CSE 573: Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning Il

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Announcements

o Project Proposal: due today
o Paper report: due Feb. 24th

0 PS3: Due March 1st
© Remaining: HW2, P54, Final project

Mid-quarter Review Feedback: Thanks!

© What has helped you for learning?

o Lectures/recordings/Markups/slides/Programming assignments

© Workload - different range: good /too much
O Issues: online ® Workload

O Improvements:
o TAs: Release grades faster, Private meetings at TA office hours
o How can students form groups while everyone is online? HW2/Informal slack channel?

o Presentation: make cursor visible, More explanations after some students take quiz
questions correctly

o Content: More practical examples/More pseudo code in class

— e ———

The Story So Far: MDPs and RL

Know Offline Solution

4 Goal Technique A
Compute V*, Q*, m* _\./il_lfe_/ policy iteration
Evaluate a fixed policy @ Policy evaluation
\ —— /
Unknown MDP: ,’ Unknown MDP: I\@
/Goal Technique Goal Technique A

Compute V*, Q*, *

Evaluate a fixed policy

o

VI/PI on approx. MDP

PE on approx. MDP

)

-

Compute V*, Q*, m*

Evaluate a fixed policy i

/

Q—IearningQ/‘

Value Learning

S

=

J

Q-Learning !

© Q-Learning: Sample-basw
S; “@F,g@s, a,s’) [@s, a,s) + ~ max 0u(5. a)] /

<
o Learn Q(s,a) values as you go /
o Receive a sample (s,a,",1))

o Consider your old estimate: Q(s,a)
5 %rlger policy

sample = R(s,a,s’) +vymaxQ(s, a
A } a’ evaluation!

o Incorporate the new estimate into a running average:

Q(s,a) — (1 — a)Q(s,a) + () [sample]
[C R

o Consider your new sample estimate:

R

Q-Learning Properties

K (A)
© Amazing result: Q-learning converges to optimal policy -- even if =
you're acting suboptimally!
o This is called off-policy learning {{ [

o Caveats: 63 (5)6&) H a {e

_#) © You have to explore enough

o You have to eventually make the learning rate

small enough /
O ... but not decrease it too quickly
o Basically, /i%li/mit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

b7 7

GRAND

|
i
GO

How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
o Every time step, flip a coin
o With (small) probability ¢, act randomly
o With (large) probability 1-¢, act on current policy

© Problems with random actions?
© You do eventually explore the space, but keep
thrashing around arning is done
© One solution: lower ®sover time
o Another solution: exploration functions

Exploration Functions

© When to explore?

O Random actions: explore a fixed amount

°B whose badness is not
~(yzet) established, eventually stop exploring

o Exploration function

o Takes a value estimate u and a visit count n, and

i@@ =u+k/n__

Regular Q-Update: Q(s,a) «a R(s,a,s") +ymaxQ(s', a)
a_—

@) Note .S ’e) t ”bonnc” harl +n ctatoc that load +a 11mlnay ctatoe ac wralll
]\Wﬂ)d‘?ﬁé)&@-‘ﬁﬁ]?fate: Q(s,a) < R(s,a,s") +~ max (Q(s',d"), N(s',d"))
a
A

returns an optimistic utility, e.g.

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Q-Learn Epsilon Greedy

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Stop || Skip 30000 steps \ Reset speed counter ResetQ

Runil Skip 1000000 step
216

-1.06716481975312
-

average speed

? = \
alpha- || alpha++

gam++

eps—
Y -

& Console &3
11:31 AM

- Ll

ol L S

BotQLearning [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:31:20 AM)

2

Video of Demo Q-learning — Exploration Function — Crawler

Rur Skip 1000000 step Stop Skip 30000 steps Resel speed counter ResetQ
o PEETET o
{ |® Pydev | 5" Team

&

eps eps++ gam game+ alpha | alpha++ J

I Console 33

BotQLeamningEXP [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:36:12 AM)

® | &)

G - At ee D3M

9/27/2012

Regret

Even if you learn the optimal policM

still make mistakes along the way!

Regret is a measure of your total
mistake cost: the difference between

your (expected) rewards, including
youthful suboptimmtimal

(expected) Tewards

Minimizing regret goes beyond learning

to be optmally

learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration has

higher regret

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all g-values
b -

O In realistic situations, we cannot possibly learn

about every single state!
o Too many states to visit them all in training
o Too many states to hold the g-tables in memory

o Instead, we want to generalize:

o Learn about some small number of training states from
experience

o Generalize that experience to new, similar situations

o This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

Video of Demo Q-Learning Pacman —
Tiny — Watch All

File Edit Nawigate Search Project Run Window Hel

11:53 AM
9/27/2012

A a % G ¥

Video of Demo Q-Learning Pacman —
Tiny — Silent Train

o = S

= Pydev - Eclipse
File Edt Navigate Search Project Run Window Help

v v Q- Q~ v v [[Pydev | £° Team

1 Console 32 E x % o G I" ol
<terminated> 2.0 ¢

Pacman died! Score: 506

Pacman emerges vic

0 died
maAn energ t
™ died

> 11:53 AM
G -~ a
= ol S

Video of Demo Q-Learning Pacman -
Tricky — Watch All

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Feature-Based Representatlons 6 /1

O Solution: describe.astatetising a vector of
features (properties)

o0 Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

Wures: /
o Distance to closest ghost /
o Distance to Closest 0

o0 Number of ghostf/ /

o 1 / (dist to dot)2

o Is Pacman in a tunnel? (0/1)
o Is it the exact statg-oni this slide:
o Can also describe a%’[}l features (e.g.

action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

V(s) =wyf1(s) + wzf_z_(f) + ...+ wnfn(s)

/Q(s a) Z@l(s a) >(s,a)+... (s,a)
s e Ky

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

Dt SRETHF - T 4

o Q-learning with linear Q-functions:

transition = (f, a,r, S)K// 6‘_\'{4"{\/\ g

difference = [r + 7 max Q(s, a’)] — Q(s,a)

\ . o ,
Q(S a) <<Ot5a) ——‘cTﬁTrerence] Exact Q’s
@ ? [dlfference] fz(s a) Approximate Q’s
O Intuitive interpretatron: @

G—

o Adjust weights of active features

o E.g., if something unexpectedly bad happens, blamE&t-he features that were on: disprefer all
states with that state’s features

o Formal justification: online least squares
_— &

)

Example: Q-Pacman

Q(s,a) =(4. 0 DOT(S a) —1.0fgsr(s,a)

/
fpor(s, NORTH)
a = NORTH S,
fasr(s, NORTH) é)
' /

Ny
d e Qs NORTH) =411 Q(s',) =0
r+’ymaXQ(s o) =[—500 —I—OS < 2

difference = —501 wpoT \4. 4.0 + o [501 Q.5
— wWEST +al- 501] 1.0

Q(s,a) :C3-OfDOT(57a) —SLOJEGST(S,CLV

Video of Demo Approximate
Q-Learning -- Pacman

75 Pydev - Eclipse "
v v Q v Q ~ L, & v v v v v v ol 15 p}‘de«,‘g‘, Team
» e}
74 CS188 Pacman | - = B8

]
x

=
Dir

ginning 0 episodes

ectionalGhost

—

12:08 PM

C ~ates

Q-Learning and Least Squares

_(f

Linear Approximation: Regression

40r

20

f1(x)

Prediction: Prediction:

/@z wo + w1 f1(x) Gi = wo + w1 f1(2) + wofa(a)

Optimization: Least Squares

1

total error =) (y; — J;)° = > (yy; — > wifr(x;)
. k
1

-

0N

Error or “residual”

Observation Yy

Predictio ?'J

O f1(x) "

Minimizing Error
Imagine we had only one point x, with features f(x), target value y, and weights w:

2
.error(w) = % (y — ZWfk(ﬁ)

—

(y > wkfk(@) fm(x)

0 error(w)

—

sl

wm<—wm—|—a(‘ Zwkfk(a:) fmt o
Approximate g updateixpl ine

wm<—wm—|—a[r—|—7maxQ(s a)—Q(s a) fm(s a)
€

“target” predlctlon

Opverfitting: Why Limiting Capacity Can Help

New in Model-Free RL

30

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

o E.g. your value functions from project 2 were probably horrible estimates of future rewards,
but they still produced good decisions

0 Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)
o We'll see this distinction between modeling and prediction again later in the course

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function

o Nudge each feature weight up and down and see if your policy is better than before

O Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!

o If there are a lot of features, this can be impractical

O Better methods exploit lookahead structure, sample wisely, change multiple
parameters...

Summary: MDPs and RL

Known MDP: Offline Solution

(Goal

Technique
Compute V*, Q*, m* Value / policy iteration
\ Evaluate a fixed policy i Policy evaluation /
Unknown MDP: Model-Based Unknown MDP: Model-Free

4 *use features _)\ a2 *use features _

GOaI to genera/ize TeChanue GOaI to genera/ize TeChanue

Compute V*, Q*, * VI/PI on approx. MDP Compute V*, Q*, m* Q-learning

Evaluate a fixed policy @ PE on approx. MDP Evaluate a fixed policy @ Value Learning

- _/ - _/

Conclusion

o We're done with Part I: Search and
Planning!

o We’ve seen how Al methods can solve
problems in:
o Search
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Uncertainty and Learning!

