CSE 573 : Artificial Intelligence

Hanna Hajishirzi Perceptrons and Logistic Regression

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Last Lecture

F_n

• • •

 F_2

- Classification: given inputs x, predict labels (classes) y
- Naïve Bayes

 $P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$

Parameter estimation:

• MLE, MAP, priors $P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}}$

F₁

- Laplace smoothing $P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$
- Training set, held-out set, test set

Workflow

Phase 1: Train model on Training Data. Choice points for "tuning"

- Attributes / Features
- Model types: Naïve Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..
- Model hyperparameters
 - E.g. Naïve Bayes Laplace k
 - E.g. Logistic Regression weight regularization
 - E.g. Neural Net architecture, learning rate, ...
- Make sure good performance on training data (why?)

Phase 2: Evaluate on Hold-Out Data

- If Hold-Out performance is close to Train performance
 - We achieved good generalization, onto Phase 3! ☺
- If Hold-Out performance is much worse than Train performance
 - We overfitted to the training data! 😣
 - Take inspiration from the errors and:
 - Either: go back to Phase 1 for tuning (typically: make the model less expressive)
 - Or: if we are out of options for tuning while maintaining high train accuracy, collect more data (i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1
- Phase 3: Report performance on Test Data

Held-Out Data

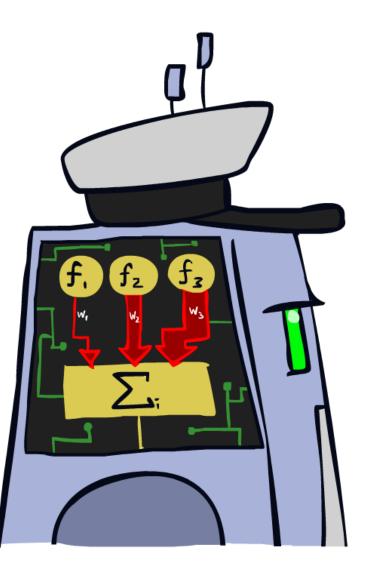
Possible outer-loop: Collect more data

Practical Tip: Baselines

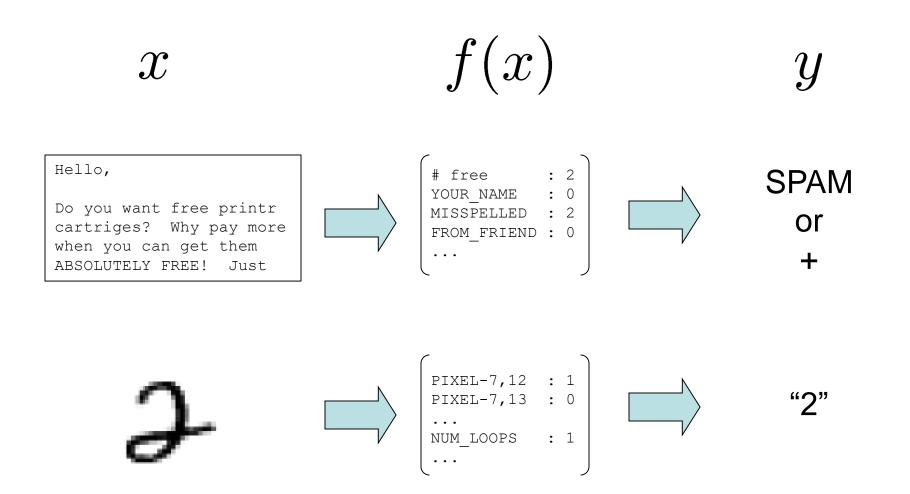
• First step: get a baseline

- Baselines are very simple "straw man" procedures
- Help determine how hard the task is
- Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

Linear Classifiers

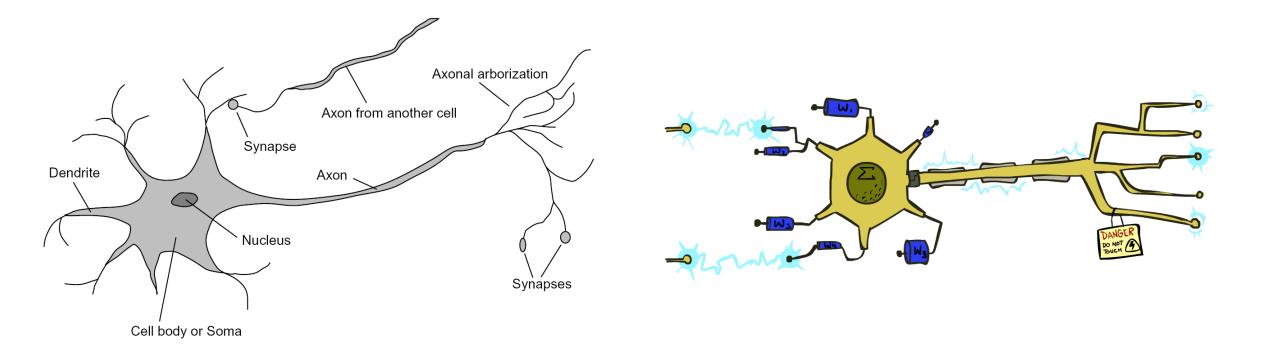


Feature Vectors



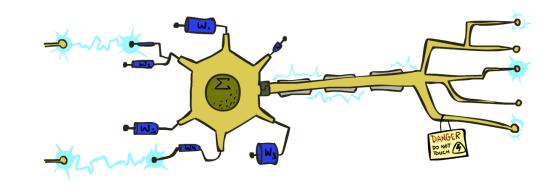
Some (Simplified) Biology

Very loose inspiration: human neurons



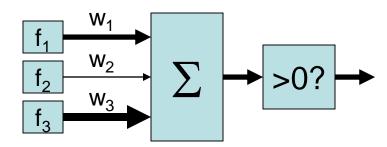
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



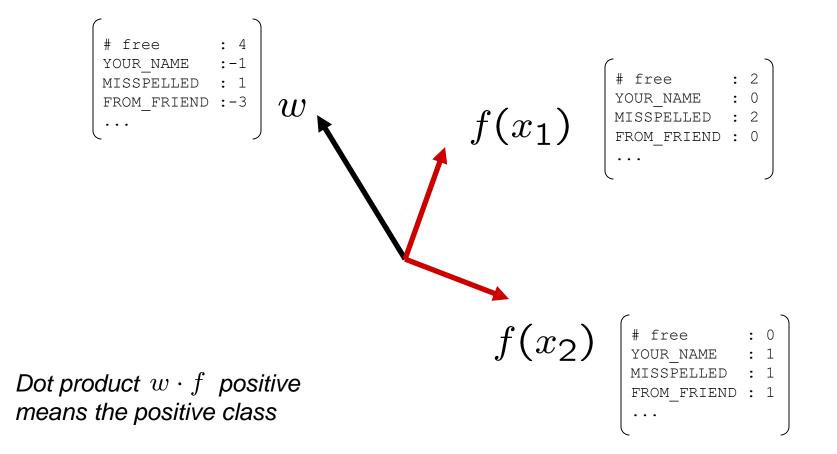
activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

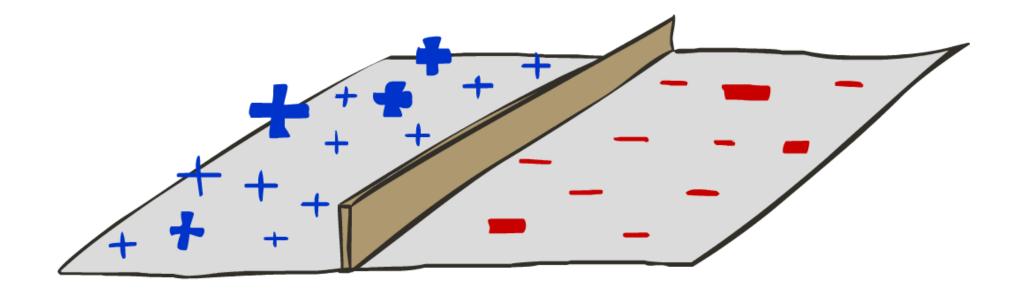


Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples



Decision Rules

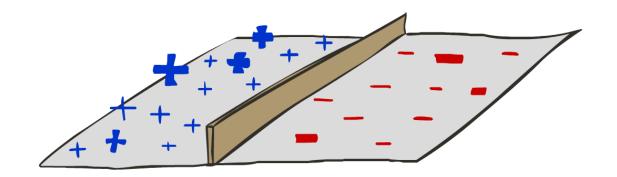


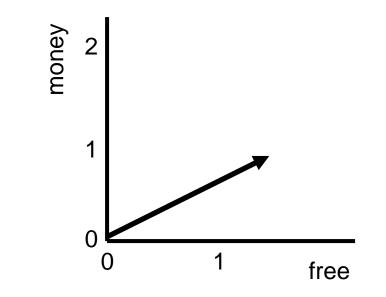
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS	:	-3
free	:	4
money	:	2
• • •		



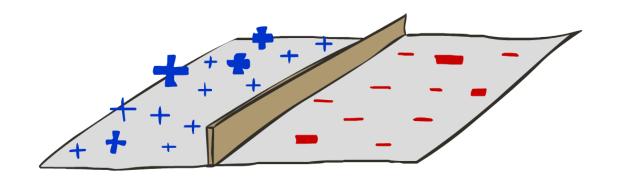


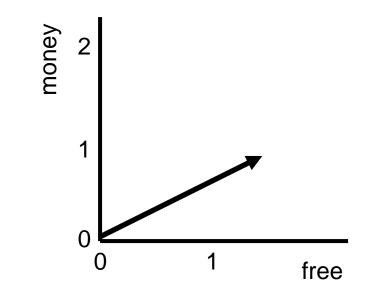
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

free	:	4
money	:	2





Binary Decision Rule

- In the space of feature vectors
 - Examples are points

w

BIAS

free

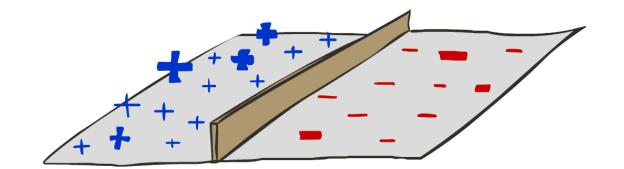
money :

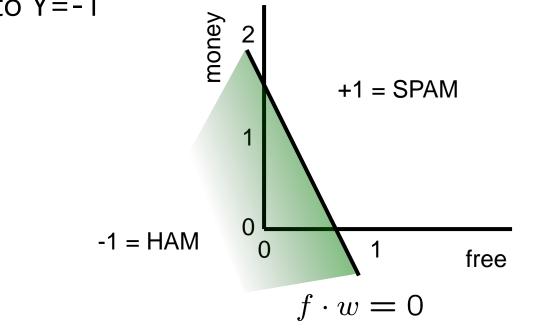
- Any weight vector is a hyperplane
- One side corresponds to Y=+1
- Other corresponds to Y=-1

-3

4

2





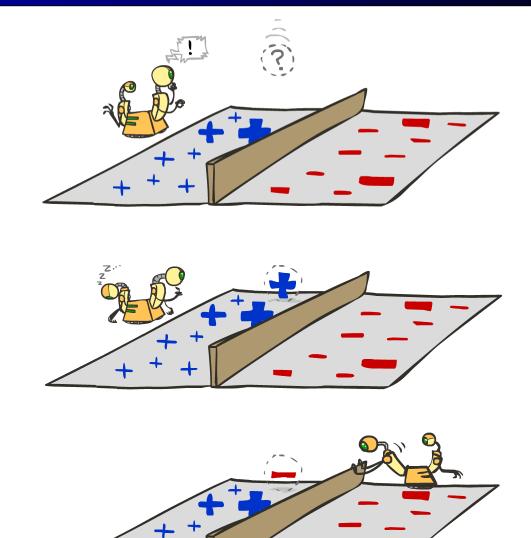
Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector



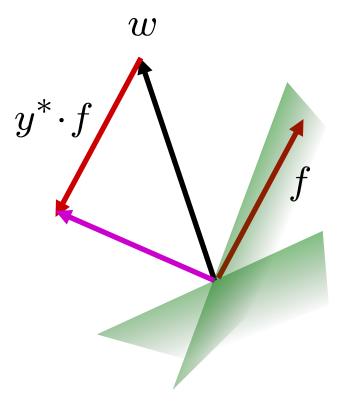
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

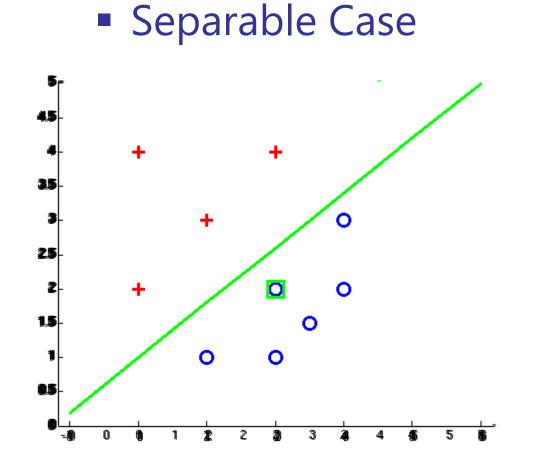
$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$



Examples: Perceptron



Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

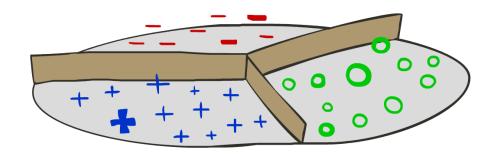
 w_y

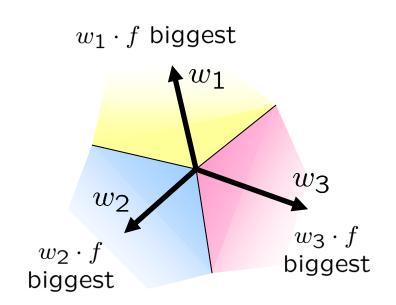
• Score (activation) of a class y:

 $w_y \cdot f(x)$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} w_y \cdot f(x)$$





Binary = multiclass where the negative class has weight zero

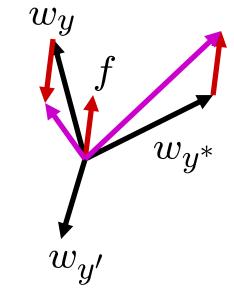
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

 $y = \arg \max_y w_y \cdot f(x)$

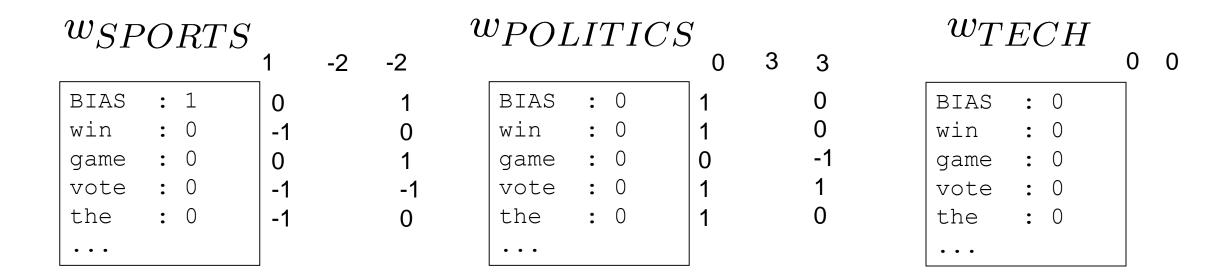
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$



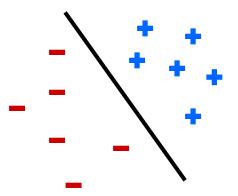
Example: Multiclass Perceptron

"win the vote" [1 1 0 1 1]
"win the election" [1 1 0 0 1]
"win the game" [1 1 1 0 1]



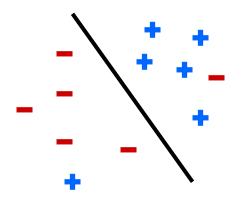
Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Non-separable?



Separable

Non-Separable



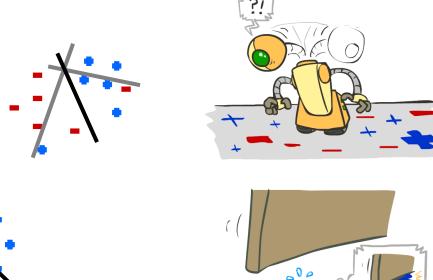
Problems with the Perceptron

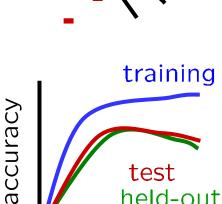
- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

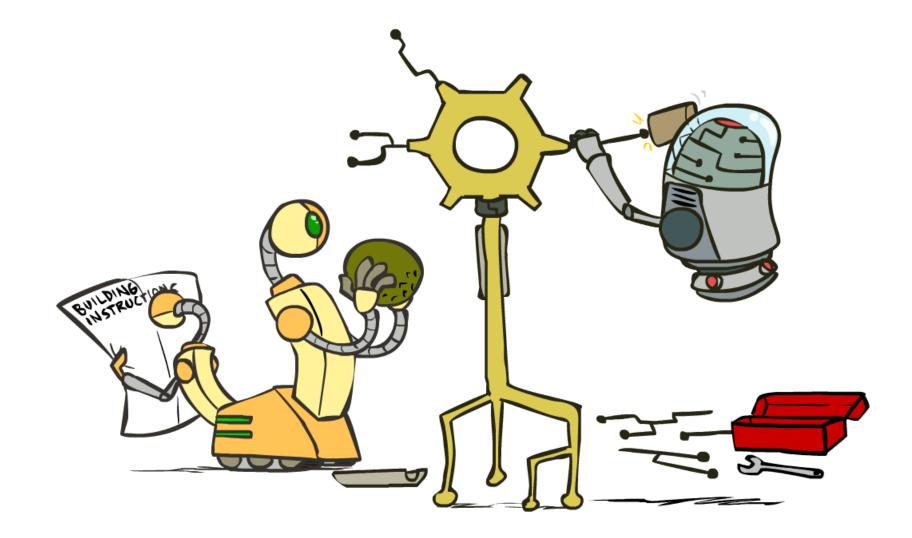
test

held-out

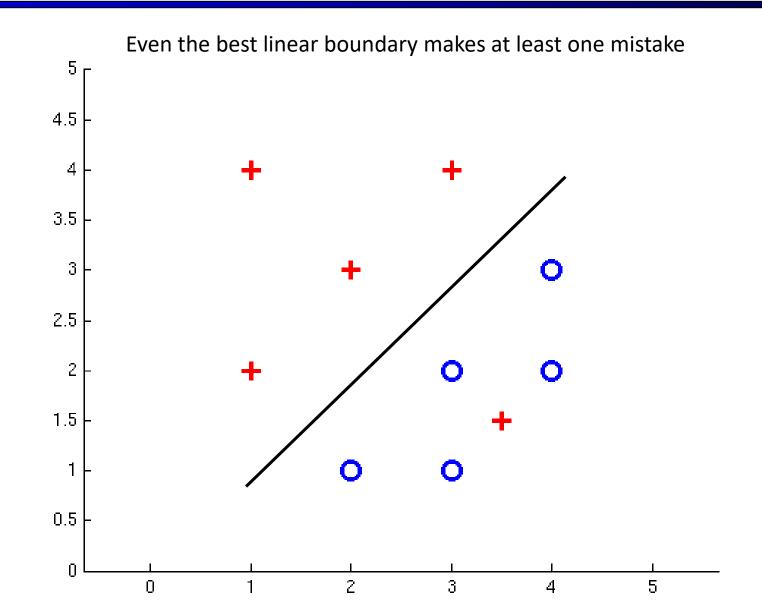




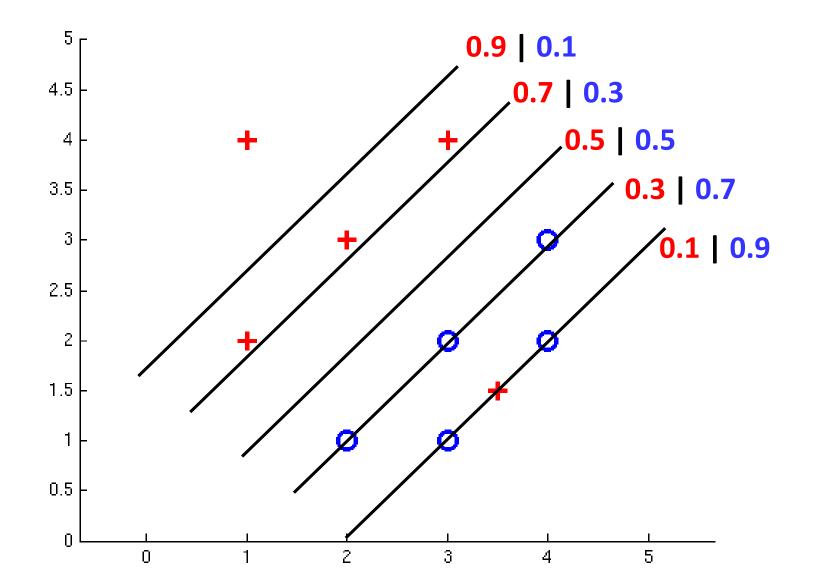
Improving the Perceptron



Non-Separable Case: Deterministic Decision

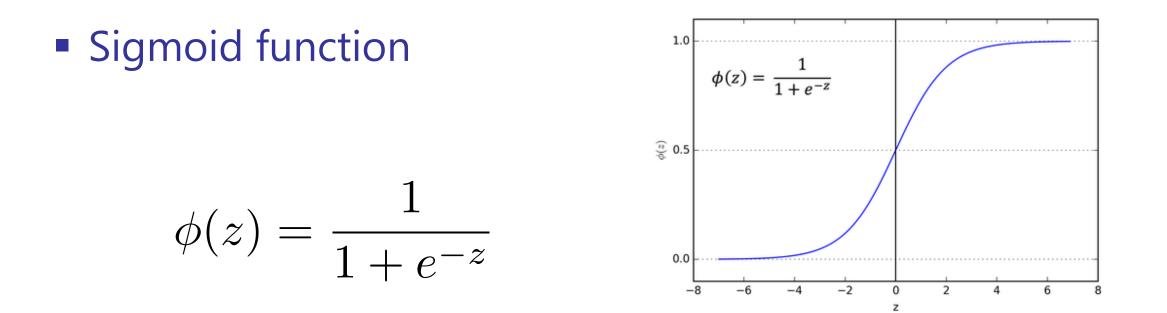


Non-Separable Case: Probabilistic Decision

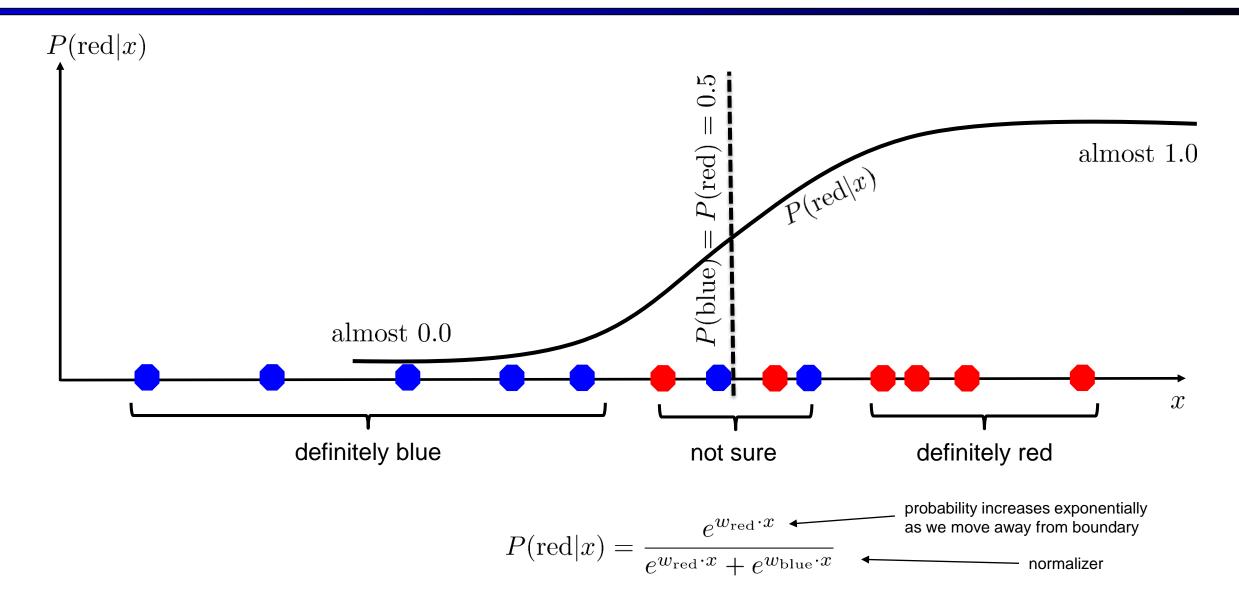


How to get probabilistic decisions?

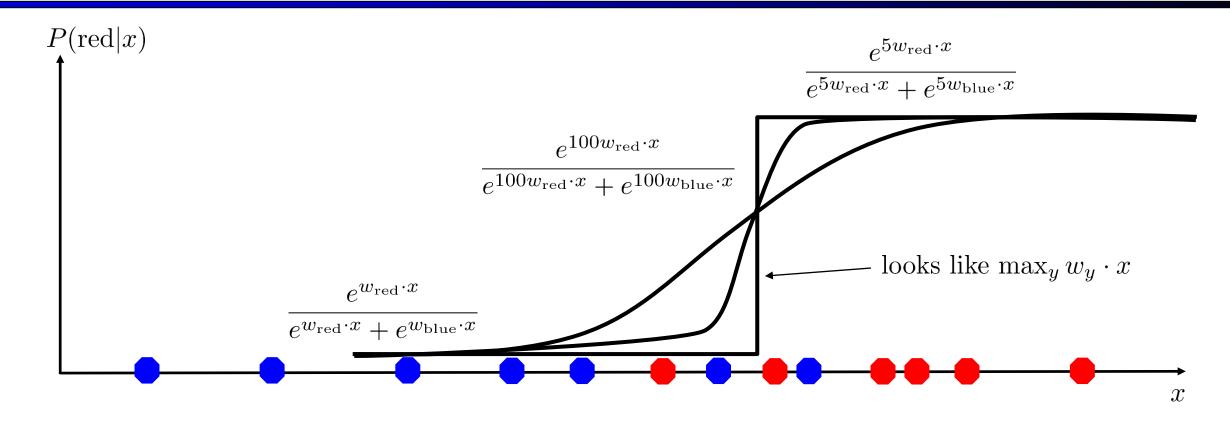
- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0



A 1D Example



The *Soft* Max



$$P(\operatorname{red}|x) = \frac{e^{w_{\operatorname{red}} \cdot x}}{e^{w_{\operatorname{red}} \cdot x} + e^{w_{\operatorname{blue}} \cdot x}}$$

Best w?

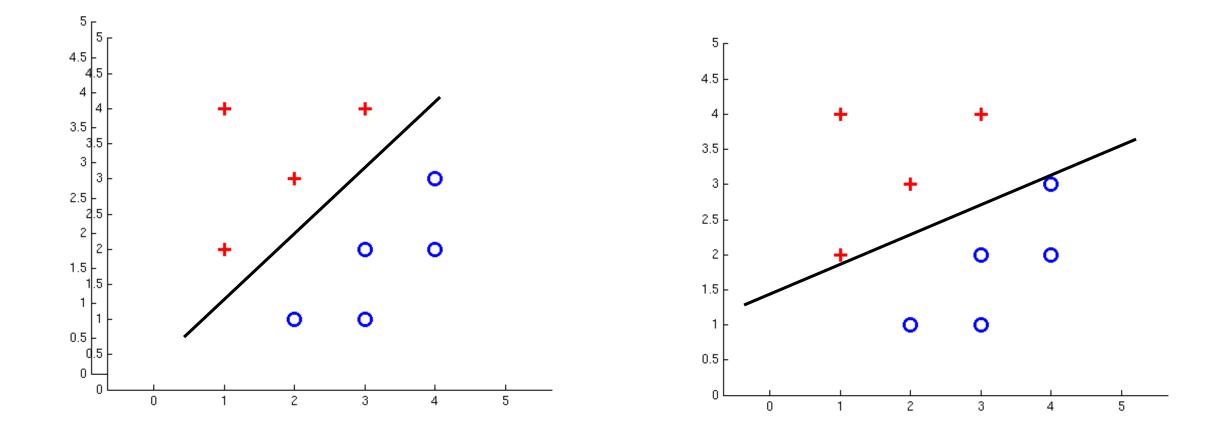
Maximum likelihood estimation:

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

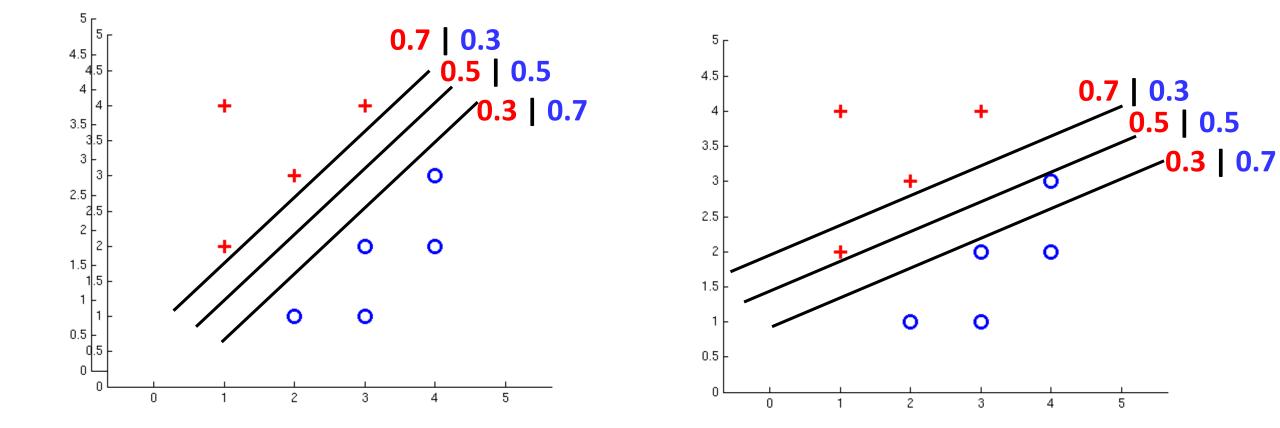
with: $P(y^{(i)} = +1 | x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$ $P(y^{(i)} = -1 | x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

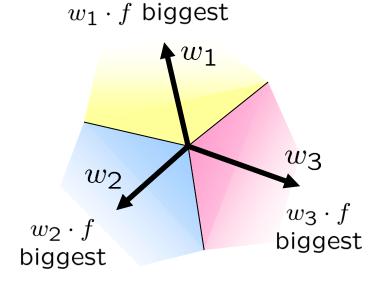


Separable Case: Probabilistic Decision – Clear Preference



Multiclass Logistic Regression

- Recall Perceptron:
 - A weight vector for each class: w_y
 - Score (activation) of a class y: $w_y \cdot f(x)$
 - Prediction highest score wins $y = \arg \max_{y} w_y \cdot f(x)$



How to make the scores into probabilities?

$$z_{1}, z_{2}, z_{3} \rightarrow \underbrace{\frac{e^{z_{1}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{2}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}}$$
original activations
softmax activations

Best w?

Maximum likelihood estimation:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

with:
$$P(y^{(i)} | x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Best w?

- Optimization
 - i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

Hill Climbing

Simple, general idea

- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $g(w_1, w_2)$
 - Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$
$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2)$$

Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with:
$$abla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$$

= gradient

Gradient in n dimensions

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \cdots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure: Gradient Ascent

• init
$$w$$

$$w \leftarrow w + \alpha * \nabla g(w)$$

- *α*: learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes w about 0.1 1 %

Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

$$g(w)$$

• init
$$w$$

• for iter = 1, 2, ...
 $w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)} | x^{(i)}; w)$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

• init w• for iter = 1, 2, ... • pick random j $w \leftarrow w + \alpha * \nabla \log P(y^{(j)} | x^{(j)}; w)$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

• init
$$w$$

• for iter = 1, 2, ...
• pick random subset of training examples J
 $w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$

How about computing all the derivatives?

 We'll talk about that in neural networks, which are a generalization of logistic regression