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Our Status in CSE57/3

= We’re done with Search and planning
= We are done with learning to make decisions

= Probabilistic Reasoning
= Diagnosis
Speech recognition

Tracking objects

= Robot mapping

= Genetics

= Error correcting codes
= ... lots more!




Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
= Onthe ghost: red

= 1o0r2away: orange

= 3 or 4 away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)
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[Demo: Ghostbuster — no probability (L12D1) ]



Video of Demo Ghostbuster

P
74 ghostbusters

GHOSTS REMAINING:
BUSTS REMAINING:
SCORE:

MESSAGES:

Here are the tructions about how to run it: Click the grid to guess and try t
o bust the ghost




Uncertainty

s General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor readings
or symptoms)

= Unobserved variables: Agent needs to reason about other
aspects (e.g. where an object is or what disease is present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for |
managing our beliefs and knowledge




Random Variables

= Arandom variable is some aspect of the world about which we
(may) have uncertainty

= R=lIsitraining?

= T=Isithotorcold?

= D =How long will it take to drive to work?
= L=Whereis the ghost?

= We denote random variables with capital letters

= Random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, o)

= Lin possible locations, maybe {(0,0), (0,1), ...}




Probability Distributions

= Associate a probability with each outcome

« Temperature: = Weather:
B P(W)
T | ey
il % [ sun 0.6
hot | 0-> @@ > O rain 0.1
cold | 0.5 3 N fog 03
| %@@ meteor 0.0




Unobserved random variables have distributions

P(T)
T P
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

A probability (lower case value) is a single number

Must have:

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

P(W = rain) = 0.1

dliu

Ve P(X =x2)>0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique




Joint Distributions

= A joint distribution over a set of random variables: X1, Xo,...Xn
specifies a real number for each assignment (or outcome):

P(X1=z1,Xo=xo,... Xy, = xn)

P(xq,z5,...27n)

= Must obey:
P(x1,2>,...2n) >0

- P(x1,z0,...2n) = 1

(z1,%2,...Tn)

P(T, W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3

= Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!




Events

= An eventis a set E of outcomes

P(E)Y= )  P(z1...zn)

 (@r.mn)eE
= From a joint distribution, we can calculate the

probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about are partial
assignments, like P(T=hot)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Probabilistic Models

= A probabilistic model is a joint
distribution over a set of random

variables Distribution over TW
T " P
= Probabilistic models: hot | sun 04
= (Random) variables with domains hot rain 0.1
= Assignments are called outcomes cold sun 0.2
= Joint distributions: say whether cold rain 0.3

assignments (outcomes) are likely
= Normalized: sum to 1.0

= |Ideally: only certain variables
directly interact

11



Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable

= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
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Independence
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Independence

= Two variables are independent if:
Vz,y : P(z,y) = P(x)P(y)

= This says that their joint distribution factors into a product two simpler
distributions

= Another form:

v,y P(ely) = P(x)

= We write:

X1Y

= Independence is a simplifying modeling assumption

= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?

14



Example: Independence?

P1(T,W)

T w P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

P>(T, W)

T W P
hot sun | 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6
rain 0.4
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Example: Independence

= N fair, independent coin flips:

P(X1) P(X5) P(Xp)
H 0.5 H 0.5 . H 0.5
T 0.5 T 0.5 T 0.5

N -




Conditional Independence
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Conditional Independence

= P(Toothache, Cavity, Catch)

= If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

» P(+catch | +toothache, +cavity) = P(+catch | +cavity)

= The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

= Catch is conditionally independent of Toothache given Cavity:
» P(Catch | Toothache, Cavity) = P(Catch | Cavity)

= Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily
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Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= In fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = P(b)

P(T,W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

— — 2
P(W:S|T=c):P(W s,T = c) —O_
P(T = c¢) 0.5

_——

=PW=s,T=c)+PW=r,T=c)
= 0.2+4+0.3 =0.5

= 0.4
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Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

s P(+x | +y) ?

m P(-X | +y) ?

] P(-y | +X) ?

20



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

s P(+x | +y) ?

2/.6=1/3

n P(-X | +y) ?
4/.6=2/3

] P(-y | +X) ?
.3/.5=.6

21



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)
W P
T W P
—~ > 0.8 hot sun 0.4
§ rain 0.2 hot rain 0.1
= P(W|T — COld) cold sun 0.2
R, cold rain 0.3
W P
sun 0.4
rain 0.6
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The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(z,y) < ran="7"

S Bl |
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The Product Rule

P(y)P(zly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W P D W
R > wet sun 0.1 wet sun
0.9

sun 0.8 ary el <:> dry il

ain 0.2 wet rain 0.7 wet rain

dry rain | 0.3 dry rain




Conditional Independence

= Unconditional (absolute) independence very rare (why?)

=« Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= Xis conditionally independent of Y given Z XJ—Y’Z

if and only if:
Vz,y,z 1 P(z,ylz) = P(z|z)P(y|z)

or, equivalently, if and only if
Vz,y,z : P(z|z,y) = P(z|z)
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Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining

26



Conditional Independence

= What about this domain: Pt

m Fire

= Smoke /ééélv@

s Alarm
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Bayes’'Nets: Big Picture
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Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as our
probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

= Hard to learn (estimate) anything empirically about more than a
few variables at a time

s Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)

= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these interactions are
specified




Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car

fanbelt
broken broke

starter
blockec broke
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Graphical Model Notation

= Nodes: variables (with domains)

= Can be assigned (observed) or unassigned
(unobserved)

s Arcs: interactions
= Indicate “direct influence” between variables

= Formally: encode conditional independence
(more later)

_ . _ Toothache @
= For now: imagine that arrows mean direct

causation (in general, they don’t!)

32



Example: Coin Flips

= N independent coin flips

= No interactions between variables: absolute independence
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Example: Traffic

= Variables:

= R:Itrains
= 1:There is traffic

= Model 1: independence

A4
= Whyisan agen@ model 2 better? @

= Model 2: rain causes traffic

34



Example: Traffic I

= Variables
T: Traffic

R: It rains

D: Roof drips
B: Ballgame

= L:Low pressure
= C: Cavity
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Example: Alarm Network

= Variables
= B: Burglary

\—/
L
—
e
———

1y

= A: Alarm goes off

= M: Mary calls
= J:John calls

= E: Earthquake!

36



Example: Alarm Network

= Variables
B: Burglary

N\ ——v"
o
—
—
———

A: Alarm goes off

1y

J: John calls

= M: Mary calls

E: Earthquake!

Burglary

37



Bayes’ Net Semantics

38



Bayes’ Net Semantics

= A set of nodes, one per variable X
= A directed, acyclic graph @ @

= A conditional distribution for each node

» A collection of distributions over X, one for each

combinatinn nf narantc’ ualiyeg
(Xl|a1...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
3

9



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:
n

P(z1,x2,...xzn) = || P(=z;|parents(X;))

1=1
Toothache @

P(+cavity, 4+catch, -toothache)
=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)

= Example:

40



Bayes’ Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values
P(X|ay...an)

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the releve =+ ~——~t+i-m=tormmmtlo o

n
P(z1,22,...2n) = || P(z;|parents(X;))
1=1




Probabilities in BNs

= Why are we guaranteed that setting

n
P(z1,x2,...xzn) = || P(=z;|parents(X;))

1 =1
results In a proper joint distribution?

= Chain rule (valid for all distributions): n

P(x1,20,...2n) = H P(x;lx1...c;—1)

= Assume conditional independences: =1
P(z;|Ty,...xi_1) = P(=z;|parents(X;))

- Consequence: n
P(z1,x2,...2n) = || P(z;|parents(X;))
1=1
= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies

42



Example: Coin Flips

P(X1) P(X3) P(Xn)
h 0.5 h 0.5 o h 0.5
t 0.5 t 0.5 t 0.5

P(h, h,t,h) = PhPHPHP(H)

Only distributions whose variables are absolutely independent can be
represented by a Bayes’ net with no arcs. 43



Example: Traffic

P(R)

+r | 1/4 P(4r, —t) = P(nP(-t|+r) = V4*1/4

-r 3/4

(=)

P(T|R)
+t 3/4
-t 1/4

+t 1/2
-t 1/2




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a | - 0.1
-a +j 0.05
-a -] 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

) ym— g

E | P(E) we =

+e | 0.002 @

-e | 0.998 ﬁ w
B | E| A | PA|BE)

+b | +e | +a 0.95

+b | +e | -a 0.05

+b | -e | +a 0.94

+b | -e -a 0.06

-b | +e | +a 0.29 P(M|A)P(J]|

b | +e | -a 0.71 A)P(A[B,E)

-b | -e | +a 0.001

-b | -e | -a 0.999 45




®

s Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T,R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2

46



Example: Reverse Traffic

= Reverse causality? 7 ;\
L | T . —
J /& F
P(T) ~
+t | 9/16 |
-t 7/16 P(T, R)
P(R’T) +r +t 3/16
+r -t 1/16
+t +r 1/3
P 23 -r +t 6/16
-r -t 6/16
-t +r 1/7
-r 6/7 47




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
» Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain (especially if
variables are missing)

= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(z;|zy, ... xi—1) = P(z;|parents(X;))

48



Bayes Rule

49



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

That’s my rule! }

« Dividing, we get:

P(aly) = Y9 poy

P(y)
= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

= In the running for most important Al equation! 50


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)
P (effect)

P(causeleffect) =

= Example:

= M: meningitis, S: stiff neck

P(+m) = 0.0001 xample
P(—|_3| + m) =08 r givens
P(+s| —m) =0.01_
P(tm| 4 5) = DSl EmIPHm) P(+s|+m)P(+m) B 0.8 x 0.0001
e P(+s) " P(+s|+m)P(+m) + P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why?

91



Quiz: Bayes’ Rule

= Given: PDIW)
P(W) D W P
R D wet sun 0.1
un 08 dry sun 0.9
ain 02 wet rain 0.7
dry rain 0.3

s« Whatis P(W | dry) ?



Quiz: Bayes’ Rule

= Given: PDIW)
P(W) D W P
R D wet sun 0.1
un 08 dry sun 0.9
ain 02 wet rain 0.7
dry rain 0.3

s« Whatis P(W | dry) ?

P(sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72
P(rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06
P(sun|dry)=12/13

P(rain|dry)=1/13



Ghostbusters, Revisited

= Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R=vyellow | G=(1,1)) =0.1

L 0.17 | 0.10 || 0.10
= We can calculate the posterior distribution ..-
P(G|r) over ghost locations given a reading
using Bayes’ rule: 0.17 4 0.10

P(g|r) o< P(r|g)P(g)

54
[Demo: Ghostbuster — with probability (L12D2) ]



Video of Demo Ghostbusters with Probability

T
Ghostbusters, Revisited

= |Let’s say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let’s say this is uniform n
= Sensor reading model: P(C | G)

= Given: we know what our sensor{

e —
Command Prompt - python demo.py L= 11— |-‘5-l

™ C= CO|OF measured at (1’1) t:c;;:.::;:r:hzhghinﬂtrur.tinn: about how to run it: Glick the grid to guess and try t|P

current dir:
. Eg P(C = ye”ow | G:(l,l)) — 01 Traceback (most recent call last):
File “demo.pvy"”, line 114, in <module>
play(commands [int{inp) 1
File “demo.py", line 26, in play
pud’ D>
>:\Python2?7\1lib\subprocess. ', line 493, in call
» ¥xkuar wait)
Y"C:\Python2\1lib\subproces » line 679, in __init__
ad, errurite)
:\Python2?7\1lib\subprocess.py', line 896, in _execute_child
startupinfo)
WindowsError: [Error 2] The system cannot find the file specified

C:\Python2?7\new_wvorkspace>python demo.py
Which lecture do you want [1,. 2, 3, 5, 6, 7, 8, 9, 18, 11, 12, 13, 17, 18, 19, 2
11712
Here are all the demos for lec 12 :
1 : Ghos buster with no probability
2 : Gh buster with probability
: Ghost buster with UPI
Enter any index to play any demo and up to go to the upper menu
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Uncertainty Summary

. i P(z,y)
o P(zly) =
Conditional probability (zy) P(y)
= Product rule P(z,y) = P(z|y)P(y)
= Chain rule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3/X1,X2)...

n
]—l l)(‘\'ll'\’l ------ \’t—l)
i=1

[ X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

= X andY are conditionally independent given Z if and only if:
Va,y,z . P(x,y|z) = P(z|z) P(y|z)

N\

X1Y|Z

BN lecture
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Bayes’ Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values
P(X|ay...an)

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the releve =+ ~——~t+i-m=tormmmtlo o

n
P(z1,22,...2n) = || P(z;|parents(X;))
1=1




