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Announcements

o PS2 (due Feb 5th)
o HW1 (due Feb 10th)
O Project Proposal: Feb 17th

o Remember to fill out: Mid Quarter Review



Review and Outline

= Adversarial Games

= Minimax search

= - search

= Evaluation functions

= Multi-player, non-0-sum
= Stochastic Games

= Expectimax

= Markov Decision Processes
= Reinforcement Learning



Non-Deterministic Search




Example: Grid World

A maze-like problem

= The agent lives in a grid
=  Walls block the agent’s path

Noisy movement: actions do not always go as
planned

= 80% of the time, the action North takes the agent

North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East 1 2 3 4
= If there is a wall in the direction the agent would have /
been taken, the agent stays put 0.8
— -
The agentzecriyes rewards each time step 0.1 %1/

= Small “living” reward each step (can be negative)

= Big rewards come at the end (good or bad)



Grid World Actions

Deterministic Grid World Stochastic Grid World




Markov Decision Processes

o0 An MDP is defined by:;
O A set of statess &S }/

o A set of actions a € A fﬁ/
o A transition function T(s, a, s’

o Probability that a from s leads to s’, i.e.,\P(s%|

o Also called the model or the dynamics \
KT (S11, E, .. N S'L [)(
T(s5y, N, sn) =0 ¢
/»-'T(s , =0.8 Tisa Big Table!
5531, N 521; =0.1 11 X4x 11 =484 entries
Ts31,N S,1) =0.1 = T —

/ For now, we give thisasinput to the agent




Markov Decision Processes

o An MDP is defined by:
o Asetofstatess&S
o Asetofactionsa& A

o A transition function T(s, a, s")
o Probability that a from s leads to s’, i.e., P(s’| s, a)

o Also called the namics
o A reward function
func Ra)
O Sometimes just
Cost of breathing ! 2 3 4

/7“‘532: N, 53) = -0.01
R(Ssz' .N, 542) = -1.01

R(ss3, E, S43) = 0.99

R is also a Big Table!
/

/ For now, we also give this to the agent




Markov Decision Processes

© An MDP is defined by:

o Asetof statessES

o Asetofactionsa€ A

o A transition function T(s, a, s")
O Probability that a from s leads to s, i.e., P(s" | s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s)

O A-start-statec

o0 Maybe a terminal state

ONMDPs 4re non-deterministic search problems
o One way to solve them is with expectimax search
o We'll have a new tool soon



What is Markov about MDPs?

“Markov” generally means that given the present state, the future and
the past are independent

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

\ P(St—i—l ,:QS‘St — St; A = C_{f, St—1 = St—1,At—1,_- .50 = So)
\n—; C_ — < — = NQ

Andrey Markov

P(St—i—l — S’\St = 5, Ay = at) ’

(1856 <
Soyo\JSQ/QZ,Sl. .. /M_h’gt,
This is just like search, where the successwdepend @J

on the current state (not the history)




Policies

e ——

o In deterministic single-a

—9»/

A\W@ ‘

problems, we wanted a Or
sequence of actions, from start to a goal

o For MDPs, we want an ep#ral
policy &*: S —
o A policy n givew actiongg)r e_a_c})9 st}\e

o An optimal policy is one that maximizes Optimal policy when R(s, a, s’) = -0.4 for
expected utility if followe - all non-terminals s

o Mcit policy defines a reflex ag




Optimal Policies




Example: Racing




Example: Racing

o A robot car wants to travel far, quickly

o Three states: Cool, Warm, Overheated
Two actions: w, Fast
ts d

e reward

Going faster

Slow

Overheated
T ——



Ma~xov Des —
Proesy

_<Racing Search Tree
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MDP Search Trees S—

o Each MDP state projects an expectimax-like search tree %

Q/_—> S is a state
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> (s,a,s’) called a transition

T(s,a,s’) =

-~



Utilities of Sequences




Utilities of Sequences

o What preferences should an agent have over reward sequences?

——

[1,2,2] or [2,3,4]
?
O More or less _ -

g#

0,0, 1 or
© Now or later? — = - S
—




Discounting

o It’s reasonable to maximize the sum of rewards

o It's also reasonable to prefer rewards now to rewards later

O One solution:-values of rewards decay exponentially

&‘/( ./
Vv 9 &
@ 2

T L
Worth Now Worth Next Step Worth In Two Steps
0 O/ <




Discounting

w6

o How to discount?

o Each time we descend a level, we
multiply in the discount once

o Why discount?

o Think of it as a gamma chance of
ending the process at every step

so helps our algori@rge

o Example: discount of 0.5
o U([1,2,3])=1*1 +0.5"2 + 0.25"3
o U([,23])<U(321h . —

e



Quiz: Discounting
: v
o Given: *° 0 1> ef

a b C d e
o Actions: East, West, and Exit (only available in exit states a, e)

o0 Transitions: deterministic

— €= —
0 Quiz 1: For y = 1, what is the optimal policy? 10|< | ¥ |1
—_—
E—0 e{h ‘f( &\'—_"
0 Quiz 2: For y = 0.1, what is the optimal policy? 0 < |g~ =11

Z

0 Quiz 3: For which y are\%\/gsto aidéia;t iqually good when 1&15 §‘r)a\t% d+?_ i
1y=10 43 ~ 3 gl X\
Ly Q40D +0xy2 & (oxT - —

——
—



Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

» Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)

= Policy m depends on time left =

. Dise0<y<1

T —

= Absorbing state: guarantee that for every policy, a terminal state will eventually be

(r@efd (like “@wated” for racing)




Recap: Defining MDPs

© Markov decision processes:

o Set of statesS  ~— R
o Start state s _—
0Set of actions A~ G S
o Transitions.P(s’ I s,a) (or T(s,a,s")) —
o Rewards R(s,a,s”) (and discount y) /,x"’sia,s'
— =
oM ntities so far:
O Choice of action for each state

o Utility =’sum of (discounted) rewards



Solving MDPs




MDP Search Trees.,—

o Each MDP state projects an expectimax-like search tree

\
%

(s,a,s’) called a transition

S, a
e T(s,a,s’) = P(s’|s,a)

R(s,a,s’)




Optimal Quantities

’

)
Wi CM%

= The yalue (utility) of a state s:_ /s
N 1 . : sisa
@ expected utility starting in s and L S
acting optimally
(s,a)is a
= The value (utility) of a g-state (s,a): g-state
Q*(s,a) = expected utility starting out (s,a,5') is a

(thereafter) acting optimally

/‘

= The optimal policy:
nt*(s) = optimal action from state s

having taken action a from state s and A - transition
= Ny L".



Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS NO‘Se
Discount & 0.9 )0
o)

Living reward



Snapshot of Demo — Gridworld Q Values




Values of States (Bellman Equations)

© Fundamental operation: compute the (expectimax) value of a state

o Expected utility underoptimal action
O A\Le;a.ge_smgf_(.diseea-n.ted,) rewards /ﬂ’/

o This is just what expectimax computed!
(S A

O Recursive definition of value:
V*(s) = max Q*(s,a)

~S
Q*(s,a) = ZT(S, a,s) [R(s, a,s’) + "}/V*(S,)}

V*(s)—ma T(s,a,s) |R(s,a,s") +~V*(s ’)}'
VCSL maux < s PSS RO eV (S\l



Racing Search Tree




Racing Search Tree
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Racing Search Tree

o We're doing way too much work
with expectimax!

~

O Problem: States are repeated

o Idea quantities: Only compute
needed once

O Problem: Tree goes on forever

o Idea: Do a depth-limited -
computation, but with increasing
depths until change is small

o Note: deep parts of the tree
eventually don’t matter if y <1

0

LIEEINEL
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Recap: Defining MDPs

© Markov decision processes: A
O Set of states S
o Start state s
———
O Set of actions A
o Transitions P(s’ IW
o Rewards R(s,a,s”){and discount v) /
%

© MDP quantities so far:

0 Reliey==Choice of action for each state
o Utility= sum of (discounted) rewards



The Bellman Equations

How to be optimal:

*xStep 1: Take correct first action
< —

Step 2§Keep being optimal




The Bellman Equations
o Definition of ”céltimal utility” via expeBDimax recurrence gives a simple
one-step lookah ' ' ngst optimal utility values

Vi(s) = m@X Q*(s,a)
Q*(s,a) = gg(s, a, SQ LR(s, a,iz -QV*(S/)}
N\ ~
Emax) T(s,a,8) [R(s,a,8) + V()]

valuce ... o .o LS i e o

&

_ )




Time-Limited Values

O Kez idea: time-limited values

e Defin@ be the optimal value of s if the game

ends in k more time steps

o Equivalently, it's what a deptreexpeetimax would give from
S

‘ (@)
V»L( f) (P«/%;\ "
W" @‘é;)\fb >

V‘ (5) ﬁ)A/\ /\AR RA/\,?

[Demo — time-limited values (L8D6)]



VALUES AFTER O ITERATIONS N?ise =0.2
Discount =0.9

Living reward =0




k=1 /()

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




;\<$’D _
Vo [S) k=2

V(S

—

h (€)

VALUES AFTER 2 ITERATIONS Noise = 0.2 &/

Discount = 0.
Living reward =




VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




k=7

GCridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




k=11

GCridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




k=100 +"

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Computing Time-Limited Values

J 3
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Value Iteration




Solving MDPs




Value Iteration

o Start with Vo(g = 0: no time steps left means an expected reward sum of zero
\L

_\_:‘

o Given vector of V, (s) values, do one ply of expectimax from each state:

% T(s,a,s) |R(s,a,s’) (s)
Lk+1@<_EX%’: . | *@Vk |

Pt S T =

— <

o Repeat until conyergence

—

—

o Complexity of each iteration: O(S2A)

0 Theorem: will converge to unique optimal values
O Basic idea: approximations get refined towards optimal values

O Policy may converge long before values do

"




Example: Value Iteration

Overheated

S: 1
Vi F: 5*2+.5*2=2 5

VO [ (9 O O ] Vk—|—1(8) < maaXZT(S’ a, Sl) [R(*S) a, 8,) =+ 8 Vk(s,)]

p S

Assumego discount!




Example: Value Iteration

S: .5*1+.5*1:1 - ' C-)_v’erheaterd 4
h [ 2 F10 ] |

Assume no discount!

Vo [ 0 0 0 ] Vig1(s) <= max > T(s,a,5') |R(s,a,s") +~Vi(s)]

S




Example: Value Iteration

Assume no discount! \6 po .1

" [ 0 O — \;O Vig1(s) <= max > T(s,a,5') |R(s,a,s") +~Vi(s)]
w* R ) = 3,\ S,()—-
/'L -
S/'r +2 + 0.9 [V,LQWWQ.*-VKCCODQ‘X




Example: Value Iteration

[ + 00
Assume no discount!

] Vie+-1(8) :@(s a,s’) [R(s aD Vk(s’)]
@-& O 5(\) (v’) N \/\(CO"Q - 12

"7



Example: Value Iteration

Overheated

Assume no discount!

Vo [ 0 0 0 ] Viet1(8) méaxZT(s,a,S') [R(S,aa s") + VVk(SI)]

S




Value lteration

o Bellman equations characterize the optimal values:

B(S) — maax Z T(S7 a, S,) {R(S7 a, 3’) _|_ W@S/)} X
s/ ¢

o Value iteration computes them: ——

—_—
@(s) < mC?XZT(s, a,s) {R(s, a,s’) + 7@3/)}
Voég) ..

f . . . . . . .
o Value iteration is just a fixed point solution method

o ..though the V, vectors are also interpretable as time-limited values



Convergence®
BENLE v <)

o How do we know the V| vectors are going to converge?

> Case 1: If the tree has maximum depth M, then V,, holds the
actual untruncated values

o Case 2: If the discount is less than 1
o Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

o The difference is that on the bottom layer, V, ., has actual rewards

k+1
while V, has zeros

That last layer is at best all R, ,,

@)

It is at worst RMIN

But everything is discounted by yk that far out
SoV,andV

«+1 are at most yk max|R| different

O O O O

So as k increases, the values converge

&




ethods
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Policy Evaluation




Fixed Policies

Do th@ction Do Wha@ays to do

5 m(s),s

~
~
~
~
~
~
~
~
~
A
- S -
—

o Expectimax trees max over all actions to compute the optimal values
M

o If we fixed some policy ni(s), then the tree would be simpler — only one action per state

o ... though the tree’s value would depend on which policy we fixed



O Another basic operation: compute the utility of a state s

Utilities for a Fixed Policy

S
under a fixed (generally non-optimal) policy
V/ (s)
e the utility of a state s, under a fixed policy = v 5 m(s)

g6,

= expected tota discounted

o Recursive relation (one-step look-ahead / Bellman

@_ ;T(S’ m(s), s )[R(s,m(s),s") + V™ (s")]

Vﬁcs)

following =

™A X

(55’

S starting in s an

ir

(S, s s )Kﬁ\(s,cms),g' )j}/n S\}LS A
1ASY,

—



Example: Policy Evaluation

Always Go Right Always Go Forward c[




Example: Policy Evaluation

Always Go Right Always Go Forward

100.00 -10.00 -10.00 100.00 -10.00
o~
—10.00 1.09 » —10.00 -10.00 -10.00

-

—10 00 —7 . 88 }’ —10 09 -10.00 -10.00
-

-8.69 ) —10 00 ‘ -10.00 l 33.30 ! -10.00 \




O

olicy Evaluatio
——

How do we calculate the V’s for a fixed policy n?

Idea 1: Turn recursive Bellman equations into updates

(like valué iferation)

Voi(s) =0
Vig1(s) T(s,7(s),s)[R(s,m(s),s") + vV (s)]
- 2 ——
Efficiency: O(S2) per‘iteration
y p )rZ (

Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve with Matlab (or your favorite linear system solver)

K,,s;"&(s),s’



Policy Extraction




Computing Actions from Values

o Let’'s imagine we have the optimal values V*(s) .n.
S 0.95 » 0.98 »|| 1.00
o How should we act?
}o 0.89 ||-1.00
o It’s not obvious!
0.92 |« 0.91 0.80
o We need to do a mini-expectimax (one step) .

7 (s) = arg max " T(s, a. ) [R(s,a, &) + V()]

O This is called anee it gets the policy implied by the values



Computing Actions from Q-Valu@

(\ ‘boi(g)(f\\)

o Let’s imagine we have the optimal WW
q-values NN

2] ]
© How should we act? A

o Completely trivial to decide!

oo

m*(s) = arg max Q*(s,a)

o Important lesson: actions are easier to select from g-values than values!



Recap: MDPs

O Search problems in uncertain environments
© Model_uncertainty with transition function

O Assign utility to states. How? Using reward functions

© Decision making and search in MDPs <-- Find a sequence of actions
that maximize expected sum of rewards

o Value of a state

o @Q=Valte of a state
o Poticy for a state

74



Policy Iteration




Solving MDPs

o Finding the best policy > mapping of actions to states

o So far, we have talked about two methods
O Po%fgy evaluation: computes the value of a fixed policy

5 . . :
Vé_u.e_u‘iatlon./computes the optimal values of sts %




Problems with Value Iteration

O Value iteration repeats the Bellman updates: S

N\ ok«
Vi41(s) < mC?XZT(s,a, s [R(s,a, s + 'ka(s’)]
— -

0 Problem 1: It's slow — O(S2A) per iteration

0 Problem 2: The “max” at each state rarely changes
— =

O Prob@.e policy often converges long before the val




k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Policy Iteration

o Alternative approach for optimal values:

o Step 1«Policyevaluatiom=calculate utilities for some fixed policy (not optimal
utilities!) until convergence ( AT )

o Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values W\

o Repeat steps until p%%gges

o This is policy iteration
o It's still optimal!

o Can conwverge (much) faster under some conditions




Policy Iteration

o Evaluation: For fixed current policy =, find values with policy evaluation:

o Iterate until values converge:

Vi1 (s) ZT(s mi(s),8") |R(s,mi(s),s") + vV (s))]

o Improvement: For fixed values, get a better policy using policy extraction
0 One-step look-ahead:

mi4+1(s) = arg maxZT(s, a,s) {R(s, a,s’) + vVﬁi(S/)}

Sl



O

O

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
o Every iteration updates both the values and (implicitly) the policy

o We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
o We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

© The new policy will be better (or we're done)

Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

© S0 you want to....

o Compute optimal values: use value iteration or policy iteration

o Compute values for a particular policy: use policy evaluation

o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!

o T]
o T]

ney basically are — they are all variations of Bellman updates

hey all use one-step lookahead expectimax fragments

o T]

ney differ only in whether we plug in a fixed policy or max over actions



The Bellman Equations

How to be optimal:

Step 1: Take correct first action




Next Topic: Reinforcement Learning!



