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Our Status in CSE573

▪ We’re done with Search and planning 
▪ We are done with learning to make decisions 

▪ Probabilistic Reasoning 
▪ Diagnosis 
▪ Speech recognition 
▪ Tracking objects 
▪ Robot mapping 
▪ Genetics 
▪ Error correcting codes 
▪ … lots more!
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Inference in Ghostbusters

▪ A ghost is in the grid 
somewhere 

▪ Sensor readings tell how 
close a square is to the 
ghost 
▪ On the ghost: red 
▪ 1 or 2 away: orange 
▪ 3 or 4 away: yellow 
▪ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

▪  Sensors are noisy, but we know P(Color | Distance) 

[Demo: Ghostbuster – no probability (L12D1) ]
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Video of Demo Ghostbuster
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Uncertainty

▪ General situation: 

▪ Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor readings 
or symptoms) 

▪ Unobserved variables: Agent needs to reason about other 
aspects (e.g. where an object is or what disease is present) 

▪ Model: Agent knows something about how the known 
variables relate to the unknown variables 

▪ Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge

5



Random Variables

▪ A random variable is some aspect of the world about which we 
(may) have uncertainty 

▪ R = Is it raining? 
▪ T = Is it hot or cold? 
▪ D = How long will it take to drive to work? 
▪ L = Where is the ghost? 

▪ We denote random variables with capital letters 

▪ Random variables have domains 

▪ R in {true, false}   (often write as {+r, -r}) 
▪ T in {hot, cold} 
▪ D in [0, ∞) 
▪ L in possible locations, maybe {(0,0), (0,1), …}
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Probability Distributions

▪ Associate a probability with each outcome 

▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather:  

7



 Shorthand notation: 

OK if all domain entries are unique 

Probability Distributions

▪ Unobserved random variables have distributions 

▪ A distribution is a TABLE of probabilities of values 

▪ A probability (lower case value) is a single number 

▪ Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0
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Joint Distributions

▪ A joint distribution over a set of random variables: 
 specifies a real number for each assignment (or outcome):  

▪ Must obey: 

▪ Size of distribution if n variables with domain sizes d? 

▪ For all but the smallest distributions, impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Events

▪ An event is a set E of outcomes 

▪ From a joint distribution, we can calculate the 
probability of any event 

▪ Probability that it’s hot AND sunny? 

▪ Probability that it’s hot? 

▪ Probability that it’s hot OR sunny? 

▪ Typically, the events we care about are partial 
assignments, like P(T=hot) 

 

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Probabilistic Models

▪ A probabilistic model is a joint 
distribution over a set of random 
variables 

▪ Probabilistic models: 
▪ (Random) variables with domains  
▪ Assignments are called outcomes 
▪ Joint distributions: say whether 

assignments (outcomes) are likely 
▪ Normalized: sum to 1.0 
▪ Ideally: only certain variables 

directly interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Distribution over T,W
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Probabilistic Models

▪ Models describe how (a portion of) the world works 

▪ Models are always simplifications 
▪ May not account for every variable 
▪ May not account for all interactions between variables 
▪ “All models are wrong; but some are useful.” 

     – George E. P. Box 

▪ What do we do with probabilistic models? 
▪ We (or our agents) need to reason about unknown 

variables, given evidence 
▪ Example: explanation (diagnostic reasoning) 
▪ Example: prediction (causal reasoning)
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Independence
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▪ Two variables are independent if: 

▪ This says that their joint distribution factors into a product two simpler 
distributions 

▪ Another form: 

   

▪ We write:  

▪ Independence is a simplifying modeling assumption 

▪ Empirical joint distributions: at best “close” to independent 

▪ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence
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Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

15



Example: Independence

▪ N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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Conditional Independence
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Conditional Independence

▪ P(Toothache, Cavity, Catch) 

▪ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache: 
▪ P(+catch | +toothache, +cavity) = P(+catch | +cavity) 

▪ The same independence holds if I don’t have a cavity: 
▪ P(+catch | +toothache, -cavity) = P(+catch| -cavity) 

▪ Catch is conditionally independent of Toothache given Cavity: 
▪ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

▪ Equivalent statements: 
▪ P(Toothache | Catch , Cavity) = P(Toothache | Cavity) 
▪ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 
▪ One can be derived from the other easily
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Conditional Probabilities

▪ A simple relation between joint and conditional probabilities 
▪ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)
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Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

▪ P(+x | +y) ? 

▪ P(-x | +y) ? 

▪ P(-y | +x) ? 

 
20



Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

▪ P(+x | +y) ? 

▪ P(-x | +y) ? 

▪ P(-y | +x) ? 

 

.2/.6=1/3

.4/.6=2/3

.3/.5=.6
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Conditional Distributions

▪ Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution
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The Product Rule

▪ Sometimes have conditional distributions but want the joint
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The Product Rule

▪ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06
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Conditional Independence

▪ Unconditional (absolute) independence very rare (why?) 

▪ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments. 

▪ X is conditionally independent of Y given Z 

      if and only if: 

      or, equivalently, if and only if
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Conditional Independence

▪ What about this domain: 

▪ Traffic 
▪ Umbrella 
▪ Raining
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Conditional Independence

▪ What about this domain: 

▪ Fire 
▪ Smoke 
▪ Alarm
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Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

▪ Two problems with using full joint distribution tables as our 
probabilistic models: 
▪ Unless there are only a few variables, the joint is WAY too big to 

represent explicitly 
▪ Hard to learn (estimate) anything empirically about more than a 

few variables at a time 

▪ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities) 
▪ More properly called graphical models 
▪ We describe how variables locally interact 
▪ Local interactions chain together to give global, indirect 

interactions 
▪ For about 10 min, we’ll be vague about how these interactions are 

specified

29



Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car
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Graphical Model Notation

▪ Nodes: variables (with domains) 
▪ Can be assigned (observed) or unassigned 

(unobserved) 

▪ Arcs: interactions 
▪ Indicate “direct influence” between variables 
▪ Formally: encode conditional independence 

(more later) 

▪ For now: imagine that arrows mean direct 
causation (in general, they don’t!)
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Example: Coin Flips

▪ N independent coin flips 

▪ No interactions between variables: absolute independence

X1 X2 Xn
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Example: Traffic

▪ Variables: 
▪ R: It rains 
▪ T: There is traffic 

▪ Model 1: independence 

▪ Why is an agent using model 2 better?

R

T

R

T

 

▪ Model 2: rain causes traffic 
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▪ Variables 
▪ T: Traffic 
▪ R: It rains 
▪ L: Low pressure 
▪ D: Roof drips 
▪ B: Ballgame 
▪ C: Cavity

Example: Traffic II
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Example: Alarm Network

▪ Variables 
▪ B: Burglary 
▪ A: Alarm goes off 
▪ M: Mary calls 
▪ J: John calls 
▪ E: Earthquake!
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Example: Alarm Network

▪ Variables 
▪ B: Burglary 
▪ A: Alarm goes off 
▪ M: Mary calls 
▪ J: John calls 
▪ E: Earthquake!

Burglary Earthqk

Alarm

John 
calls

Mary 
calls 37



Bayes’ Net Semantics
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Bayes’ Net Semantics

▪ A set of nodes, one per variable X 

▪ A directed, acyclic graph 

▪ A conditional distribution for each node 

▪ A collection of distributions over X, one for each 
combination of parents’ values 

▪ CPT: conditional probability table 

▪ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Probabilities in BNs

▪ Bayes’ nets implicitly encode joint distributions 

▪ As a product of local conditional distributions 

▪ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together: 

▪ Example:

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity) 40



Bayes’ Net Representation

▪ A directed, acyclic graph, one node per random variable 

▪ A conditional probability table (CPT) for each node 

▪ A collection of distributions over X, one for each combination of 
parents’ values 

▪ Bayes’ nets implicitly encode joint distributions 

▪ As a product of local conditional distributions 

▪ To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

A1

X

An
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Probabilities in BNs

▪ Why are we guaranteed that setting 

    results in a proper joint distribution?   

▪ Chain rule (valid for all distributions):  

▪ Assume conditional independences:  

      ! Consequence: 

▪ Not every BN can represent every joint distribution 

▪ The topology enforces certain conditional independencies
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Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)
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Example: Traffic

R

T

+r 1/4

-r 3/4

 +r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

P(+r)P(-t|+r) = ¼*1/4 
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|
A)P(A|B,E)
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Example: Traffic

▪ Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Example: Reverse Traffic

▪ Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Causality?

▪ When Bayes’ nets reflect the true causal patterns: 

▪ Often simpler (nodes have fewer parents) 
▪ Often easier to think about 
▪ Often easier to elicit from experts 

▪ BNs need not actually be causal 

▪ Sometimes no causal net exists over the domain (especially if 
variables are missing) 

▪ E.g. consider the variables Traffic and Drips 
▪ End up with arrows that reflect correlation, not causation 

▪ What do the arrows really mean? 

▪ Topology may happen to encode causal structure 
▪ Topology really encodes conditional independence

48



Bayes Rule
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Bayes’ Rule

▪ Two ways to factor a joint distribution over two variables: 

▪ Dividing, we get: 

▪ Why is this at all helpful? 

▪ Lets us build one conditional from its reverse 
▪ Often one conditional is tricky but the other one is simple 
▪ Foundation of many systems we’ll see later (e.g. ASR, MT) 

▪ In the running for most important AI equation!

That’s my rule!
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Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability: 

▪ Example: 
▪ M: meningitis, S: stiff neck 

▪ Note: posterior probability of meningitis still very small 
▪ Note: you should still get stiff necks checked out!  Why?

Example 
givens
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Quiz: Bayes’ Rule

▪ Given: 

▪ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3
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Quiz: Bayes’ Rule

▪ Given: 

▪ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

P(sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72 
P(rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06 
P(sun|dry)=12/13 
P(rain|dry)=1/13 
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Ghostbusters, Revisited

▪ Let’s say we have two distributions: 
▪ Prior distribution over ghost location: P(G) 

▪ Let’s say this is uniform 
▪ Sensor reading model: P(R | G) 

▪ Given: we know what our sensors do 
▪ R = reading color measured at (1,1) 
▪ E.g. P(R = yellow | G=(1,1)) = 0.1 

▪ We can calculate the posterior distribution 
P(G|r) over ghost locations given a reading 
using Bayes’ rule:

[Demo: Ghostbuster – with probability (L12D2) ]
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Video of Demo Ghostbusters with Probability
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Uncertainty Summary
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BN lecture



Bayes’ Net Representation

▪ A directed, acyclic graph, one node per random variable 

▪ A conditional probability table (CPT) for each node 

▪ A collection of distributions over X, one for each combination of 
parents’ values 

▪ Bayes’ nets implicitly encode joint distributions 

▪ As a product of local conditional distributions 

▪ To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:
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