CSE 573:
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

MDPs Recap

The Bellman Equations

o Definition of “optimal utility” via expectimax recurrence gives
one-step lookahead relationship amongst optimal utility value:

V*(s) = max Q*(s,a) "
é— — |
Q*(s,a) =Y T(s,a,8") |[R(s,a,s") +yV*(s)]
o — &

o ThesV*(s) = max}_T(s,a,s') |R(s,a,s") +~vV*()
V7Y T S

Value lteration

o Bellman equations characterize the optimal values:

V*i(s) = mO?XZT(S, a,s) {R(s, a,s’) + ny*(s/)}

——7 s
U] -

o Value iteration computes them:

) ¢ max) T(s,a,s') |R(s,a,s) 7&(3’)}

7 s/

s TA
o Value iteration is just a fixed point solution method
o ..though the V, vectors are also interpretable as time-limited values

Policz Methods

_Policy Evaluation

—

O Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

O m the utility of a state s, under a fixed pohicy m:

expe@ total discounted rewards starting in s<and

following K,’S}/‘:JT’(S)IS,

O Recursive re‘lﬁ%n (one-step look-ahead / Bellman

equation): /
QY R(s,m(s @\@8’)]

VT(s) = T(s,m(s),s)]),s') +
$ fe— € —7 +

Policy Extraction

o Let’s imagine we have the optimal values V@ S| e ‘ X 0{|
. > . 2 Y > -

o How should we act?

o It's not obvious!

0.92 |« 0.91
o We need to do a mini-expectimax (one step) ..u.

m*(s) = argmax>» T(s,a,s)[R(S a,s’) + 'yV*(s)]
Si— N
o This is called policy extraction, since it gets the policy implied by the values

Policy Iteration %%

(’f‘

P

eml

1L

O Alternative a*gpmach_i% ptimal values:
o Step 1: chulate utilities for somg fixed poli optimal

utilities!) until convergenSF

o Step 2: Policy improvement: update policy using one-step look :

resulting converged (but not optimal!) utilities as future values)

o Repeat steps until policy converges

o This is policy iteration
o It’s still optimal!

o Can converge (much) faster under some conditions

Policy Iteration

O Eé,ag;aﬁongor fixed current policy =, find values with policy evaluation:

o Iterate until values converge:

_,@1/(5) > T(s,mi(s),s") [R(s,mi(s),s) + @(s@}

o Improvement: For fixed values, get a better policy using policy extraction

O OTe=step look-altead:
mi+1(s) = arg maXZT(s a,s’) R(s a,s’) —I—’y\/@)
< s

31/‘ 29 2_%

o Both value iteration and policy iteration compute the same thing (Ball optlmal Values)

o 1 e iterati
o Every iteration updates both theazalues-and (implicitly) thedaalicy.

© We don’t track the policy, but taking the max over actions implicitly recomputes it
—

/O,I—r%'licy iteration: ONAe—
o We do several pagses that update utilities with fixed policy (each pass 1S 1ast because we

consider only one action, not all of them)

o After the pﬁﬁmd a new pollcy is chosen 1 like a walue 1terat10n p‘qu)
_ : <~£ CVgZ)

N, . (MR

Summary: MDP Algorithms

© S0 you want to....

© Compute optimal values: uise value iteration or policy iteration

o Compute ualuesfor-a particular policy: use policy evaluation

o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!

o T]
o T]

ney basically are — they are all variations of Bellman updates

hey all use one-step IooKahead expectimax fragments

o T]

hey differ only in whether we plug in a fixed pottdy or ifaxoveractions

Reinforcement Learning

Double-Bandit MDP

O Actions: Blue.-Red /@\
o States: Win, Lose 105 G 10 ti

Both states have
the same value
#” N\ 0.75 - J
Ve W
0.75 $2
1.0 1.0 R
(0% (3y v *+ 4, v6) =K1

Oftline Planning

O Solvin@ offline planning 4 N

O You determine all quantities through computation No discount
O You need to know the details of the MDP
© You do not actually play the game! - /

\

10 time steps

Value

/
Play Red 15

5
Plav Blue 10
= Y

Let’s Play!

SZ SZ SO SZ SZ
SZ SZ SO SO SO

Online Planning

© Rules changed! Red’s win chance is different.

@ 50

6

$1

1.0

Let’s Play!

What Just Happened?

o That wasn’t planning, it was learning!
O Specifically, reinforcement learning
© There was an MDP, but you couldn’t solve it with just computation

O You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknow# aettonis to ges information
Omentually you have to use what you know

—E—————
O Regret: even if you learn intelligently, you make mistakes

cause of chance, you have to try things repeatedly

rning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (Ml@
o A set of states s €S —

O A set of actions (per state) A e
o Amodel T(s,a,s’) .

o A reward function R(s,a,s’)

o Still looking for a policy n(D =

o New twist: don’t know T or R
o l.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Reinforcement Learning

Actions: a

N

O Basic idea:
0 Receive feedback in the form of rewards

o Agent’sutility is defined by-thge reward function—

0 Must (learn to) act so as to maximize expected rewards
o All learning is based on observed samples of outcomes!

Example: Learning to Walk

Jf Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

B

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk
-

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

Robotics Rubik Cube.

o https:/ /www.youtube.com / watch?v=x40O8pojMF0w

https://www.youtube.com/watch?v=x4O8pojMF0w

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot
T

et [FESEE—— |
Run Skip 1000000 step | Stop | Skip 30000 steps | Reset speed counter ResetQ :
average speed : 2.311914863606509
P
eps++ gam-— | | gam++ alpha- alpha++

Reinforcement Learning

JO Still assume a Markov decision process (MDP):
O A set of statess €S v

O A set of actions (per state) A S~ , ﬁs

o A model T(s,a,s’) e
o A reward function R(s,a,s’) /
o Still looking for a policy 7t(s)

—

Overheated

o New twist: don’t know T or R
o l.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

r“

&f‘ >

Offline Solution Online Learnmg
— —

Model-Based Learning

Model Based Learmng)

S / M
— N /|
AETY '
o Model-Based Idea:

o Learn an approximate model based on experiences

o Solve for values as if the learned model were correct
Lf_ _—

o Count outcomes s’ for each s, &y ¢ o &) L
Y Y —
© Normalize to gR(s, a, s’)mate O
o Discover each& — when we experience (s, a, s”) ﬂ
(

\
o Step 1: Learn empirical MDI?@odel

o Step 2: Solve the learned MDP =

o For example, use value iteration, as before

Example: Model-Based Learning

Input Policy

Observed Episodes (Training)

Episode 1

4 B, east, C, -1

Assume:y =1

-

_ I

~N

D exit, x, +10

J

Episode 3

east, D,

D, eX|t X, +10
__

KE north C -1)

Episode 2

J

-

B east C, -

DC

D exit, x, +10

J

Episode 4

-

CE

A, -1

A, exit, x,-10

th,C, -1

J

N
e

(S

K

Learned Model

@(87 a’? S/)

T(C, east, D) =0.75
T(C, east, A) = 0.25

-

(" T(B, east, C) = 1.00)

J

)=
220

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

-

~

J

Mos A

bazed —- M

1JAnalogy: Expected Age

Gof 22

d' {Goal: Compute expected age of cse573 students o/ Z s

\

&—

/ﬁ Unknown P(A): “Model Based”

Why does this
work? Because
eventually you
learn the right
model.

NN

g

5?(&) =%
P(5)

I \57\]\)\)'{\

4 Known|P(A))
=) Pa)-a =035x20+...
N R - y
Without P(A), instead collect samples [acf,/az, ,u(ayT 0/ 5

/ Unknown P(A): “Model Free” \

Why does this
1 Z work?Z'Be use

ElA] ~ N £ ai} LG | sa ear
¥ W|th th

CSE 573:
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Reinforcement Learning

o Still assume a Markov decision process (MDP):
o A set of statess €S N

o A set of actions (per state) A o) "

o A model T(s 6

o A reward f,g,g / L = Warm :
o Still looking for a poli@ o Nl

o New twist: don’t know T or R
o Le. we don’t know which states are good*orwhat the actions do

© Must actually try actions and states out to learn

© Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution /

4 Goal Technique A
Compute \f_"_, 9.*, mt* Value / policy iteration
Evaluate a fixed policy @ Policy evaluation
_ = ‘ - > Y,
Unknown MDP:@ - Unknown MDP: ModeI-Free%/
N\
/Goal Technique \ﬁ d A
Compute V*, Q*, m* VI/PI on approx. MDP
Evaluate a fixed policy PE on approx. MDP
- J g J

Model-Free Learning

Passive Reinforcement Learning

o Simplified task: policy evaluation

o Input: a fixed policy m(s)

© You don’t know the transitions T(s,a,s’)

© You don’t know the rewards R(s,a,s’)
S

o Goal: learn the state values

L ———
y &

o In this case:

o Learner is “along for the ride”
o No choice about what actions to take
o Just execute the policy and learn from experience

o This is NOT offline planning! You actually take actions in the world.
———

Direct Evaluation

o Goal: Compute values for each state under «

O Idea: Average together observed sample
values

__Q2Act according to

o Every time you visit @ state, write down what the
sum of discountedEresszaxrds-turned out to be

O Average those samples

o This is called direct evaluation

Input Policy =

Observed Episodes (Training)

Episode 1

(@,east, C -1

,east, D; -1
D, exit, x, +10

Episode 3

~N

g E, north, C, -1

=f,east, D, -1
D, exit, x, +10

~N

J

N
L_,'.+q

Episode 2
[@ east, C, -1 A
ceast, D, -1
D, exit, x, +10
\§ jan) J

+6 q
Episode 4
4 N

E, north, C, -1

'/€,'east, A, +
A, exit, x, -10

_

J

C._7/l

Example: Direct Evaluation

Output Values

If B and E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

o0 What's good about direct evaluation? Output Values

o It’s easy to understand

o It doesn’t require any knowledge of T, R

o It eventually computes the correct average
values, using just sample transitions

RS
o It])an about state connections

If B and E both go to C
o Each state must be learned separately under this policy, how can

O So, it takes atertg time to learn their values be different?

Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy: S
o Each round, replace V with a one-step-look-ahead layer over V (s)
Vo (s) =0 ® s, ni(s)
Vig1(s) + Z@, 7(s), s’, m(s),s") + vV ()] /,S;/}E(S),S
s & o : T A s

o This approach fully exploited the connections between the states
o Unfortunately, we need T and R to do it! Q e ——

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

© We want to improve our estimate of Y by computing these averages:

/fykﬂ(‘g) A 2 T(s,m(s), S) R(s,m(s),s") + 4V} (ﬂ
- y

SN N PO . A Y R

0 Idea: Take samples of outcomes s’ (by doi
fph/ / S, ('1.(-0) S
sampley =\ R(s,m(s),s7) + vV (s1)
cample = R ()2 ¥ VT) &S vgﬁfé& e
samplen, = R(s,w(s), 5%) —- 'kaﬂ(s;l) { > & 7|

1
Vid 1(8) + -) sample;
()

Temporal Ditference Learning ME@

ft
o Big idea: learn from every experience! S
o Update V(s) each time we experience a transition (s, a, s’, r)
. . . 1 n(s)
o Likely outcomes s” will contribute updates more often V (q
) s, 1t(s)
& .
o Temporal difference learning of values
: _— : : : 3 M’\
o Policy still fixed, still doing evaluation! /\ g’
o Move values toward value of whatever successor occurs: running average \\ X
o / - \
Sample of V(s): gﬁmpli: R(s,7(s),s") +yV"(s") T\

Upda 6 1o V(S): V?T(S) « (1 — m—k (a)safmple V 0 \,\

Same update: ;#9) < V”(s) —l@@ V”—(s))

Exponential Moving Average -

o Exponential moving average

© The running interpolation update: @ =(1—-a) Zn_ -I-@ @
- P
© Makes recent samples more important - @ e i(O((i _%) ™
n - -

o Forgets about the past (distant past values were wrong anyway) Z—

O Decreasing learning rate (alpha) can give converging averages

R CS/“ES / A . : :
xample: Temporal Ditference Learning
: RCI/W_S‘)-\- ZT (5’)

(]_ 09 Vr’I+ @) S'A/‘“P'QQ—

States o + 035 x —% QObserved Transitions

o -S5x G '
+0 % B, east, C@

>
V7(s) + (1 = a)V7™(s) +a |R(s,m(s),s) + wﬂ(s’j

& .S'Amvp}-l-

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

——— .
o However, if we want to turn values into a (new) policy, we’'re sunk:

A~
[NEN
-7 LSRN
\ S~o
\ ~o
N ~<
\ S~
\ S~o
S ~o

m(s) = argmax Q(s,a)

6__———-J
M — ZT(S, a,s) {R(s, a,s’) + ’YV(S,)}

O Idea: learn-@=vatuesnot values

O Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

- s
o Full reinforcement learning: optimal policies (like value iteration)

o You don’t know the transitions T(s,@.8) —
(8

o You don’t know the rewards R(s,&s’)

e —

o You choose the actions now

o Goal: learn the optimal policy / values
O In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration-ws- explottation—

o This is NOT offline planning! You actually take actions in the world and

find out what happensem—

0

Detour: Q-Value Iteration

O Value iteration: find successive (depth-limited) values
o Start with V(s) = 0, which we know is right

o Given V,, calculate the depth k+1 values for all states:

/Vvk-l-l(s) — maXZT(s a,s) {R(s a,s) + v V(s)]

/l\\ s/

Qo 5% - ZT(s .S LR(SA,S)WMQ&M)

_/

oSBut Q-values are more useful, so compute them instead

o Start with Q,(s,a) = 0, which we know is right
'e) Givnﬂ N Al il Aatn tlha Aanthh L1 1 A~ xrAlitnc fAvr A1l A ckAtnc.

Qta(s,0) L T(s,0.8) [R(s,a,8) + 7 maxQu(s' @}
s/ C&

Q-Learning

o QQ-Learning: sarhple—based Q-value iteration

Qr1(s,0) « Y T(s,a,5) [R(s,a,8") + ma;wak(s’ﬂ

a

—

O Learn Q(S/a) values as you g0 vvv
o Receive a sample (s,a,s’,r) ‘ >!4>!! 1.00
o Consider your old estimate: Q(s,a) v v
o Consider your new sample estimate: ‘g }4.}4 -1.00
O Ct

o Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

—

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
IDemo: O-learnine — crawler (1 10D3)]

Q-Learning Demo

CURRENT O-VALUES

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

fﬁﬂr‘ifl Skip 1000000 step | Stop Skip 30000 steps ‘ Reset speed counter [

average speed . 1.7666772684134646

ResetQ | =
- & | Pydev |5 Team ’
=8

2 FECEE 12:29 PM

9/25/2012

Q-Learning:
act according to current optimal (and also explore...)

o Full reinforcement learning: optimal policies (like value iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeotft: expﬁaiien—v—s—.—expfoﬁaﬁorr_

o This is NOT offline planning! You actually take actions in the world and
find out what happens...

Q-Learning Properties

——

© Amazing result: Q-learning converges to optimal policy -- even if h MLy
you're acting suboptimally! R(D e C S4
o This is called off-policy learning
o7
S)

o Caveats:
© You have to explore enough
o You have to eventually make the learning rate
small enough
O ... but not decrease it too quickly

o Basically, in the limit, it doesn’t matter how you select actions (!)

Discussion: Model-Based vs Model-Free RL

59

