CSE 573: Artificial Intelligence

Hanna Hajishirzi Reinforcement Learning

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

MDPs Recap

The Bellman Equations

Value Iteration

• Bellman equations characterize the optimal values:

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method

 $_{\odot}$... though the V_k vectors are also interpretable as time-limited values

Policy Evaluation,

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 Vπ(s) expected total discounted rewards starting in s and following π

• Recursive relation (one-step look-ahead / Bellman equation): $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \rho V^{\pi}(s')]$

Policy Extraction

- Let's imagine we have the optimal values V^{*}(s)
- How should we act?
 It's not obvious!
- We need to do a mini-expectimax (one step)

	X		,
0.95)	0.96)	0.58)	1.00
• 0.94	11	∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

 $\pi^*(s) = \arg\max\sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$

• This is called **policy extraction**, since it gets the policy implied by the values

Policy Iteration **#**

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look ahead wire resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

• Improvement: For fixed values, get a better policy using policy extraction • One-step look-ahead: $\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_{\pi_i}(s') \right]$

- Comparison
- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- <u>Inpolicy</u> iteration:

 \sim

28

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better, (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

• So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Reinforcement Learning

Double-Bandit MDP

Offline Planning

Let's Play!

Online Planning

Let's Play!

What Just Happened?

• That wasn't planning, it was learning!

- Specifically, reinforcement learning
- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out

• Important ideas in reinforcement learning that came up

- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
 Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning

• Basic idea:

- Receive feedback in the form of **rewards**
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initial]

Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]

Finished

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finished]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

[Video: TODDLER – 40s]

Robotics Rubik Cube

o <u>https://www.youtube.com/watch?v=x4O8pojMF0w</u>

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Applet	×
Run Skip 1000000 step Stop Skip 30000 steps Reset speed counter Reset Q	
average speed : 2.311914863606509	
eps 18 eps++ gam 0.9 gam++ alpha 1.0 alpha++	

Reinforcement Learning

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Model-Based Learning

Model-Based Learning

• Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 Count outcomes s' for each s, \$\hline{T}(s, a, s')\$
 Normalize to \$\frac{gR}{s}(s, a, s')\$ imate of
 Discover each
 when we experience (s, a, s')\$
- Step 2: Solve the learned MDP

• For example, use value iteration, as before

S

👻 Goal: Compute expected age of cse573 students 🛛 🕹 🏹 🛛 🤽 ᢃ

CSE 573: Artificial Intelligence

Hanna Hajishirzi Reinforcement Learning

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Reinforcement Learning

• Still assume a Markov decision process (MDP):

- \circ A set of states s \in S
- A set of actions (per state) A
- A model T(s,a,s')
 A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

Warm

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn
- Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Model-Free Learning

Passive Reinforcement Learning

• Simplified task: policy evaluation

• Input: a fixed policy $\pi(s)$

• You don't know the transitions T(s,a,s')

 \circ You don't know the rewards R(s,a,s')

• Goal: learn the state values

• In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

 \circ Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

• This is called direct evaluation

Example: Direct Evaluation

Problems with Direct Evaluation

• What's good about direct evaluation?

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

 $\pi(s)$

Simplified Bellman updates calculate V for a fixed policy:
 Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')] \quad \text{for all } s \in \mathbb{R}$$

This approach fully exploited the connections between the states
Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?
 In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$ • Idea: Take samples of outcomes s' (by doin ~ 1 ~ 1 ~ 1) ~ 1 $sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$ $sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$ $sample_n = R(s, \pi(s), s'_n) + \gamma V_{l}^{\pi}(s'_n)$ $V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$

Temporal Difference Learning

• Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

• Policy still fixed, still doing evaluation!

• Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = $R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$ Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample) - V^{\pi}(s)$

 $\pi(s)$

 $\sqrt{(s)}$

Exponential Moving Average

- Exponential moving average • The running interpolation update: $(\bar{x}_n) = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot \bar{x}_n$ a. - (2). & nfa(1-a)) ant .-
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$
$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q values, not values
- Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

• Full reinforcement learning: optimal policies (like value iteration)

- \circ You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You choose the actions now
- Goal: learn the optimal policy / values

- \circ In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values Ο • Start with $V_0(s) = 0$, which we know is right • Given $V_{k'}$ calculate the depth k+1 values for all states: $Q_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$ $Q_{k+1}(s) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \delta Max Q(s', a') \right]$ • But Q-values are more useful, so compute them instead • Start with $Q_0(s,a) = 0$, which we know is right o Given O colculate the depth $k \perp 1$ a values for all a states. $Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$

Q-Learning

• Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

• Learn Q(s,a) values as you go

- Receive a sample (s,a,s',r)
- \circ Consider your old estimate: Q(s, a)

• Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$ no longer policy evaluation!

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Q-Learning Demo

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning: act according to current optimal (and also explore...)

• Full reinforcement learning: optimal policies (like value iteration)

• You don't know the transitions T(s,a,s')

• You don't know the rewards R(s,a,s')

• You choose the actions now

• Goal: learn the optimal policy / values

• In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - $\circ \dots$ but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Discussion: Model-Based vs Model-Free RL