CSE 573:
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

MDPs Recap

The Bellman Equations

o Definition of “optimal utility” via expectimax recurrence gives
one-step lookahead relationship amongst optimal utility value:

V*(s) = max Q*(s, a)

QR*(s,a) =) T(s,a, s {R(s, a,s’) + 'yV*(s’)}

o ThesV*(s) = max>_T(s,a,s") |R(s,a,5) +~V*(s)

valuce oo v i) cie i w8 il e e e

Value lteration

o Bellman equations characterize the optimal values:

V*i(s) = mC?XZT(S,a,, s") {R(s,a, s") + ny*(s/)}

S

o Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + ’ka(s/)}

S

o Value iteration is just a fixed point solution method
o ..though the V, vectors are also interpretable as time-limited values

Policy Methods

Policy Evaluation

o Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy =

V=(s) = expected total discounted rewards starting in s and
following =

O Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) +~V"(s)]

Policy Extraction

0 Let’s imagine we have the optimal values V*(s)

o How should we act?

o It's not obvious!

o We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

o This is called policy extraction, since it gets the policy implied by the values

Policy Iteration

o Alternative approach for optimal values:

o Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

o Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

o Repeat steps until policy converges

o This is policy iteration
o It’s still optimal!

o Can converge (much) faster under some conditions

Policy Iteration

o Evaluation: For fixed current policy =, find values with policy evaluation:

o Iterate until values converge:

Vi1 (s) ZT(s mi(s),8") |R(s,mi(s),s") + vV (s))]

o Improvement: For fixed values, get a better policy using policy extraction
0 One-step look-ahead:

mi4+1(s) = arg maxZT(s, a,s) {R(s, a,s’) + vVﬁi(S/)}

Sl

O

O

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
o Every iteration updates both the values and (implicitly) the policy

o We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
o We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

© The new policy will be better (or we're done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

© S0 you want to....

o Compute optimal values: use value iteration or policy iteration

o Compute values for a particular policy: use policy evaluation

o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!

o T]
o T]

ney basically are — they are all variations of Bellman updates

hey all use one-step lookahead expectimax fragments

o T]

ney differ only in whether we plug in a fixed policy or max over actions

Reinforcement Learning

Double Bandits

O Actions: Blue, Red

O States: Win, Lose

Double-Bandit MDP

0.25 $0

-

-

No discount

10 time steps

Both states have
the same value

~

J

$1

1.0

Oftline Planning

o Solving MDPs is offline planning 4)

O You determine all quantities through computation No discount

10 t1 t
o You need to know the details of the MDP Hie steps

© You do not actually play the game! - %
/ \ 0.25 $0
Value
Play Red 15
Play Blue 10

- /

Let’s Play!

S2 S2 S0 S2 S2
$2 $2 SO0 SO SO

Online Planning

© Rules changed! Red’s win chance is different.

?2? $0

$1

1.0

Let’s Play!

SO SO S2 SO
S0 S2 S2 SO SO
S0

What Just Happened?

o That wasn’t planning, it was learning!
O Specifically, reinforcement learning
© There was an MDP, but you couldn’t solve it with just computation

O You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
O Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly

o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (MDP):
O A set of statess €S

O A set of actions (per state) A , ﬁs
o A model T(s,a,s’) \ e :

o A reward function R(s,a,s’)

Overheated

o Still looking for a policy 7t(s)

o New twist: don’t know T or R
o l.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Reinforcement Learning

\

Agent

State: s

Reward: r Actions: a

/Environmen

\ t

O Basic idea:
o Receive feedback in the form of rewards
o Agent’s utility is defined by the reward function
0 Must (learn to) act so as to maximize expected rewards
o All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

B

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk
-

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

Robotics Rubik Cub

o https:/ /www.youtube.com / watch?v=x40O8pojMF0w

https://www.youtube.com/watch?v=x4O8pojMF0w

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot
T

., Applet - T ——] e—l]

Run Skip 1000000 step | Stop | Skip 30000 steps | Reset speed counter ResetQ

average speed - 2.311914863606509

eps— eps++ gam- gam++ alpha-- alpha++

Reinforcement Learning

o Still assume a Markov decision process (MDP):
O A set of statess €S

O A set of actions (per state) A , ﬁs
o A model T(s,a,s’) \ e :

o A reward function R(s,a,s’)

Overheated

o Still looking for a policy 7t(s)

o New twist: don’t know T or R
o l.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

g

<

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

0 Model-Based Idea:

O Learn an approximate model based on experiences
O Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, aT(s, a, S/)
© Normalize to gR(s, a, s’ Ymate of
o Discover each when we experience (s, a, s)

o Step 2: Solve the learned MDP

o For example, use value iteration, as before

Example: Model-Based Learning

Input Policy

Observed Episodes (Training)

Episode 1

4 B, east, C, -1 h

C, east, D, -1
D, exit, x, +10

Assume:y =1

- J

Episode 3

4 E, north, C, -1 h
C,east, D, -1

Episode 2

4 B, east, C, -1 h

C, east, D, -1
D, exit, x, +10

D, exit, x,+10
\§ J

- J

Episode 4

4 E, north, C, -1 h
C, east, A, -1

A, exit, x,-10
_ J

Learned Model

T(s,a,s")

(" T(B, east, C) = 1.00
T(C, east, D) =0.75
T(C, east, A) = 0.25

-

~

J

R(s,a,s")

(" R(B, east, C) = -1
R(C, east, D) =-1
R(D, exit, x) = +10

-

~

J

Analogy: Expected Age

Goal: Compute expected age of cse573 students

Known P(A))

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this ~ _ num(a) Why does this
P(a) =
work? Because N FIA] ~ 1 work? Because
eventually you X A ~ N Z @i samples appear
learn the right FElA] =~ Z P(a)-a ‘ with the right
model. a

_ j \ frequencies.

—

Model-Free Learning

Passive Reinforcement Learning

o Simplified task: policy evaluation

o Input: a fixed policy n(s)

© You don’t know the transitions T(s,a,s’)
© You don’t know the rewards R(s,a,s’)
o Goal; learn the state values

o In this case:

o Learner is “along for the ride”

o No choice about what actions to take
o Just execute the policy and learn from experience

o This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

o Goal: Compute values for each state under «

O Idea: Average together observed sample
values
o Act according to

o Every time you visit a state, write down what the
sum of discounted rewards turned out to be

O Average those samples

o This is called direct evaluation

Input Policy =

Assume:y =1

Example: Direct Evaluation

Observed Episodes (Training)

Episode 1

Episode 2

4)
B, east, C, -1
C, east, D, -1
D, exit, x, +10

\ J

Episode 3

4)
E, north, C, -1
C,east, D, -1
D, exit, x, +10

\ J

4)
B, east, C, -1
C, east, D, -1
D, exit, x, +10

\ J

Episode 4

4)
E, north, C, -1
C, east, A, -1
A, exit, x, -10

\ J

Output Values

If B and E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

o0 What's good about direct evaluation? Output Values

o It’s easy to understand

o It doesn’t require any knowledge of T, R

o It eventually computes the correct average
values, using just sample transitions

o What bad about it?

o It wastes information about state connections

If B and E both go to C
o Each state must be learned separately under this policy, how can

o So, it takes a long time to learn their values be different?

Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy:
o Each round, replace V with a one-step-look-ahead layer over V

Voi(s) =0
Vit 1(s) <> T(s,m(s),s)[R(s,7(s),s") + vV (s)] K,,s;"&ks),s’

o This approach fully exploited the connections between the states
o Unfortunately, we need T and R to do it!

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:
Vkﬁ_l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + q/V,f(s’)]

S

O Idea: Take samples of outcomes s’ (by doin~ *-~ ~ =+ ~=" == ~--nerm~o

sample; = R(s,m(s), 3/1) —- kaﬁ(s’l)

samples = R(s, m(s), 8/2) + vvkﬂ(sg)

samplen, = R(s, m(s), an) —- WV,:(S;%)

1
Vid 1(8) + - Z sample;
)

Temporal Ditference Learning

o Update V(s) each time we experience a transition (s, a, s’, r)

o Big idea: learn from every experience! S
(s)

o Likely outcomes s” will contribute updates more often

o Temporal difference learning of values
o Policy still fixed, still doing evaluation!

o Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = R(s,m(s), s") +4VT(s)
Update to V(s): V" (s) < (1 —a)V"(s) + (a)sample

Same update: VT(s) <+ V" (s) + a(sample — V" (s))

Exponential Moving Average

o Exponential moving average

o The running interpolation update: Zn = 1-a) ZTn-1+a- -z,

O Makes recent samples more important

o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States

8 lclo

Assume:y=1,a=1/2

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

oo o] |afo]e] (]3]

V7(s) + (1 = a)V7(s) + a |R(s,m(s),s) +4V7(s))

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’'re sunk:

m(s) = argmax Q(s,a)

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + WV(S,)}

O Idea: learn Q-values, not values

O Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

O In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world and
find out what happens...

Detour: Q-Value Iteration

O Value iteration: find successive (depth-limited) values
o Start with V(s) = 0, which we know is right

o Given V,, calculate the depth k+1 values for all states:

Viet1(s) mC?XZT(S, a,s) {R(s, a,s) + nyk(s’)]

O But Q-values are more useful, so compute them instead

o Start with Q,(s,a) = 0, which we know is right
'e) Givnﬂ N Al il Aatn tlha Aanthh L1 1 A~ xrAlitnc fAvr A1l A ckAtnc.

Qit1(s,0) « Y T(s,0,5) |R(s.0,5) +7 maxQy(s',a)

S

Q-Learning

o Q-Learning: sample-based Q-value iteration

Qit1(s,0) « Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

a
S/

o Learn Q(s,a) values as you go NNV
o Receive a sample (s,a,s’,r) MM o
o Consider your old estimate: Q(s,a)

S %
o Consider your new sample estimate: A A

sample = R(s,a,s") +7maxQ(s',a’) 10 08T POLEY WW
ANV AN

o Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
IDemo: O-learnine — crawler (1 10D3)]

Q-Learning Demo

s
ey s

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learnin

| =:) Applet

-- Crawler

fﬁﬂr‘ifl Skip 1000000 step | Stop Skip 30000 steps ‘ Reset speed counter [

ResetQ |

average speed . 1.7666772684134646

2 FECEE 12:29 PM

9/25/2012

Q-Learning:
act according to current optimal (and also explore...)

o Full reinforcement learning: optimal policies (like value iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

O In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world and
find out what happens...

Q-Learning Properties

© Amazing result: Q-learning converges to optimal policy -- even if
you're acting suboptimally!

o This is called off-policy learning

S E
° Caveats: NEEENEN

© You have to explore enough

o You have to eventually make the learning rate
small enough
O ... but not decrease it too quickly

o Basically, in the limit, it doesn’t matter how you select actions (!)

me

Discussion: Model-Based vs Model-Free RL

56

