CSE 573:
Artificial Intelligence

Hanna Hajishirzi
Bayes Nets

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer




Our Status in CSE57/3

= We’re done with Search and planning
= We are done with learning to make decisions

= Probabilistic Reasoning
= Diagnosis
Speech recognition

Tracking objects

= Robot mapping

= Genetics

= Error correcting codes
= ... lots more!




Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
= Onthe ghost: red

= 1o0r2away: orange

= 3 or 4 away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(green | é)

(%3 ;

P(red | 3) P(orange | 3) P(yellow | 3)
0.05 0.15 ( 0.57)
N

\+6emo: Ghostbuster — no probability (L12D1) ]



Video of Demo Ghostbuster

P
74 ghostbusters

GHOSTS REMAINING:
BUSTS REMAINING:
SCORE:

MESSAGES:

1
Here are the
o bust the ghost




Uncertainty

s General situation: /

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor readings
or symptoms)

Unobserved vari s: Agent needs to reason about other
2. where an object is or what disease is present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for |
managing our beliefs and knowledge




Random Variables

= Arandom variable is some aspect of the world about which we
(may) have uncertainty

s it raining?
. s it hot or cold? %
= D =How long will it take to drive to work?

= L=Whereis the ghost?

——

= We denote random variables with capital letters

= Random variables have domains

a R0 {true, false} (often write as {+r, -r})
@‘ {hot, cold}
n in [O, OO)
= Lin possibleWﬂaybe {(0,0), (0,1), ...}
C o




Probability Distributions

= Associate a probability with each outcome

= [emperature: « Weather:

PRLATTT P(W)

= // / i P
LT
@@ i = /// sun 06 ¥
> rain 0.1 /-
o fog 03 | -

N %@@ \meteor C(E)D/




Probability Distributions/

Unobserved random variables have distributions

__=P(T) == PW)<
T P W P
hot | 0.5 sun 0.6
cold | 0.5 | e———#rain 0.1
___ﬂ—_—éjf— fog \ 0.3 e
meteor 0.0

A distribution is a TABLE of probabikities of values

A probability (lower case value) is a single number

Must have:

P(W = rain) = 0.1

Ve P(X =x2)>0

dliu

——

Shorthand notation:

P(hot) = F@ ,

P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique




Joint Distributions

= A joint distribution over a set of random variables:

specifies a real number for each assignment (or outcome):

(X1 =1, X0 =x2,... Xn = an)
P(xq,xo,...2n)
= Must obey: /\
f($1,$2,...$n) > 9

- P(x1,z0,...2n) = 1
(z1,72,...T1)

s Size of distribution if n \ables with domain sizes d?

= For'gll but t))imalle%irstrlbutlons mpr%l | to wrlteo

A)x < q =

X1, X2,..

O

. Xn

T W P
{hot | sun | 04)

) rain 0:1
/CEOJQ sun 0.2
\Cé;d\\ rain | 0.3




Events

= An eventis a set E of outcomes
—_—

P(E) > P(xy...zn)

— (21..0)ER
= From a joint distributiéf, we can calculate the
probability of any event P(T, W)
= Probability that it’s hot AND sunny? T W P
—a
= Probability that it’s hot? - ﬂbOt \\ rain 0 14//
= Probability that it’s hot OR sunny? O\ 5 cotd ¢ >un ) 0-2¢/
cold rain 0.3

m %pically, the eWout S)re‘;;ltia/
assignments, li (T=hot)

10



Probabilistic Models

= A probabilistic model is a joint
distribution over a set of random

variables Distribution over TW
o T W P
s Probabilistic m.odels. | | Aoy D 04, |
= (Random) variables with domains ~Tot rain 0.1
= Assignments are caltec=anteames- cold | sun 0.2
= Joint distributions: say whether cold rain 0.3

assignments (outcomes) are likely
= Normalized: sum to 1.0

= |Ideally: only certain variables
directly interact

11



Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are usefu@’\
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Exampleexplanation (diagnostic reasoning)
« Examplepredictiomcausal reasoning)

12



Independence

13



Independence

= Two variables are independent if:

Gr,y) P(e,y) = P()P()

= This says that their joint distribution factors intola product two simpler
distributions

= Another form:

Vz,y : P(zly) = P(a
= We write: 6 . -
X11Y
= Independence Wﬁgﬁﬂodeling assumption

= Empirical joint distribeters—at=¥E5t " close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}? X

14
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/ hot
/ ‘
hot

Example: Independence?

@/ Sa/c(g PCT/

(T, W)

sun.

0.4

raim

0.1

Fat

cold

SuR

cold

rain

0.3

T P
hot o5
—cold |

P>(T, W)

H TG un
*hot= 0.3.4"
~hot rain 0.2
~cold sun 0.3 /
-cold rain 0.2 /

PLTN’C\&

)< 0
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Example: Independence

= N fair, independent coin flips:

v~ e
P(X1) P(X2)
%Q_: H 0.5

O ». » »
rjos) ST B o
3 2




Conditional Independence

17



Conditional Independence

= P(Toothache, Cavity, Catch)

—

—_—

= If | have a cavity, the probability that the probe catches in it
doesn' nd on whether | have a tootha /
= P +tooW= P(+catch |
= The same independence holds if | don’t htM
ity

= P(+catch | +t@£hache, -cavity) = P(+catch

. Qcm conditionally independent 01%;% given Cavity:

.%tch | Toothache, Cavity) = P(Catch | Cavity)

= Equivalent statements; yal
- P(Toothaghe | Cateh, Cavity) = P(Toothache | Cavity)
/ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily

18



Conditional Probabilities

= Asimple relation between

joint and conditional probabilities

= In fact, this is taken as the definition of a conditional probability

"
P(alb) = P(a,b)

% P(b)e—
P(T,W) /

T W
hot SURm 0.4

N—

hot rain 0.1

cold @ 0.2
‘ cold rain 0.3
/ %

P(a)

P(W =s|T =c¢) =

P(W=s,T=c¢c) |

(R o

_P(W@g_c)JrP(WJ

=0.24+03 =0.5




Y - 3{_(§/Quiz: Conditional Probabilities

T = Plgx) +y)? PGX 5 ) [ 2

— 9

X Y P
2
s L
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(-y | +x)?

20



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

s P(+x | +y) ?

2/.6=1/3

n P(-X | +y) ?
4/.6=2/3

] P(-y | +X) ?
.3/.5=.6

21



Conditional Distributions

f—

= Conditional distributions are probability distributions over

some variables given fixed values of others

Conditional Distributions

_ P@|T = hot)
W P :

~

sun

0.8

e

rain

0.2

Iy
P(W|T = cold)

\»

W P
sun 0.4
rain 0.6

P(s e |

-P(Y"’/““' Wt D

Joint Distribution

avd
P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

22



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(aly) = P(z,y) > rew="57
—_

S Bl |

23



| The Product Rule :
P(y)Paly) = P(a,y)

|

« Example: _ l
. PéIW) q (j(D,V;D
D

P(W) D W P W P
" 5 1~ wet @ 0_1/ g wet sun
0.9 .
un 0.8 / L dry sun <:> dry sun
: wet rain 0.7 wet rain
rain 0.2
dry rain | 0.3 dry rain

/(\ P(NQ{,L;M) FCSW‘“\) 24



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

_ « Conditional independence is our most basic and robust form of
~— Yknowledge about uncertain environments. /

_—F

= Xis conditionally independeEnDt(o;‘LY)gg/e\%Z): f(%\l)%xﬂ%

if and only if:
Va,y, 2 P(x,yl2) = P(z|2) P(y]2) ‘L]

or, equivalently, if and only if P (gﬁ \ﬁ/ 2-) ;P(:( l z )

Vi, y, 2z P(x|z,y) = P(z|z)

o
-~

25



Conditional Independence

= What about this domain:
=2~y Araffic \ l l ‘ Z§

S T U (R

26



s
.

Conditional Independence

= What about this domain: | \Qgﬁ@\x
‘7- Fire @
/ = Smoke % N
//r\ Alarm Spnv he_ EL.)'e(\:'o\ /éﬁ@ :&@ k/ -

S volte —2 AIMM

27
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Announcements

= Paper report: Due today
s PS3: Due March 1st

Remaining:

e HW2

e PS4

« Final Project

29



Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= Modeling assumw

= Independence
= Conditional independence

30



Conditional Independence

= Unconditional (absolute) independence very rare (why?/

=« Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= Xisconditionally independent of X.given Z__ \ ’ Y’Z
if and only if: /
Va,y,2 : Pz, = P(afg) (y@
PR QP

or, equivalently, if and gnly if
Vz,y,z 1 P(z|z,§) = P(z|z)

31



Conditional Independence

= What about this domain: U
= Traffic T-—[—L /R

= Umbrella
= Raining

32



The Chain Rule in Probability Distributions
PR - Y

= More generally, can always write any joint distribution as an P(8)
incremental product of conditional distributions (ot ;€2 ;%)

= % % =
;P(@#U_gvxi) :}@1)5@ Y P (esler, 22) W"%

P(x1,zo, .. gz) ﬂ@P(wixl C T 1)
/ i) Pz \31) POr31XX2)

AL,

33



Conditional Independence and the Chain Rule

. Chain rule: /@gl,xz,...xn — P(X1)P(X5|X1)P(X3|X1, X5) . ..

« Trivial decomposition: Qd,w\ /T)

/QP(Traffic, Rain, Umbrella) =

Z
/P(Rain (Traffic|Rain) ”(Umbrella|Rain, Traffic)
~——

\___,_.——-
« With assumption of conditional mde%ezdenc\ *87
R )

--oreHa)
'r@mbrellaﬂ?ai

= We c%represent joint distributions by multiplying these simpler local distributions.
= Bayes’nets / graphical models help us express conditional independence assumptions 34

P(Trafflc Rair




Bayes’'Nets: Big Picture

35



= Two problems with using full joint distribution tables as our
probabilistic models:

Unless there are only a few variables, the joint is WAY too big to
represent explicitly

Hard to learn (estimate) anything empirically about more than a
few variables at a time

s Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions

(conditional probabilities)

——— ]

More properly called graphical models 4‘
We describe how variab i C

Local interactions chain together to give global, indirect
interactions

For about 10 min, we’ll be vague about how these interactions are
specified




Example Bayes’ Net: Insurance

37



Example Bayes’ Net: Car

fanbelt
broken broke

starter
blogkec broke

38



Graphical Model Notation

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved) ~

s Arcs: interactions
= Indicate “direct influence” between variables

= Formally: encode conditional independence
(more later)

_ . _ Toothache
= For now: imagine that arrows mean dlr%

causation (in general, they don’t!)

39



Example: Coin Flips

= N independent coin flips

® @ - ®

= No interactions between variables: absolute independence

40



Example: Traffic

= Variables:

= R:Itrains
= 1:There is traffic

= Model 1: independence _ _
= Model 2: rain causes traffic

= Whyisan ag@ model 2 better? @

41



Example: Traffic I

= Variables
T: Traffic

= R:ltrains
= L: Low pressure @
= D: Roof drips

B: Ballgame

42



= Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J:John calls
= E: Earthquake!

Example: Alarm Network

\——/
o}
—
—
f—

758

43



Example: Alarm Network

= Variables
B: Burglary

N\ ——v"
o
—
—
———

A: Alarm goes off

1y

J: John calls

= M: Mary calls

E: Earthquake!

Burglary

44



Bayes’ Net Semantics

45



Bayes’ Net Semantics

= Aset of nodes, one per variable X

= Adirected, acyclic graph

= A conditional distribution for each node

» A collection of distributions over X, one for each
Combinatinn(nf narantc’ valyeg

: ai...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
4

c S 5

6




= Bayes’ nets implicitly encode joint distributions

T -90) < T\ plaiba-x
é____/-D/

= As a product of local conditional distributions

)“ = To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

P(+cavity, , -toothache)
=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity) 47
T . %




Bayes’ Net Representation

= A directed, acyclic grapb, one node per random variable

e ——

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of

parents’ values
P(X|ay...an)
v—__—ﬂ

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the releve =+ ~——~t+i-m=tormmmtlo o

n
P(z1,22,...2n) = || P(z;|parents(X;))

/ﬁ‘ i=1




Probabilities in BNs =l

= Why are we guaranteed that setting

n
P(z1,z2,...xzn) = || P(=z;|parents(X;)

1 =1
results In a proper joint distribution?

= Chain rule (valid for all distributions):

= Assume conditional independences:

L —

C; Consequenrsa:

)

mn
P(x1,20,...2n) = H P(x;lx1...c;—1)
i=1 J—
P(aifwy, ... 2 1) = P(a;|parents(X;))
& )

n
P(z1,x2,...2n) = || P(z;|parents(X;))
i=1

Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies

49



Example: Coin Flips

D ®

()

P(Xn)

P(X1) P(X5)
h 0.5 h 0.5
t 0.5 t 0.5

h

0.5

t

0.

&

.

?[,X\'- X' )= IDCX() PCSCZJ -

P(h,h,t,h) = POPHOPOPH)

Only distributions whose variables are absolutely independent can be

represented by a Bayes’ net with no arcs.

50



Example: Traffic

PGH) P(=tlev )

P(R) LNV
+r 1/4 P(—t’l:, —\t) = P(+r)P(-t|+r) = %*1/4
-r 3/4

V-4

3/4

P(T|R)
&
>
&

1/2
1/2




Example: Alarm Network

B P(B)
+b | 0.001
-b | 0.999

Burglary

A J P(J]|A)
+a | 4 0.9
+a | 0.1
-a +j 0.05
-a | A 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002

-e | 0.998

B | E| A | PAIBE)
+b | +e | +a/ 0.95

tb | +e | -at 0.05 )
+tb | -e | +a/| 094 [
+b | -e | -a' 0.06

b | +e | +a 0.29 )
b | +e | -a 071 |
-b | -e | +a 0.00Q

b | -e | -a 0.999

52



Example: Traffic

s Causal direction

P(R)
+r 1/4
-r 3/4

P(T|R)
+r +t 3/4
-t 1/4

-r +t 1/2
-t 1/2 53




Example: Reverse Traffic

= Reverse causality?

P(T)

9/16

7/16

>
—

1/3

2/3

1/7

6/7

o4



Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)

» Often easierteathinlabout

= Often easier to elicit from experts
R ————.

= BNs need not actually bg:ﬂusa-l-

= Sometimes no causal net exists over the domain (especially if

variables are missing)
= E.g. consider the variables @l S
= End up with arrows that reflect correlation, not causation

TN
= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(z;|zy, ... xi—1) = P(z;|parents(X;))

95
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(,y) = P(aly) P(y) = P(ylz) P(x)

& - & >
= Dividing, we get:
w<P(yé /
P(zly) &= )%(w)

| P(y?
= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple

= Foundation of many systems we’ll see later (e.g. ASR, MT)
C _ —e® -

= In the running for most important Al equation! 57
e —————



http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

___—7P(causeleffect) = P (effoct)

= Example:

= M: meningitis, S: stiff neck
P(+m)S=0.0001> |
& P(Fs[+m) =08
P(+s| —m) =0.01_

P(+s| +m)P(+m) @%

P(+m|+s) = P(s| 4 m) Ptm) _ ; = -
P(+s| +m)P(+m) + P(4+s| —m)P(—m) 0.8 x 0.0001 4 0.01 x 0.999
= Note: E:erior arobabitity of men'Cgitis still very smally  e—Z __° ., = >
Qe

(_ ~—
= Note: yourshould still get stiff necks checked out! Why?

\\__—/7

Example
givens

58
—



Quiz: Bayes’ Rule

= Given: PDIW)
P(W) D W P
R D wet sun 0.1
un 08 dry sun 0.9
ain 02 wet rain 0.7
dry rain 0.3

s« Whatis P(W | dry) ?



Quiz: Bayes’ Rule

= Given: PDIW)
P(W) D W P
R D wet sun 0.1
un 08 dry sun 0.9
ain 02 wet rain 0.7
dry rain 0.3

s« Whatis P(W | dry) ?

P(sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72
P(rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06
P(sun|dry)=12/13

P(rain|dry)=1/13



Ghostbusters, Revisited

= Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R=vyellow | G=(1,1)) =0.1

L 0.17 | 0.10 || 0.10
= We can calculate the posterior distribution ..-
P(G|r) over ghost locations given a reading
using Bayes’ rule: 0.17 4 0.10

P(g|r) o< P(r|g)P(g)

61
[Demo: Ghostbuster — with probability (L12D2) ]



Video of Demo Ghostbusters with Probability

T
Ghostbusters, Revisited

= |Let’s say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let’s say this is uniform n
= Sensor reading model: P(C | G)

= Given: we know what our sensor{

e —
Command Prompt - python demo.py L= 11— |-‘5-l

™ C= CO|OF measured at (1’1) t:c;;:.::;:r:hzhghinﬂtrur.tinn: about how to run it: Glick the grid to guess and try t|P

current dir:
. Eg P(C = ye”ow | G:(l,l)) — 01 Traceback (most recent call last):
File “demo.pvy"”, line 114, in <module>
play(commands [int{inp) 1
File “demo.py", line 26, in play
pud’ D>
>:\Python2?7\1lib\subprocess. ', line 493, in call
» ¥xkuar wait)
Y"C:\Python2\1lib\subproces » line 679, in __init__
ad, errurite)
:\Python2?7\1lib\subprocess.py', line 896, in _execute_child
startupinfo)
WindowsError: [Error 2] The system cannot find the file specified

C:\Python2?7\new_wvorkspace>python demo.py
Which lecture do you want [1,. 2, 3, 5, 6, 7, 8, 9, 18, 11, 12, 13, 17, 18, 19, 2
11712
Here are all the demos for lec 12 :
1 : Ghos buster with no probability
2 : Gh buster with probability
: Ghost buster with UPI
Enter any index to play any demo and up to go to the upper menu
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Bayes’ Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values
P(X|ay...an)

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the releve =+ ~——~t+i-m=tormmmtlo o

n
P(z1,22,...2n) = || P(z;|parents(X;))
1=1




