CSE 573: Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer
MDPs Recap
The Bellman Equations

Definition of “optimal utility” via expectimax recurrence gives one-step lookahead relationship amongst optimal utility values.

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
Value Iteration

- Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method
 - ... though the \(V_k \) vectors are also interpretable as time-limited values
Policy Methods
Another basic operation: compute the utility of a state \(s \) under a fixed (generally non-optimal) policy.

Define the utility of a state \(s \), under a fixed policy \(\pi \):

\[
V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi
\]

Recursive relation (one-step look-ahead / Bellman equation):

\[
V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')]
\]
Let’s imagine we have the optimal values $V^*(s)$

How should we act?
- It’s not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called **policy extraction**, since it gets the policy implied by the values
Policy Iteration

- Alternative approach for optimal values:
 - **Step 1: Policy evaluation**: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement**: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is **policy iteration**
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Iteration

○ Evaluation: For fixed current policy π, find values with policy evaluation:
 ○ Iterate until values converge:
 $$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_k^{\pi}(s') \right]$$

○ Improvement: For fixed values, get a better policy using policy extraction
 ○ One-step look-ahead:
 $$\pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi}(s') \right]$$
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
Summary: MDP Algorithms

- So you want to….
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
Reinforcement Learning
Double Bandits
Double-Bandit MDP

- Actions: Blue, Red
- States: Win, Lose

No discount
10 time steps
Both states have the same value
Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>15</td>
</tr>
<tr>
<td>Play Blue</td>
<td>10</td>
</tr>
</tbody>
</table>

No discount
10 time steps
Let’s Play!
Online Planning

- Rules changed! Red’s win chance is different.

![Diagram showing two states: W and L with transitions and probabilities and rewards]
Let’s Play!

$0 $0 $2 $0
$0 $2 $2 $0 $0
$0
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)

- Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Reinforcement Learning

○ Basic idea:
 ○ Receive feedback in the form of rewards
 ○ Agent’s utility is defined by the reward function
 ○ Must (learn to) act so as to maximize expected rewards
 ○ All learning is based on observed samples of outcomes!
Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Video: AIBO WALK – training]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]
Example: Toddler Robot

[Video: TODDLER – 40s]

[Tedrake, Zhang and Seung, 2005]
Robotics Rubik Cub

- [Link](https://www.youtube.com/watch?v=x4O8pojMF0w)
The Crawler!
Video of Demo Crawler Bot
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)

- Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Model-Based Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, $a\hat{T}(s, a, s')$
 - Normalize to $g\hat{R}(s, a, s')$
 - Discover each when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

<table>
<thead>
<tr>
<th>Input Policy (\pi)</th>
<th>Observed Episodes (Training)</th>
<th>Learned Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Episode 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B, east, C, -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episode 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B, east, C, -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episode 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E, north, C, -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episode 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E, north, C, -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, east, A, -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A, exit, x, -10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume: \(\gamma = 1 \)

\[
\hat{T}(s, a, s') = \begin{align*}
T(B, east, C) &= 1.00 \\
T(C, east, D) &= 0.75 \\
T(C, east, A) &= 0.25 \\
&\vdots
\end{align*}
\]

\[
\hat{R}(s, a, s') = \begin{align*}
R(B, east, C) &= -1 \\
R(C, east, D) &= -1 \\
R(D, exit, x) &= +10 \\
&\vdots
\end{align*}
\]
Analogy: Expected Age

Goal: Compute expected age of cse573 students

Known P(A)

\[
E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots
\]

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

Unknown P(A): “Model Based”

\[
\hat{P}(a) = \frac{\text{num}(a)}{N}
\]

\[
E[A] \approx \sum_a \hat{P}(a) \cdot a
\]

Why does this work? Because eventually you learn the right model.

Unknown P(A): “Model Free”

\[
E[A] \approx \frac{1}{N} \sum_i a_i
\]

Why does this work? Because samples appear with the right frequencies.
Model-Free Learning
Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

- In this case:
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

Assume: $\gamma = 1$

If B and E both go to C under this policy, how can their values be different?
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

\[
V_0^\pi(s) = 0
\]

\[
V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]
\]

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:
 $$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

 $sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$

 $sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$

 \vdots

 $sample_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$

 $$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$
Temporal Difference Learning

○ Big idea: learn from every experience!
 ○ Update $V(s)$ each time we experience a transition (s, a, s', r)
 ○ Likely outcomes s' will contribute updates more often

○ Temporal difference learning of values
 ○ Policy still fixed, still doing evaluation!
 ○ Move values toward value of whatever successor occurs: running average

Sample of $V(s)$: $sample = R(s, \pi(s), s') + \gamma V^\pi(s')$

Update to $V(s)$: $V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$

Same update: $V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1, \alpha = 1/2$

$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[
\pi(s) = \arg \max_a Q(s,a)
\]

\[
Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]
\]

- Idea: learn Q-values, not values
- Makes action selection model-free too!
Active Reinforcement Learning
Active Reinforcement Learning

○ Full reinforcement learning: optimal policies (like value iteration)
 ○ You don’t know the transitions $T(s,a,s')$
 ○ You don’t know the rewards $R(s,a,s')$
 ○ You choose the actions now
 ○ Goal: learn the optimal policy / values

○ In this case:
 ○ Learner makes choices!
 ○ Fundamental tradeoff: exploration vs. exploitation
 ○ This is NOT offline planning! You actually take actions in the world and find out what happens…
Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with \(V_0(s) = 0 \), which we know is right
 - Given \(V_k \), calculate the depth \(k+1 \) values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But Q-values are more useful, so compute them instead
 - Start with \(Q_0(s,a) = 0 \), which we know is right
 - Given \(Q_k \), calculate the depth \(k+1 \) q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- Q-Learning: sample-based Q-value iteration

 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn Q(s,a) values as you go

 - Receive a sample (s,a,s',r)
 - Consider your old estimate: \(Q(s, a) \)
 - Consider your new sample estimate:

 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]

 no longer policy evaluation!
 - Incorporate the new estimate into a running average:

 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \text{[sample]} \]
Q-Learning Demo

![Image of a 4x4 grid with current Q-values]
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Q-Learning:
act according to current optimal (and also explore…)

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens…
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - … but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Discussion: Model-Based vs Model-Free RL