randomly picks 

an action 
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