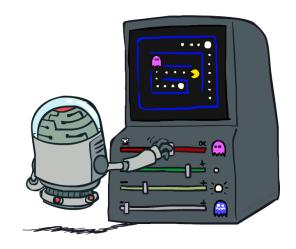
## CSE 573: Artificial Intelligence

### Hanna Hajishirzi Reinforcement Learning II

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer



#### Announcements

- Project Proposal: due today
- Paper report: due Feb. 24th
- o PS3: Due March 1st
- Remaining: HW2, PS4, Final project

## Mid-quarter Review Feedback: Thanks!

- What has helped you for learning?
  - Lectures/recordings/Markups/slides/Programming assignments
- Workload different range: good/too much
- Issues: online ⊗ Workload
- Improvements:
  - o TAs: Release grades faster, Private meetings at TA office hours
  - How can students form groups while everyone is online? HW2/Informal slack channel?
  - Presentation: make cursor visible, More explanations after some students take quiz questions correctly
  - Content: More practical examples/More pseudo code in class

#### The Story So Far: MDPs and RL

#### Known MDP: Offline Solution

Goal

Compute V\*, Q\*,  $\pi$ \*

Evaluate a fixed policy  $\pi$ 

Technique

Value / policy iteration

Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V\*, Q\*,  $\pi$ \* VI/PI on approx. MDP

Evaluate a fixed policy  $\pi$  PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V\*, Q\*,  $\pi$ \* Q-learning

Evaluate a fixed policy  $\pi$  Value Learning

# Q-Learning

• Q-Learning: sample-based Q-value iteration

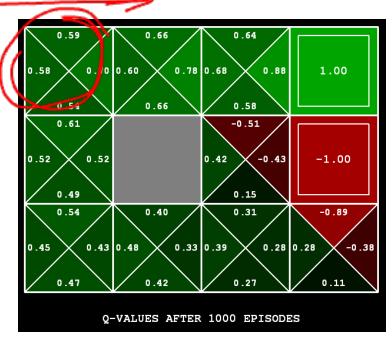
$$S$$
,  $Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[ R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$ 

- Learn Q(s,a) values as you go
  - Receive a sample (s,a,s',r)
  - $\circ$  Consider your old estimate: Q(s, a)
  - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$
 longer policy evaluation!

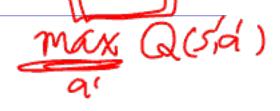
Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$$

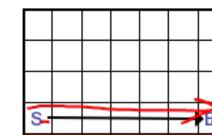


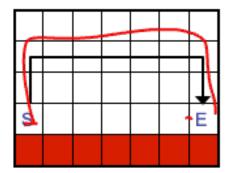
# Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!



This is called off-policy learning





Caveats:



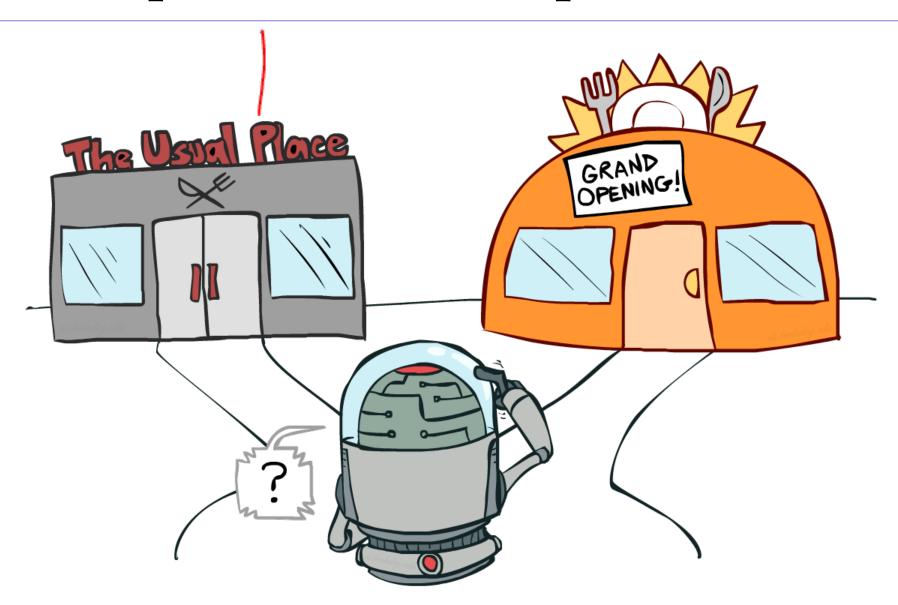
- You have to explore enough
- You have to eventually make the learning rate small enough



• Basically, in the limit, it doesn't matter how you select actions (!)



# Exploration vs. Exploitation



## How to Explore?

- Several schemes for forcing exploration
  - Simplest: random actions (ε-greedy)
    - Every time step, flip a coin
    - $\circ$  With (small) probability  $\varepsilon$ , act randomly
    - O With (large) probability 1-ε, act on current policy
  - Problems with random actions?
    - You do eventually explore the space, but keep thrashing around once learning is done
    - One solution: lower sover time
    - Another solution: exploration functions



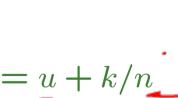
## **Exploration Functions**

#### • When to explore?

- Random actions: explore a fixed amount
- Better idea. explore areas whose badness is not (vet) established, eventually stop exploring

#### Exploration function

• Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

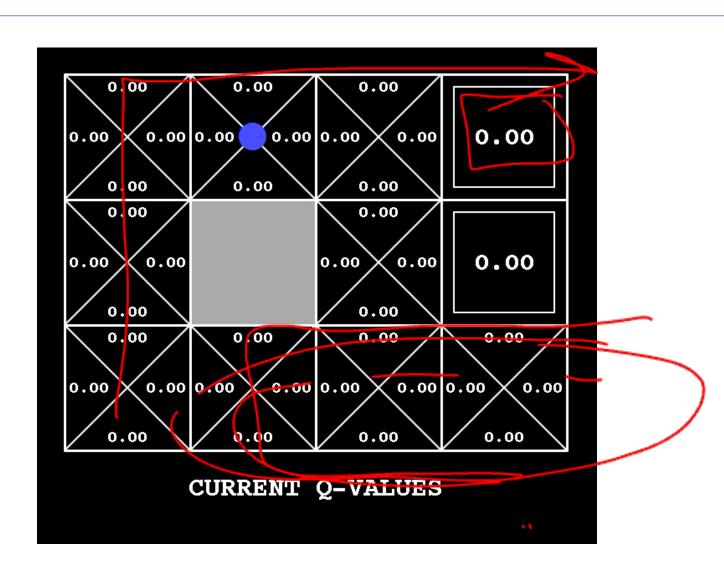


Regular Q-Update: 
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

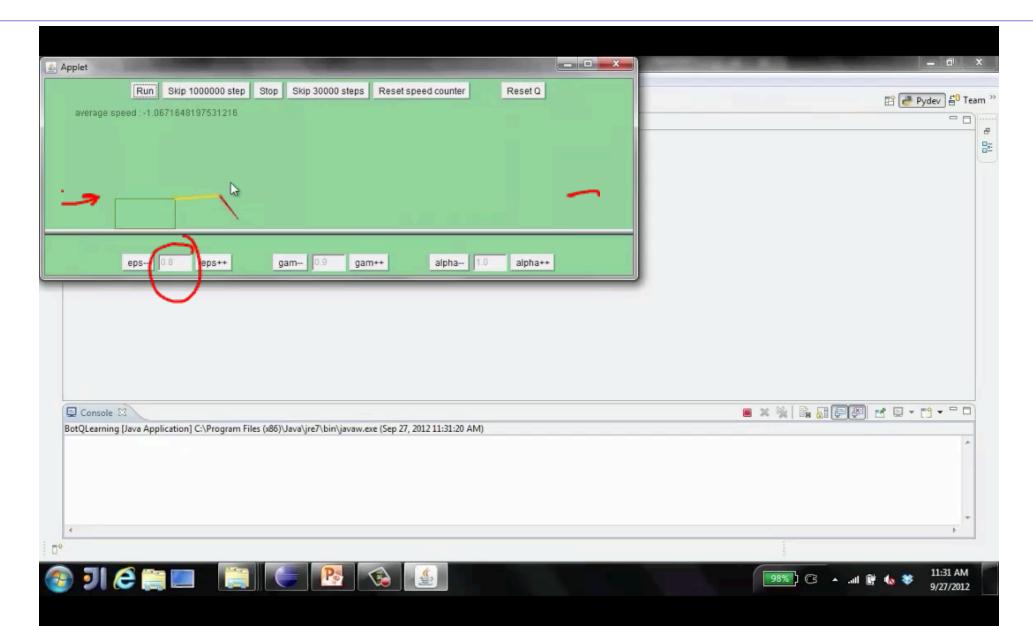
 $^{\circ} \text{ Note: this propagates the "bonus" back to states that lead to unknown states as well!} \\ \text{Modified Q-Update: } Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{s'} f(Q(s',a'),N(s',a'))$ 



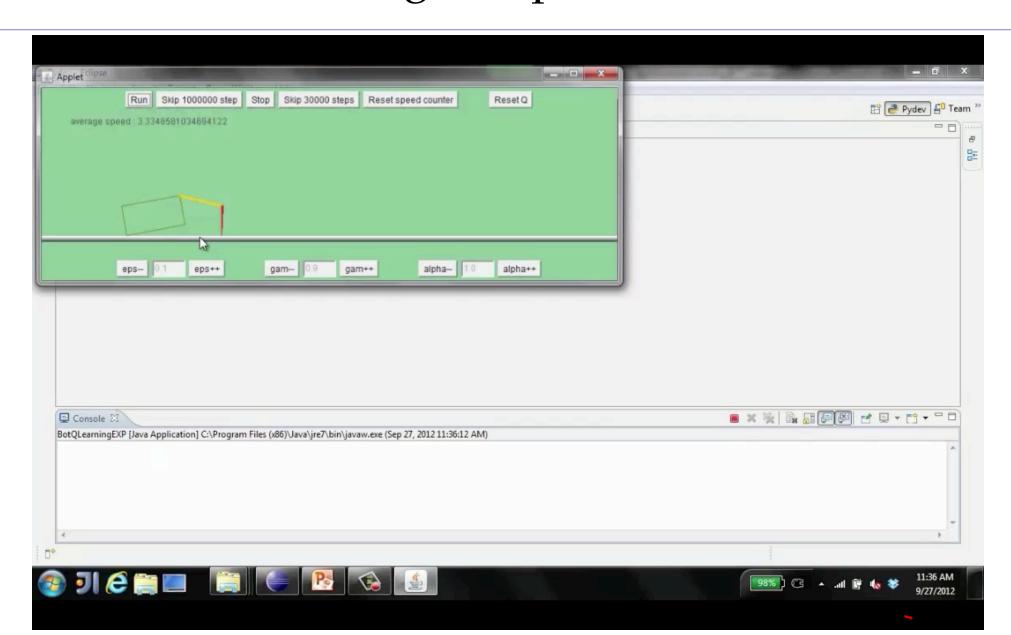
# Q-Learn Epsilon Greedy



### Video of Demo Q-learning – Epsilon-Greedy – Crawler

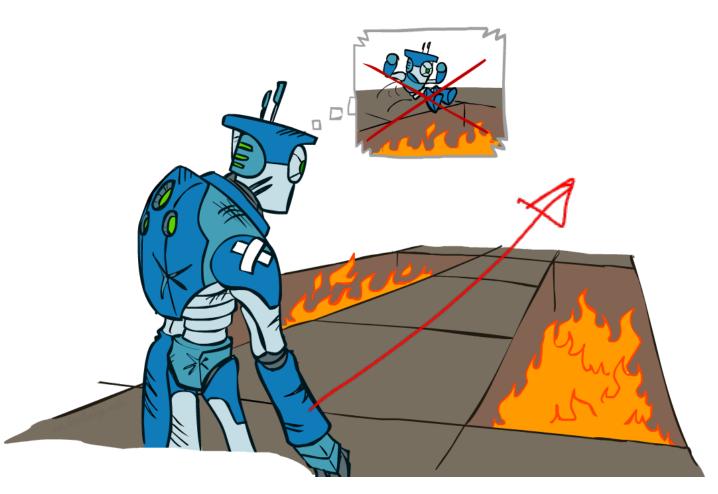


### Video of Demo Q-learning – Exploration Function – Crawler

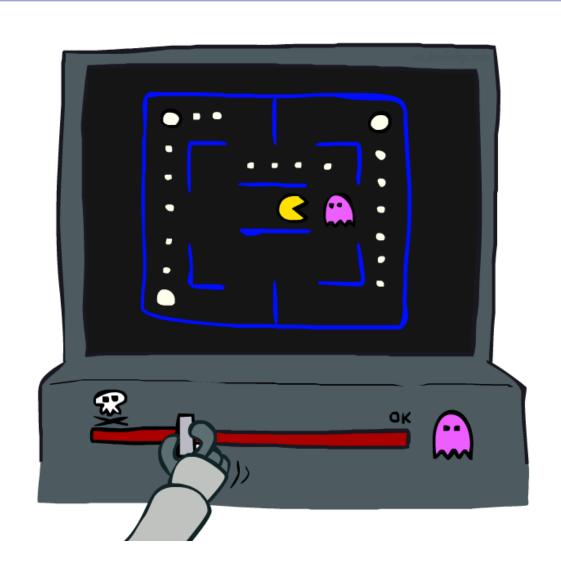


## Regret

- Even if you learn the optimal policy you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal—it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

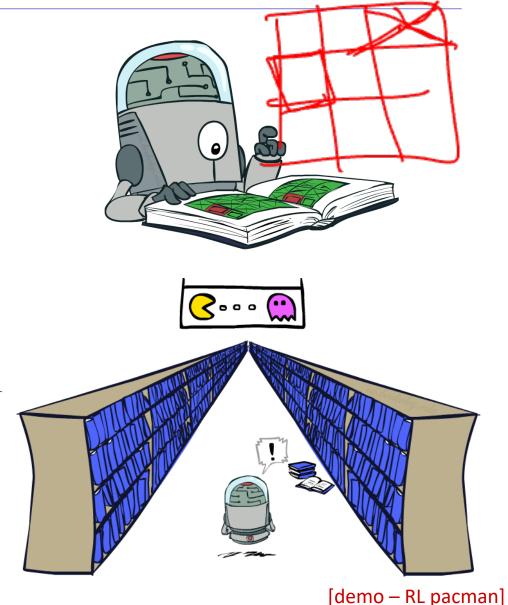


# Approximate Q-Learning

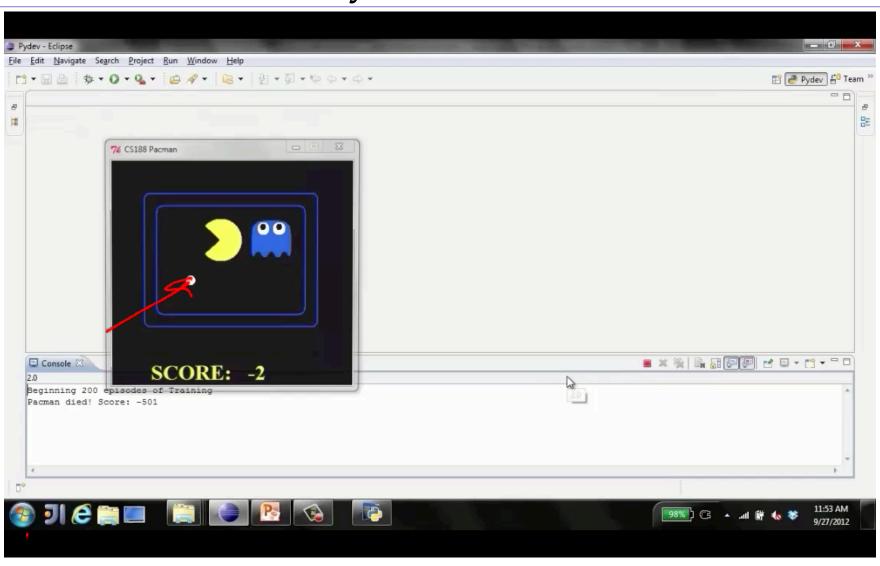


# Generalizing Across States

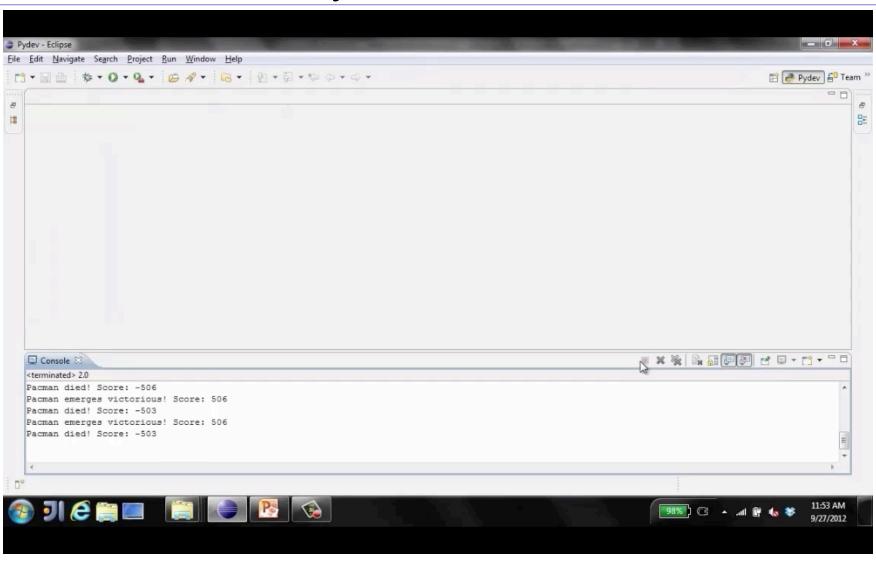
- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
  - Too many states to visit them all in training
  - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
  - Learn about some small number of training states from experience
  - Generalize that experience to new, similar situations
  - This is a fundamental idea in machine learning, and we'll see it over and over again



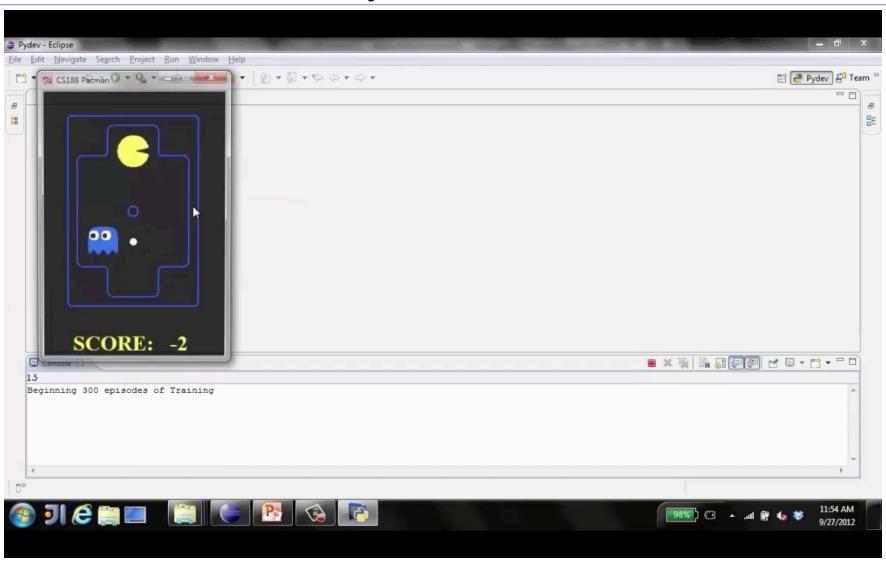
### Video of Demo Q-Learning Pacman – Tiny – Watch All



### Video of Demo Q-Learning Pacman – Tiny – Silent Train



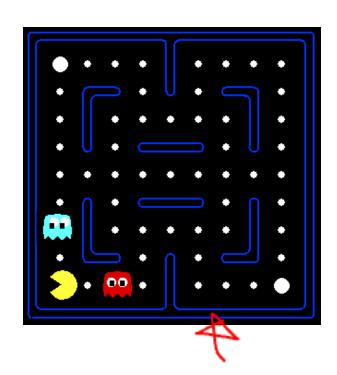
### Video of Demo Q-Learning Pacman – Tricky – Watch All

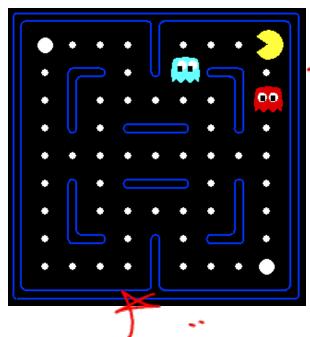


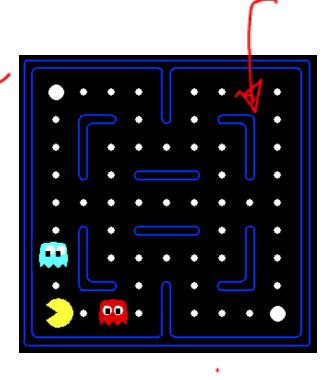
## Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

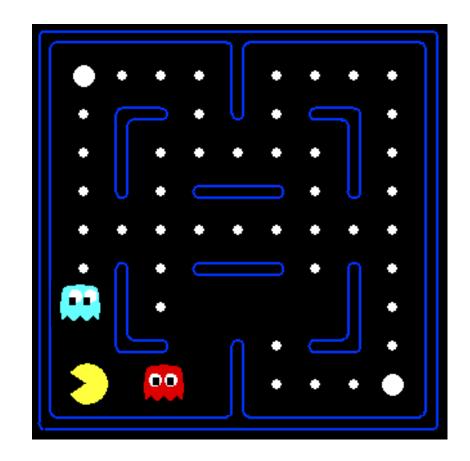






# Feature-Based Representations 6/1

- Solution: describe a state using a vector of features (properties)
  - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
  - Example features:
    - Distance to closest ghost
    - Distance to closest dot
    - Number of ghosts
    - $\circ$  1 / (dist to dot)<sup>2</sup>
    - $\circ$  Is Pacman in a tunnel? (0/1)
    - ..... etc.
    - Is it the exact state on this slide?
  - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



#### Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

## Approximate Q-Learning

$$Q(s,a) = w_1f_1(s,a) + w_2f_2(s,a) + \dots + w_nf_n(s,a)$$

• Q-learning with linear Q-functions:

transition 
$$= (s, a, r, s')$$

$$\text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]}$$

$$w_i \leftarrow (w_i) + \alpha \text{ [difference]} f_i(s, a)$$

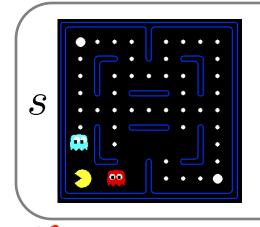
Exact Q's

Approximate Q's

- Intuitive interpretation:
  - Adjust weights of active features
  - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

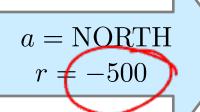
## Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$



$$f_{DOT}(s, NORTH) \neq 0.5$$

$$f_{GST}(s, NORTH) \neq 1.0$$



$$Q(s, NORTH) = +1$$

$$r + \gamma \max_{a'} Q(s', a') = -500 + 0$$

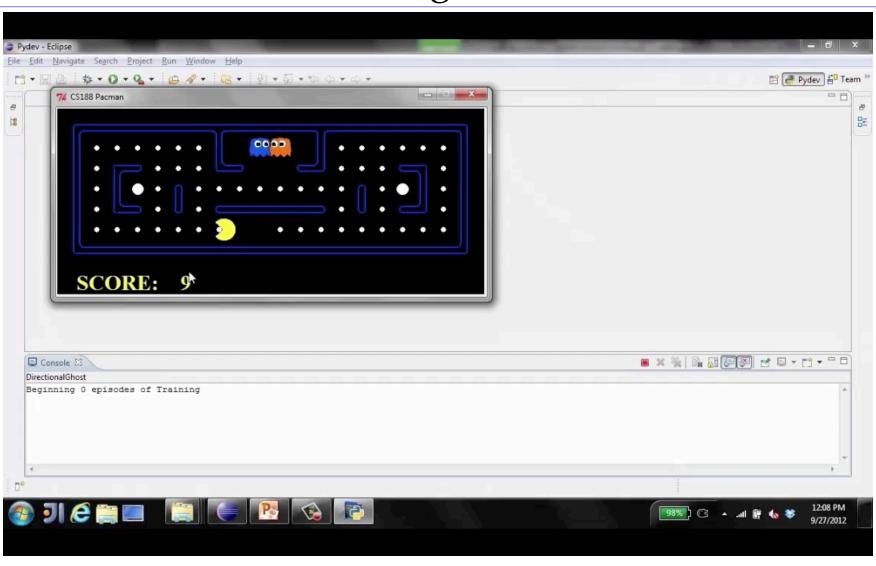
$$Q(s',\cdot)=0$$

$$difference = -501$$

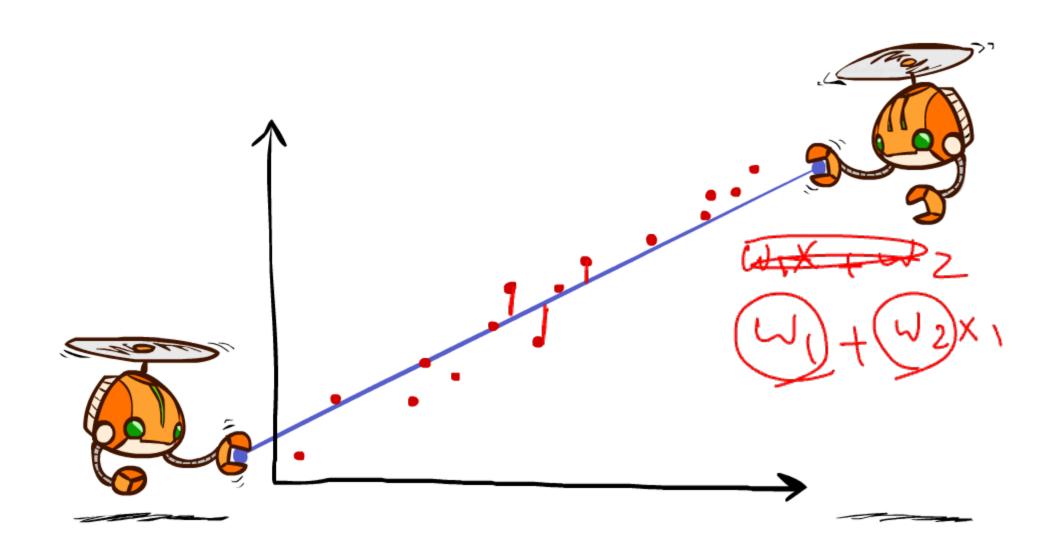
$$w_{DOT} \leftarrow (4.0 + \alpha [-501] 0.5$$
  
 $w_{GST} \leftarrow (-1.0 + \alpha [-501] 1.0$ 

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

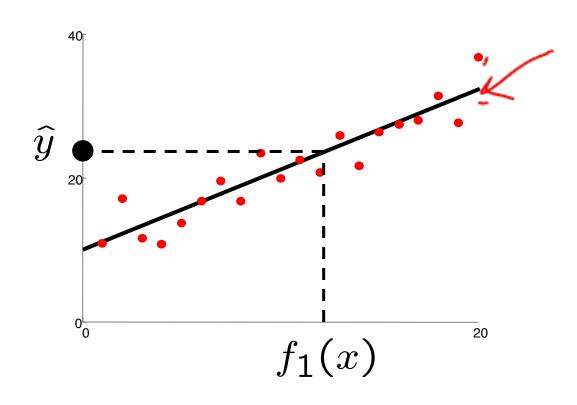
### Video of Demo Approximate Q-Learning -- Pacman

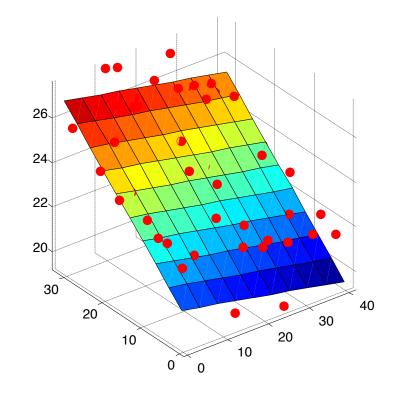


# Q-Learning and Least Squares



## Linear Approximation: Regression





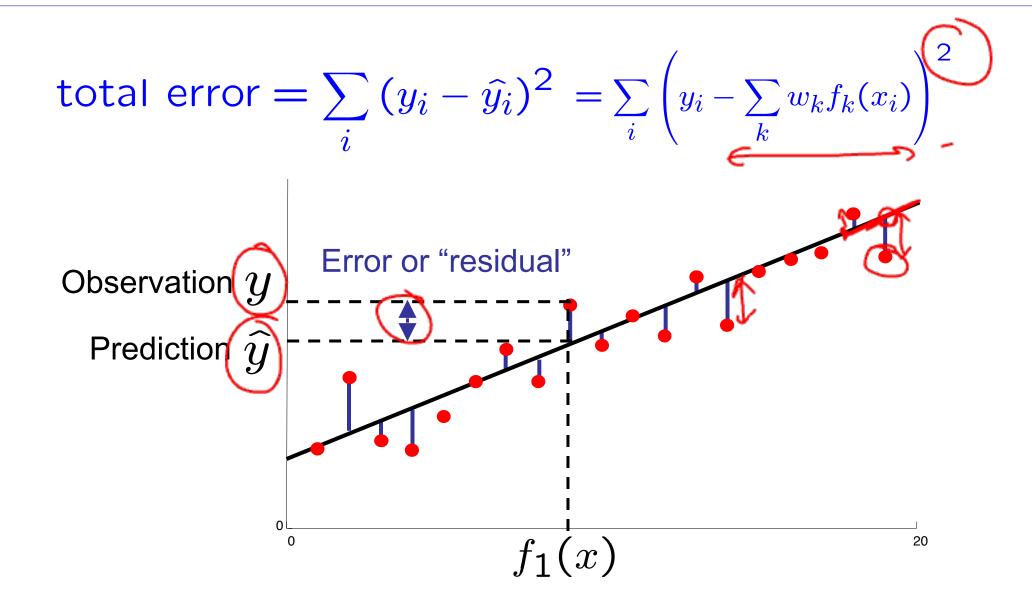
Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

## Optimization: Least Squares



## Minimizing Error

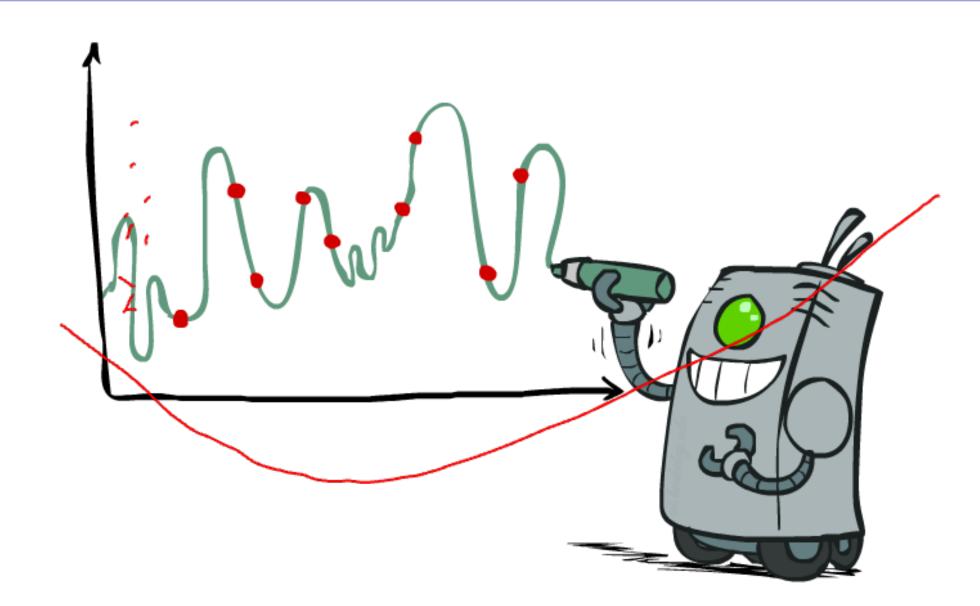
Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left( y - \sum_k w_k f_k(x) \right)^2$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_m} = - \left( y - \sum_k w_k f_k(x) \right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left( y - \sum_k w_k f_k(x) \right) f_m(x)$$
Approximate q update explained:
$$w_m \leftarrow w_m + \alpha \left[ r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
"target" "prediction"

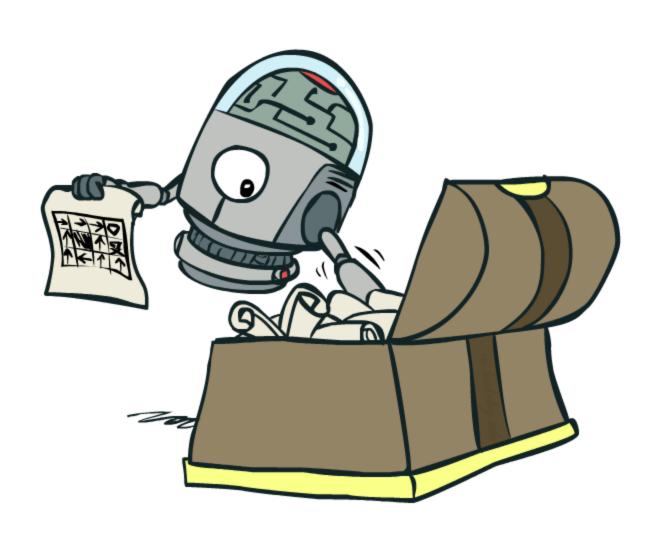
# Overfitting: Why Limiting Capacity Can Help



## New in Model-Free RL



# Policy Search



# Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
  - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
  - Q-learning's priority: get Q-values close (modeling)
  - Action selection priority: get ordering of Q-values right (prediction)
  - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

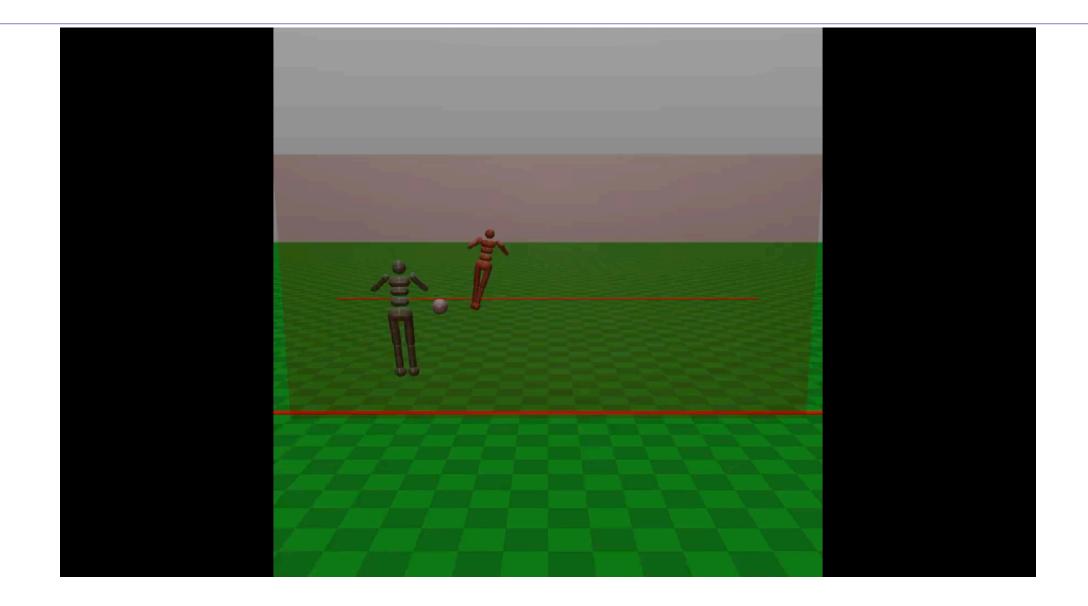
# Policy Search

#### Simplest policy search:

- Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before

#### • Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...



#### Summary: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V\*, Q\*,  $\pi$ \* Value / policy iteration

Evaluate a fixed policy  $\pi$  Policy evaluation

#### Unknown MDP: Model-Based

\*use features

Goal

to generalize Technique

Compute V\*, Q\*,  $\pi$ \* VI/PI on approx. MDP

Evaluate a fixed policy  $\pi$  PE on approx. MDP

#### Unknown MDP: Model-Free

\*use features

Goal to generalize Technique

Compute V\*, Q\*,  $\pi$ \* Q-learning

Evaluate a fixed policy  $\pi$  Value Learning

### Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
  - Search
  - Games
  - Markov Decision Problems
  - Reinforcement Learning
- Next up: Uncertainty and Learning!

