CSE 573: Artificial Intelligence

Hanna Hajishirzi Markov Decision Processes

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Announcements

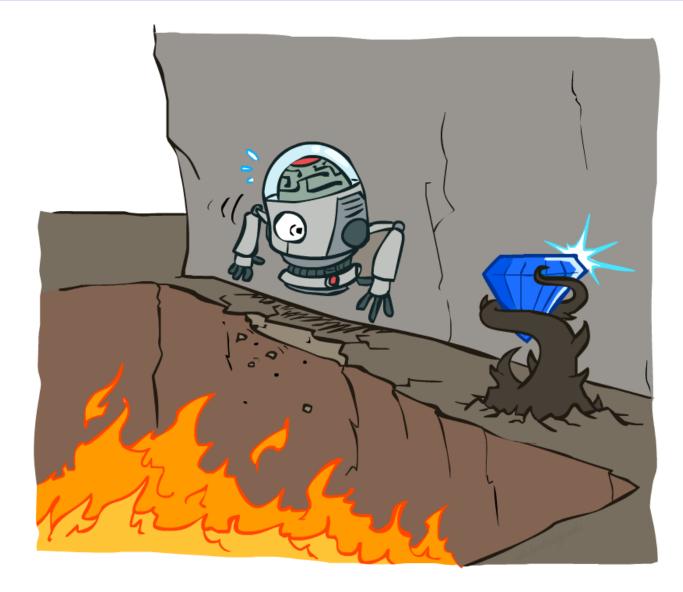
- PS2 (due Feb 5th)
- HW1 (due Feb 10th)
- Project Proposal: Feb 17th

• Remember to fill out: Mid Quarter Review

Review and Outline

- Adversarial Games
 - Minimax search
 - α-β search
 - Evaluation functions
 - Multi-player, non-0-sum
- Stochastic Games
 - Expectimax
 - Markov Decision Processes
 - Reinforcement Learning

Non-Deterministic Search



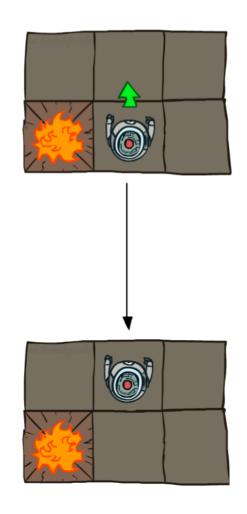
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)

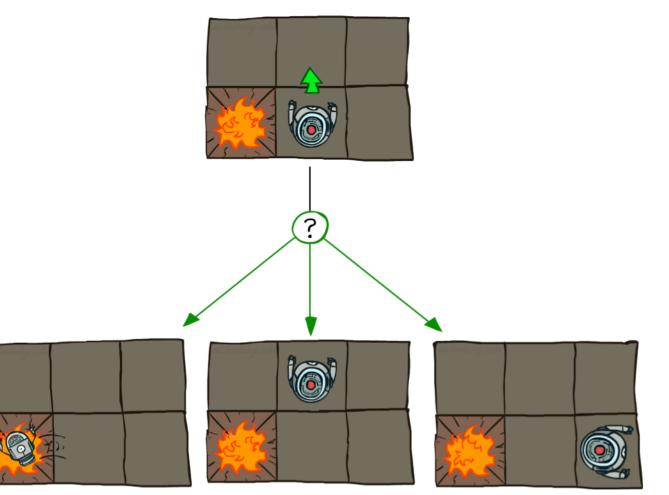


Grid World Actions

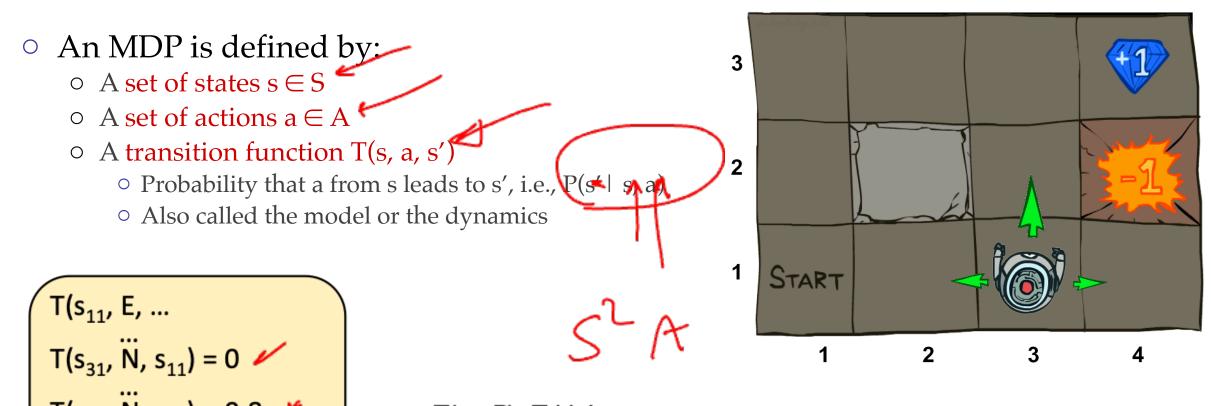
Deterministic Grid World



Stochastic Grid World



Markov Decision Processes



T is a Big Table! 11 X4 x 11 = 484 entries

For now, we give this as input to the agent

Markov Decision Processes

- An MDP is defined by:
 - \circ A set of states $s \in S$
 - \circ A set of actions a \in A
 - A transition function T(s, a, s')
 - $\circ\,$ Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics

A reward function R(s, a, s')
 Sometimes just R(s) or R(s')

$$R(s_{32}, N, s_{33}) = -0.01$$

$$R(s_{32}, N, s_{42}) = -1.01$$

$$...$$

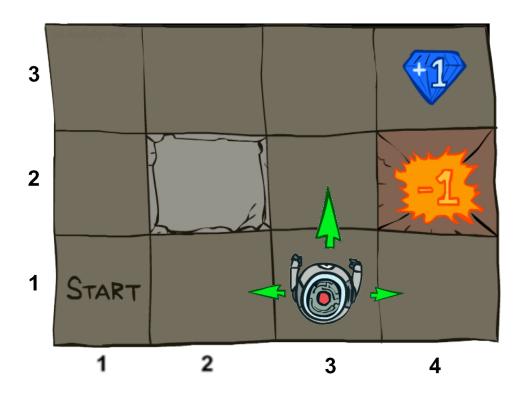
$$R(s_{33}, E, s_{43}) = 0.99$$

Cost of breathing

R(s,a)

R is also a Big Table!

For now, we also give this to the agent



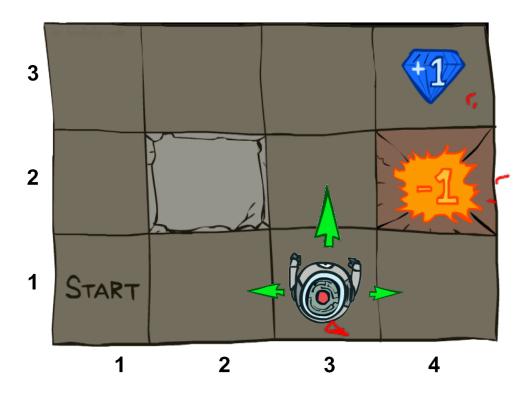
Markov Decision Processes

• An MDP is defined by:

- $\circ \ A \text{ set of states } s \in S$
- \circ A set of actions $a \in A$
- A transition function T(s, a, s')
 - $\circ\,$ Probability that a from s leads to s', i.e., P(s' \mid s, a)
 - Also called the model or the dynamics
- A reward function R(s, a, s')
 - \circ Sometimes just R(s) or R(s')
- A start state
- Maybe a terminal state

MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We'll have a new tool soon



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s_{t}|S_{t} = s_{t}, A_{t} = a_{t}, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_{0} = s_{0})$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

This is just like search, where the successor function could only depend on the current state (not the history)

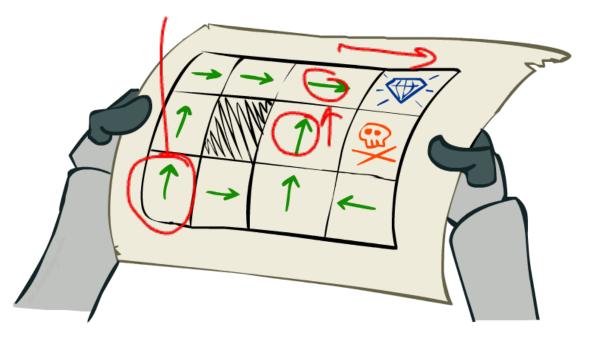
Andrey Markov

(1856-192

Policies

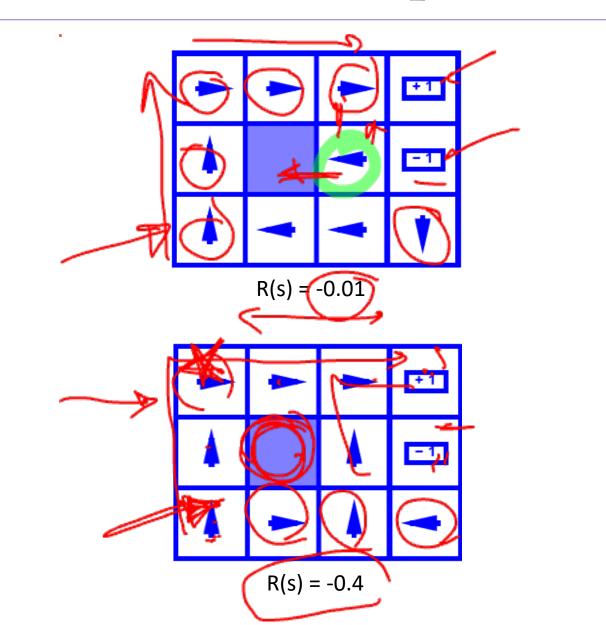
- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal

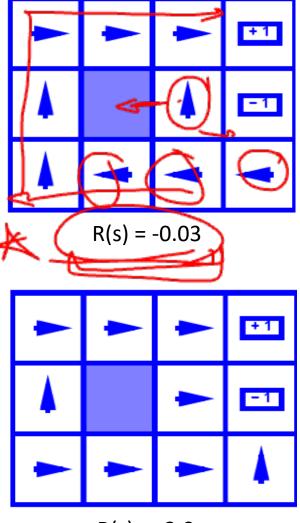
 - policy $\pi^*: S \rightarrow A$ A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent



Optimal policy when R(s, a, s') = -0.4 for all non-terminals s

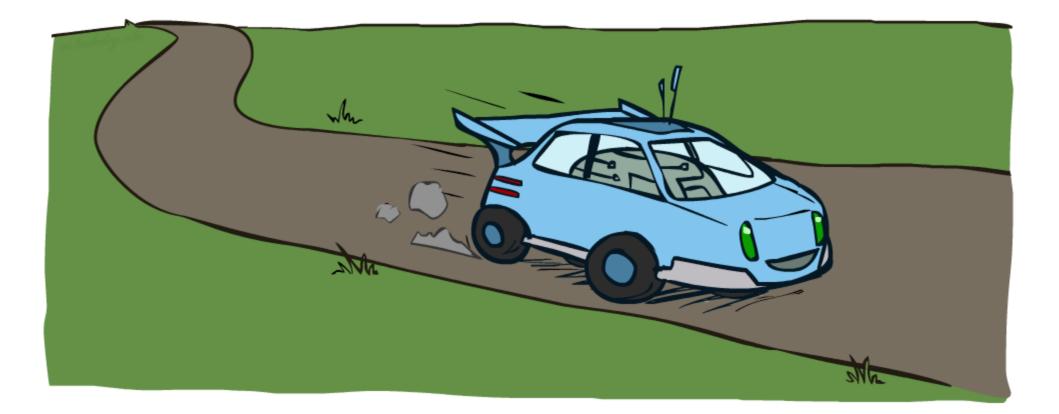
Optimal Policies



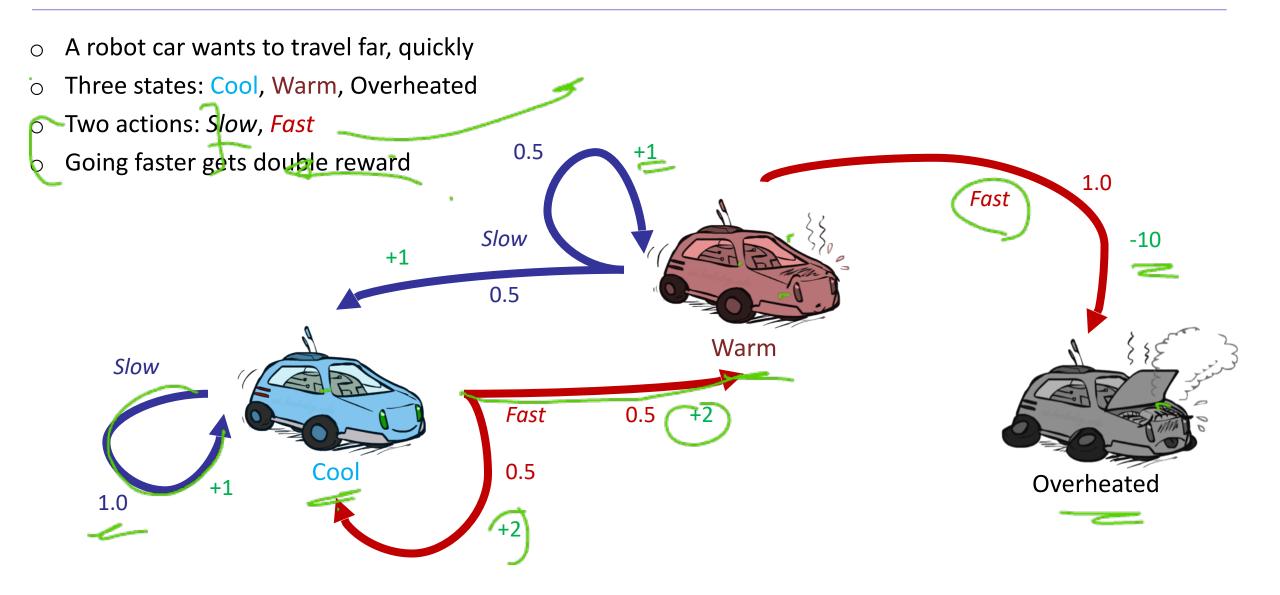


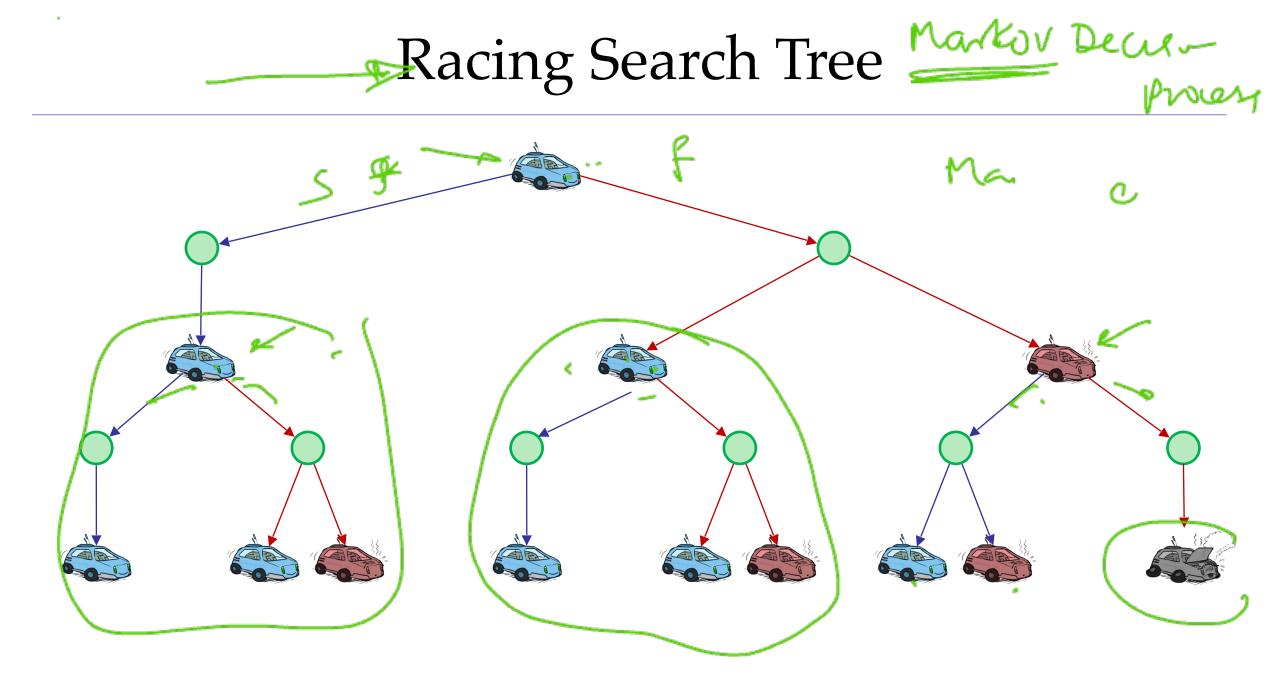
R(s) = -2.0

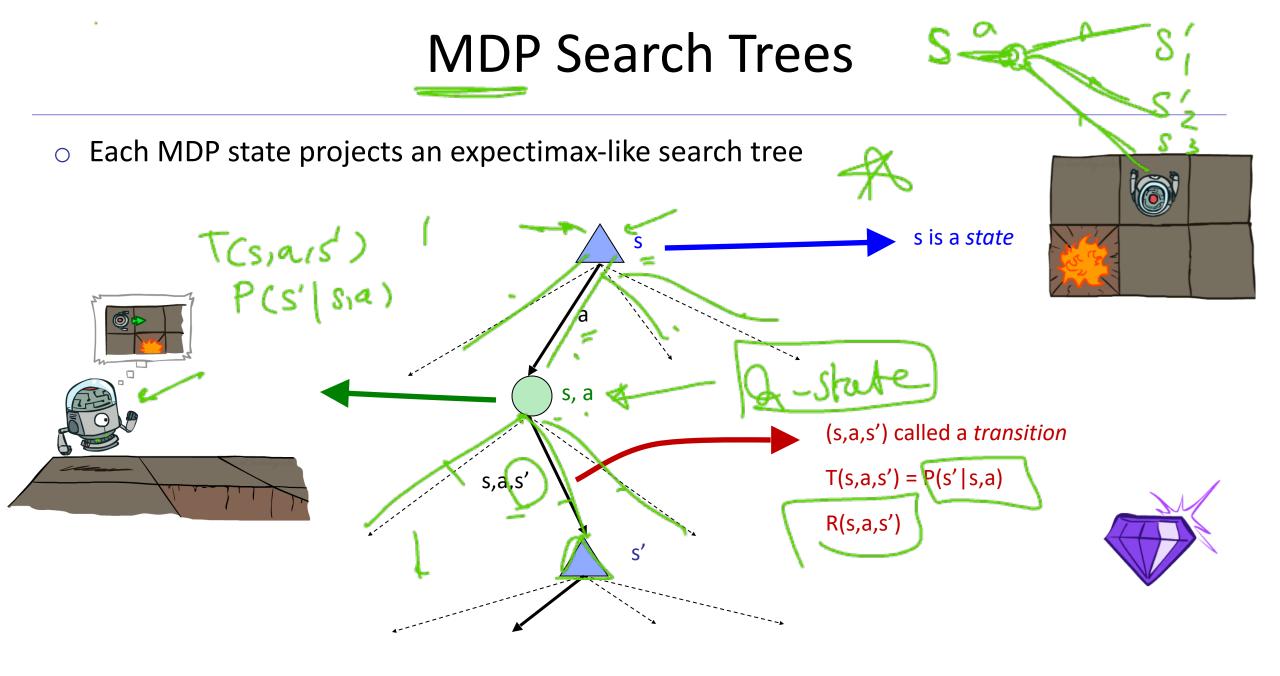
Example: Racing



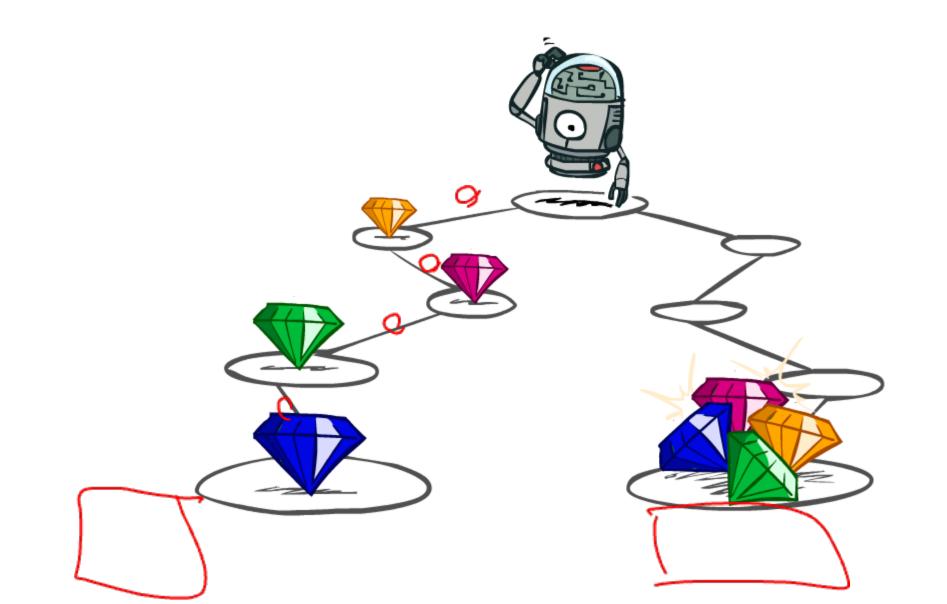
Example: Racing





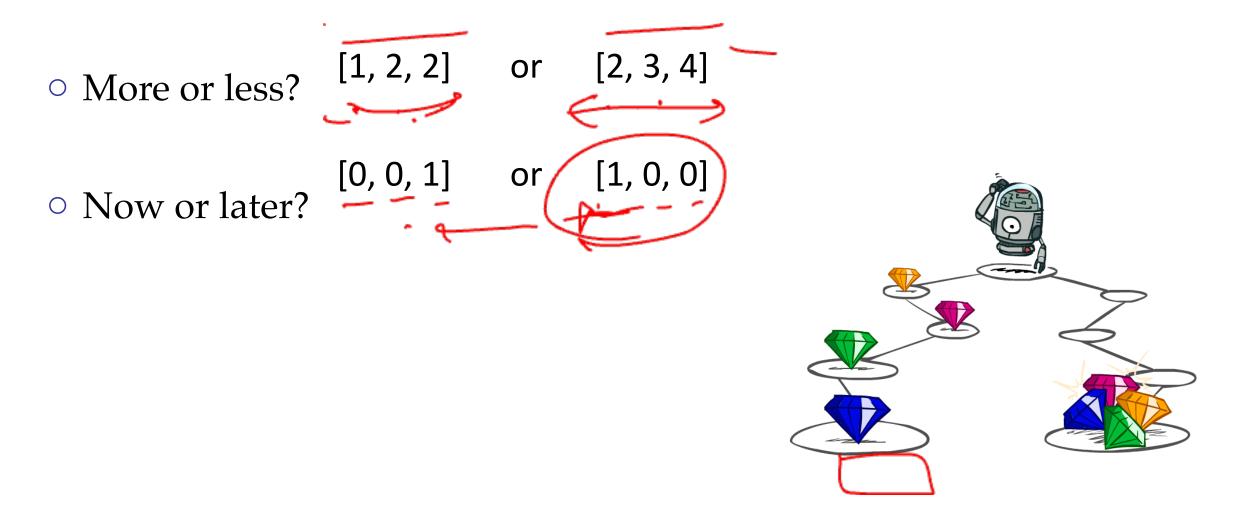


Utilities of Sequences



Utilities of Sequences

• What preferences should an agent have over reward sequences?



Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

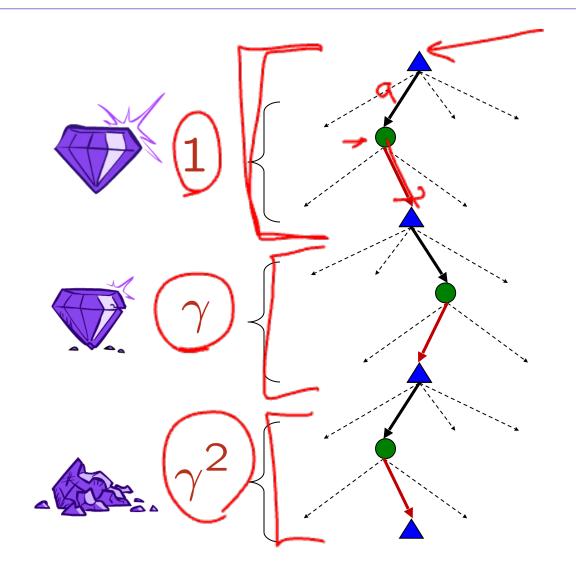
Discounting

• How to discount?

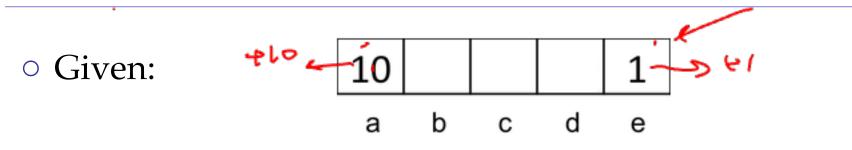
• Each time we descend a level, we multiply in the discount once

• Why discount?

- Think of it as a gamma chance of ending the process at every step
 Also helps our algorithms converge
- Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 U([1,2,3]) < U([3,2,1])



Quiz: Discounting



• Actions: East, West, and Exit (only available in exit states a, e)

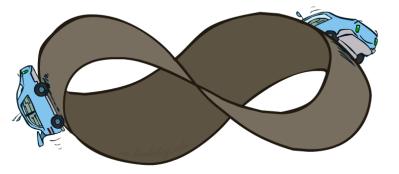
• Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy? • Quiz 2: For $\gamma = 0.1$, what is the optimal policy? • Quiz 3: For which γ are West and East equally good when in state d? $\zeta_{1} = 0$ $\gamma^{3} + 0$ $\chi_{1}^{2} + 0$ $\chi_{$

Infinite Utilities?!

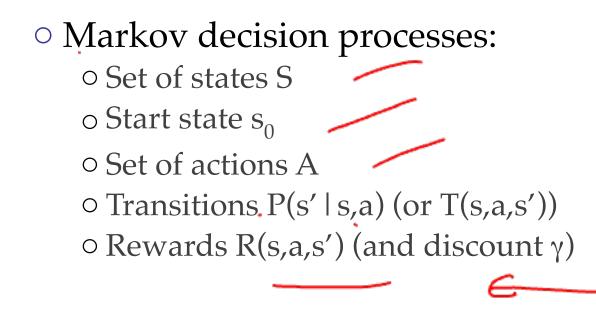
- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left

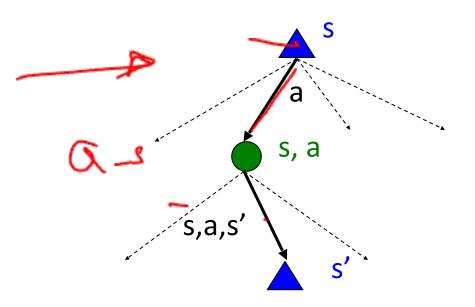
• Discounting: use $0 < \gamma < 1$



- $U([r_0, \dots, r_\infty)) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max} / (1 \gamma)$
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

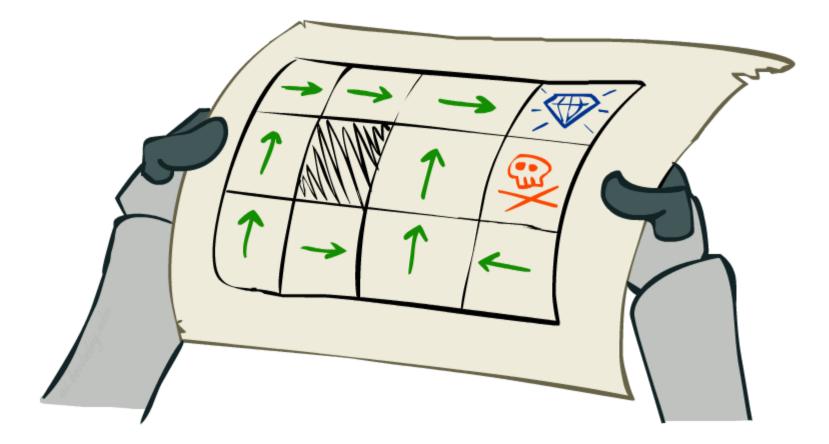
Recap: Defining MDPs



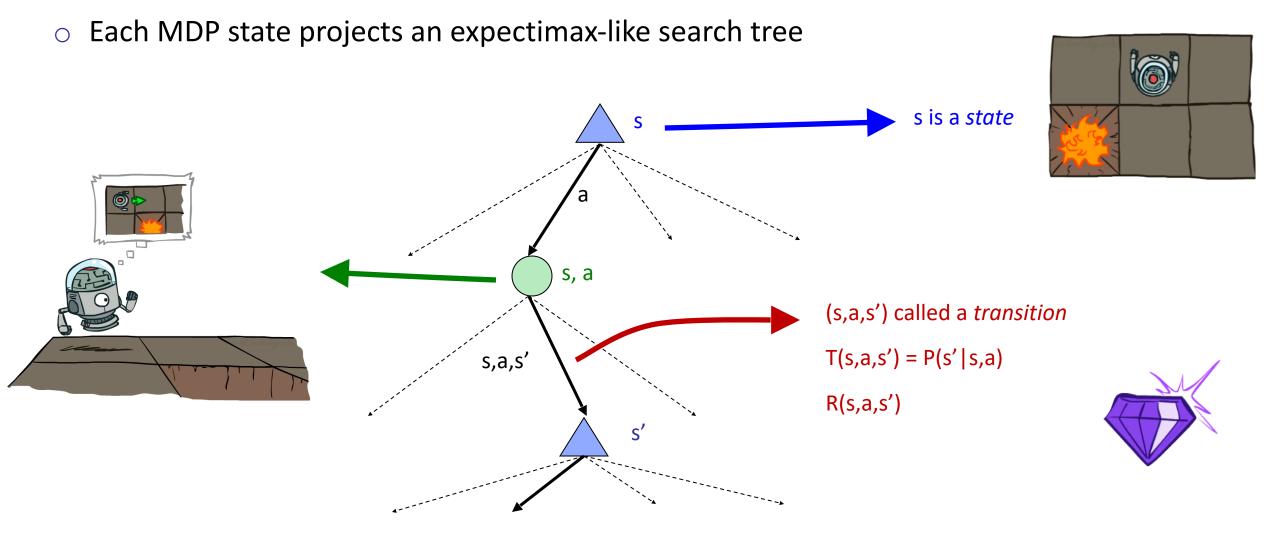


MDP quantities so far:
 Policy = Choice of action for each state
 Utility = sum of (discounted) rewards

Solving MDPs



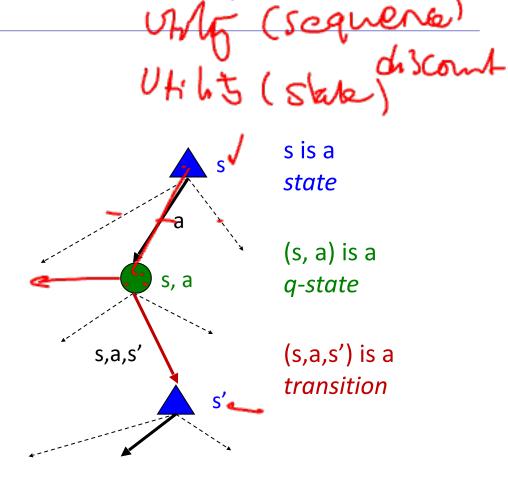
MDP Search Trees



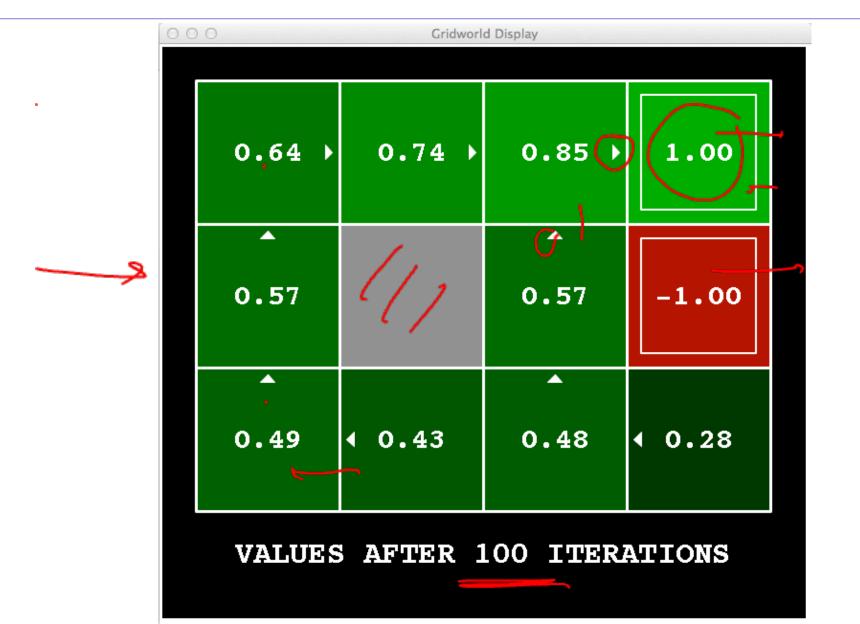
Optimal Quantities

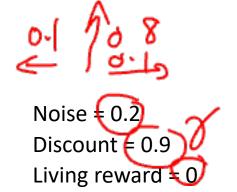
- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

 $\pi^*(s)$ = optimal action from state s

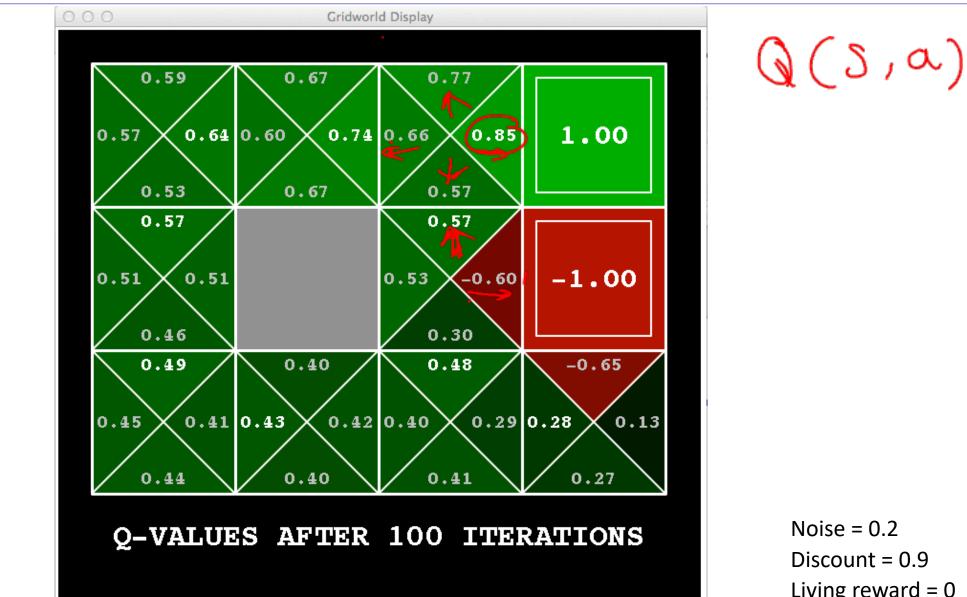


Snapshot of Demo – Gridworld V Values





Snapshot of Demo – Gridworld Q Values



Noise = 0.2Discount = 0.9Living reward = 0

Values of States (Bellman Equations)

S

s,a.s

• Fundamental operation: compute the (expectimax) value of a state

- Expected utility under optimal action
- Average sum of (discounted) rewards

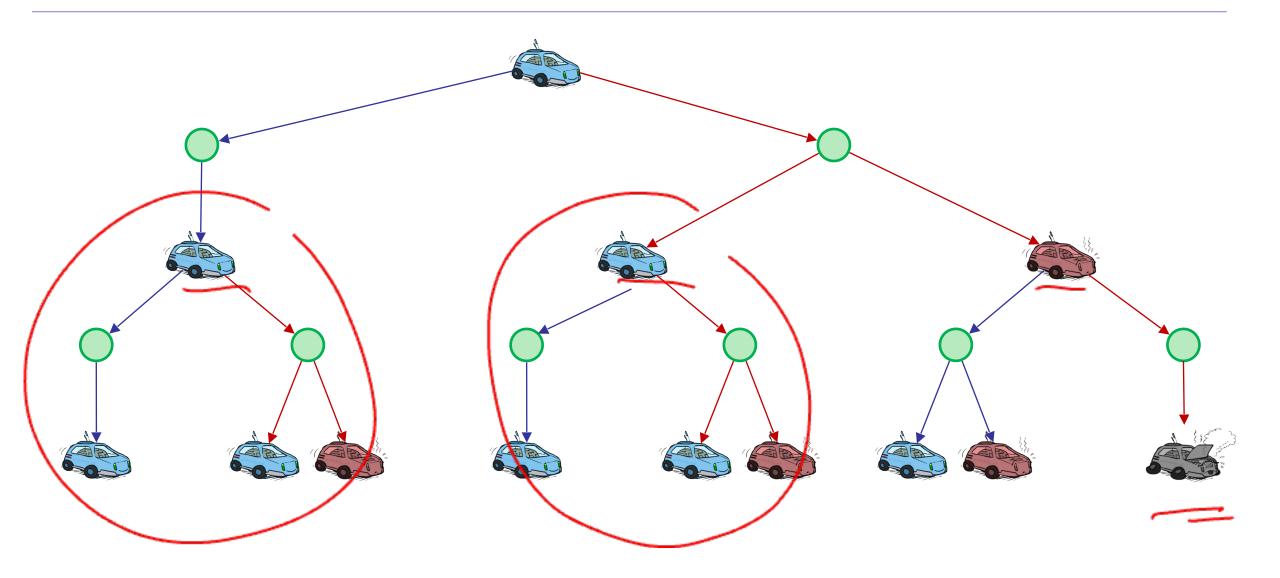
• This is just what expectimax computed!

• Recursive definition of value: $V^*(s) = \max_a Q^*(s, a)$

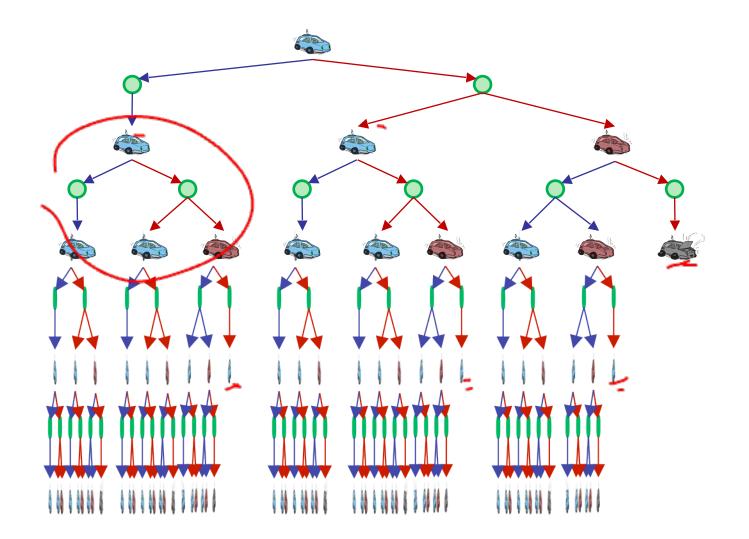
$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

 $V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \begin{bmatrix} R(s, a, s') + \gamma V^{*}(s') \end{bmatrix}$ $V^{*}(s) = \max_{a} \sum_{s'} P(s' | s_{i}a) \begin{bmatrix} R(s, a, s') + \gamma V^{*}(s') \end{bmatrix} \begin{bmatrix} V^{*}(s) \\ V^{*}(s) \end{bmatrix}$

Racing Search Tree

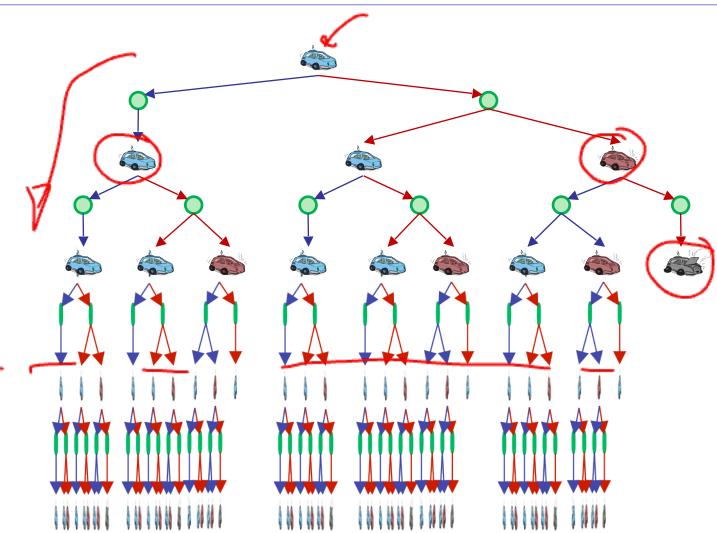


Racing Search Tree



Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea quantities: Only compute needed once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$



CSE 573: Artificial Intelligence

Hanna Hajishirzi Markov Decision Processes

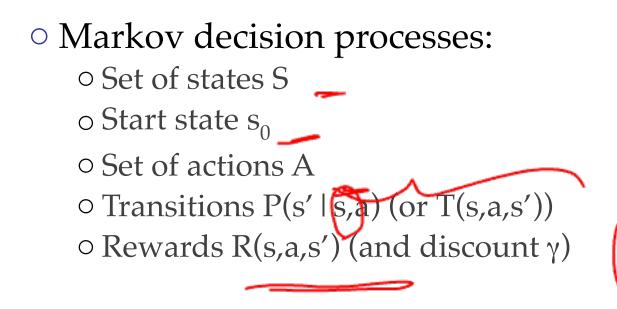
slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

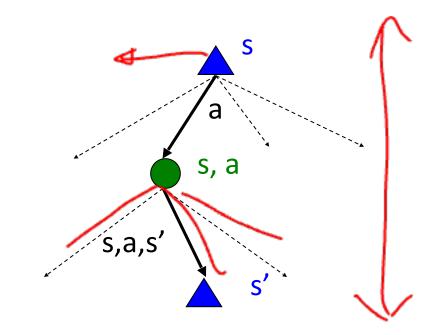
Announcements

- PS2 (due Feb 5th)
- HW1 (due Feb 10th)
- Project Proposal: Feb 17th

• Remember to fill out: Mid Quarter Review

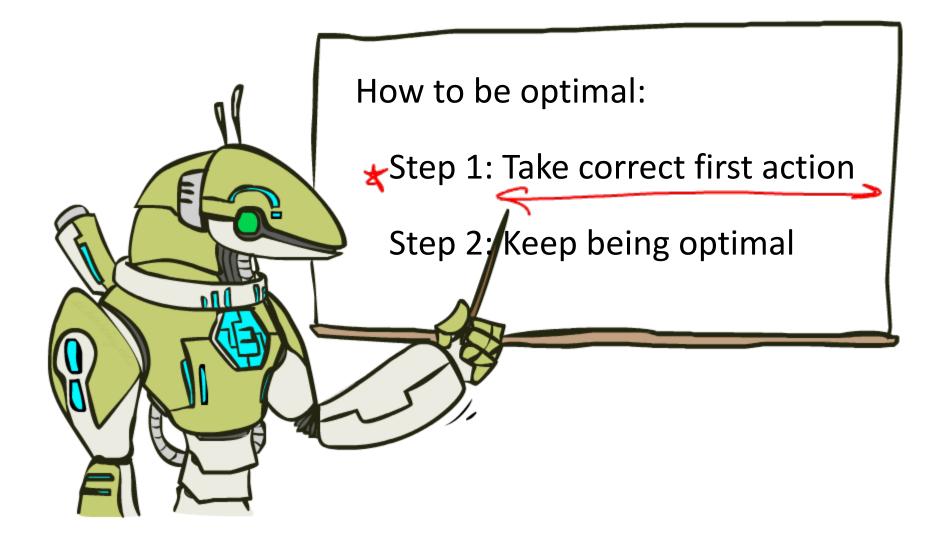
Recap: Defining MDPs



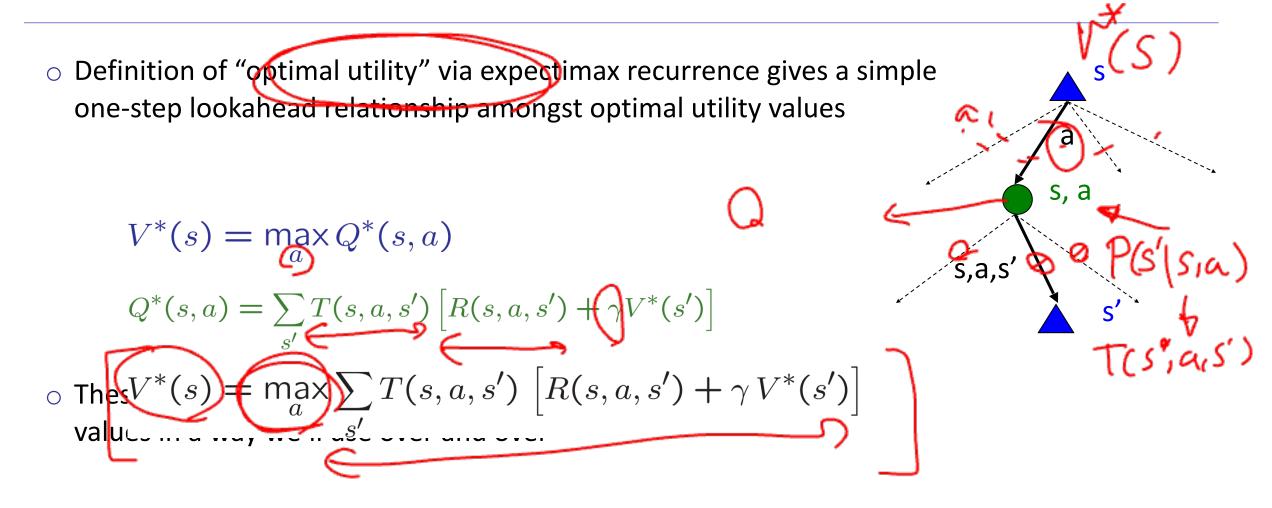


MDP quantities so far:
 Policy - Choice of action for each state
 Utility = sum of (discounted) rewards

The Bellman Equations



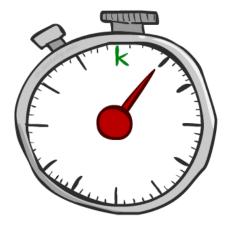
The Bellman Equations

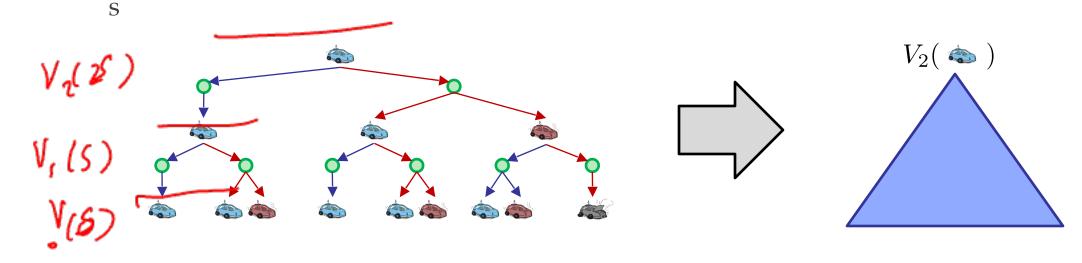


Time-Limited Values

Key idea: time-limited values
Define V_k(s) to be the optimal value of s if the game ends in k more time steps

• Equivalently, it's what a depth-k expectimax would give from



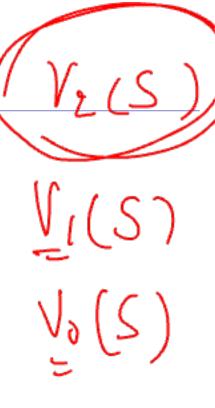


0.0	0	Gridworl	d Display	-
	0.00	0.00	0.00 →	1.00
	^			
	0.00		∢ 0.00	-1.00
	^	^	^	
	0.00	0.00	0.00	0.00
				•

VALUES AFTER 1 ITERATIONS

0	0	Gridworl	d Display	
			\mathcal{T}	
	•	0.00 →	0.72	1.00
	•		0.00	_1.00
	0.00	• 0.00	• 0.00	0.00

VALUES AFTER 2 ITERATIONS



Noise = 0.2 Discount = 0.9 Living reward = 0

r

k=4

0 0	0	Gridworl	d Display	
	0.37)	0.66)	0.83 →	1.00
	•		• 0.51	-1.00
	•	0.00 →	• 0.31	∢ 0.00
	VALUE	S AFTER	4 ITERA	FIONS

000)	Gridworl	d Display	
	0.51)	0.72 ♪	0.84)	1.00
	• 0.27		• 0.55	-1.00
	•	0.22 →	• 0.37	∢ 0.13
	VALUE	S AFTER	5 ITERA	FIONS

k=6

Gridworld Display				
0.59 ▶	0.73 →	0.85)	1.00	
• 0.41		• 0.57	-1.00	
• 0.21	0.31 →	• 0.43	∢ 0.19	
VALUES AFTER 6 ITERATIONS				

0 0	Gridworld Display				
	0.62 ▸	0.74 →	0.85)	1.00	
	• 0.50		• 0.57	-1.00	
	• 0.34	0.36)	▲ 0.45	∢ 0.24	
	VALUE	S AFTER	7 ITERA	FIONS	

0 0	0	Gridworl	d Display	
ſ	0.63)	0.74 →	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

○ ○ ○ Gridworld Display				
0.64 ≯	0.74 ▸	0.85)	1.00	
• 0.55		▲ 0.57	-1.00	
▲ 0.46	0.40 →	▲ 0.47	∢ 0.27	
VALUES AFTER 9 ITERATIONS				

000	Gridworl	d Display	
0.64)	0.74 →	0.85 →	1.00
• 0.56		• 0.57	-1.00
▲ 0.48	∢ 0.41	• 0.47	∢ 0.27
VALUE	S AFTER	10 ITERA	TIONS

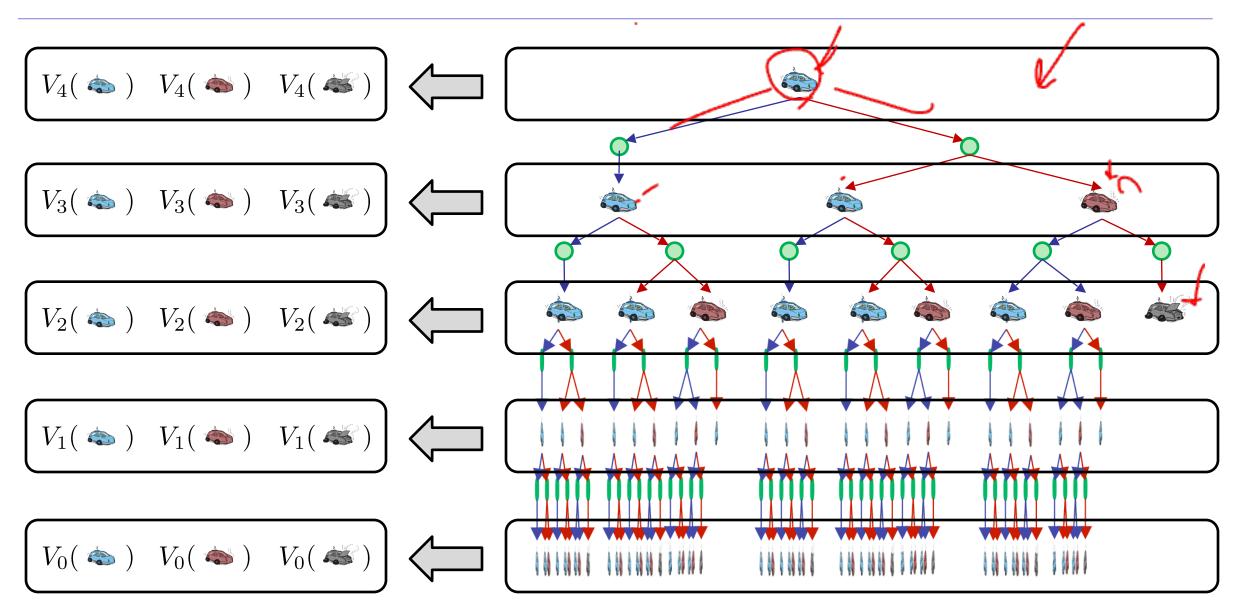
000	de la constante de la constante Alterna en que constante de la constante	Gridworl	d Display	
	0.64)	0.74 ▸	0.85)	1.00
	• 0.56		• 0.57	-1.00
	▲ 0.48	◀ 0.42	• 0.47	◀ 0.27
	VALUE	S AFTER	11 ITERA	TIONS

C Cridworld Display				
0.64)	0.74)	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.42	• 0.47	∢ 0.28	
VALUES AFTER 12 ITERATIONS				

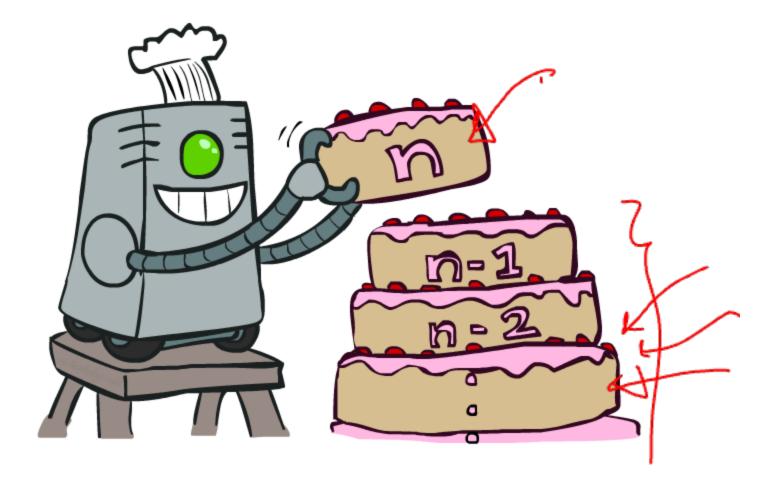
k=100

0.0	Gridworl	d Display		
0.64)	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
▲ 0.49	∢ 0.43	• 0.48	∢ 0.28	
VALUES AFTER 100 ITERATIONS				

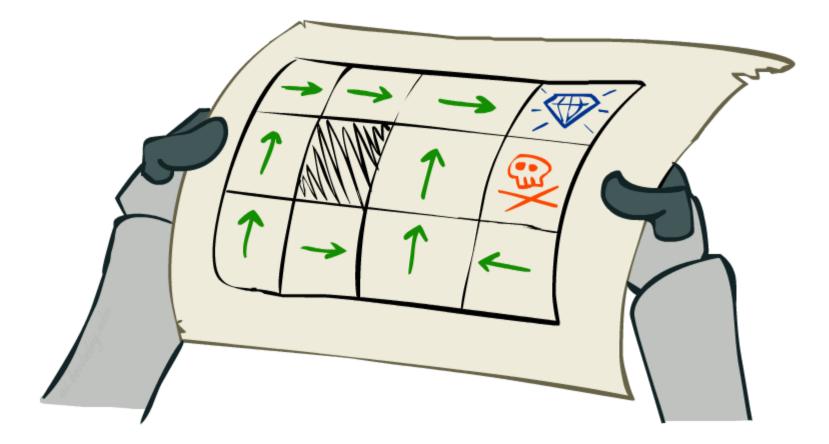
Computing Time-Limited Values



Value Iteration

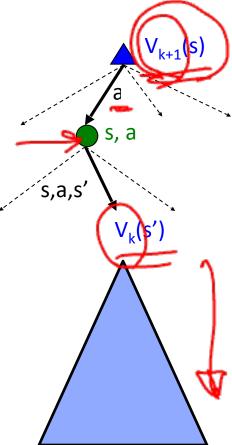


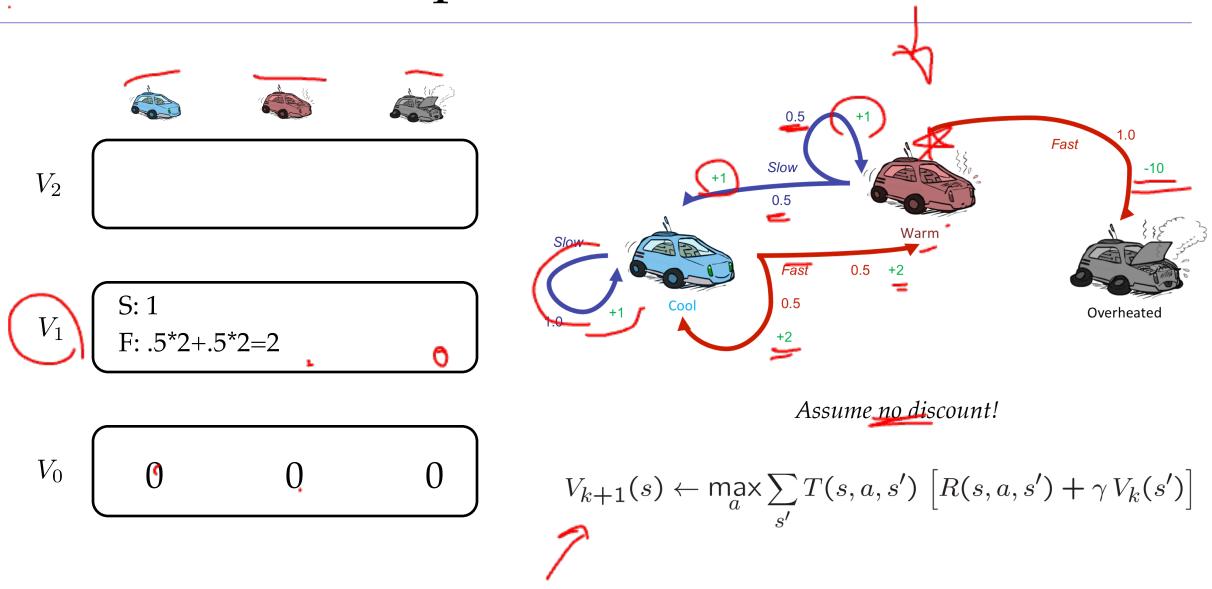
Solving MDPs



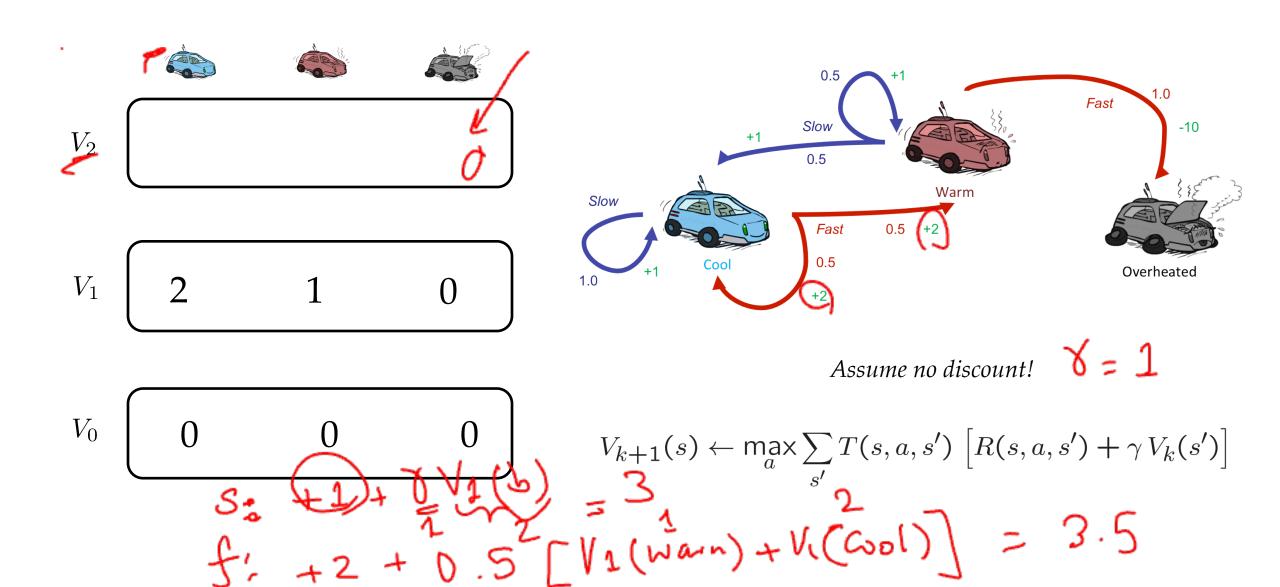
Value Iteration

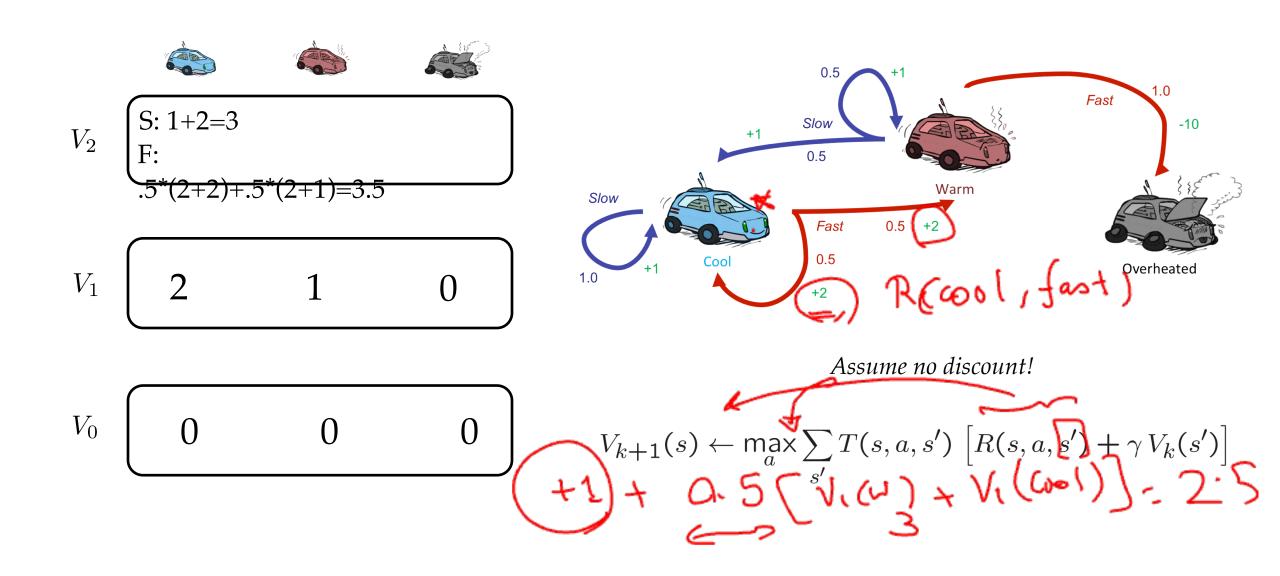
- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:
 - $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$
- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

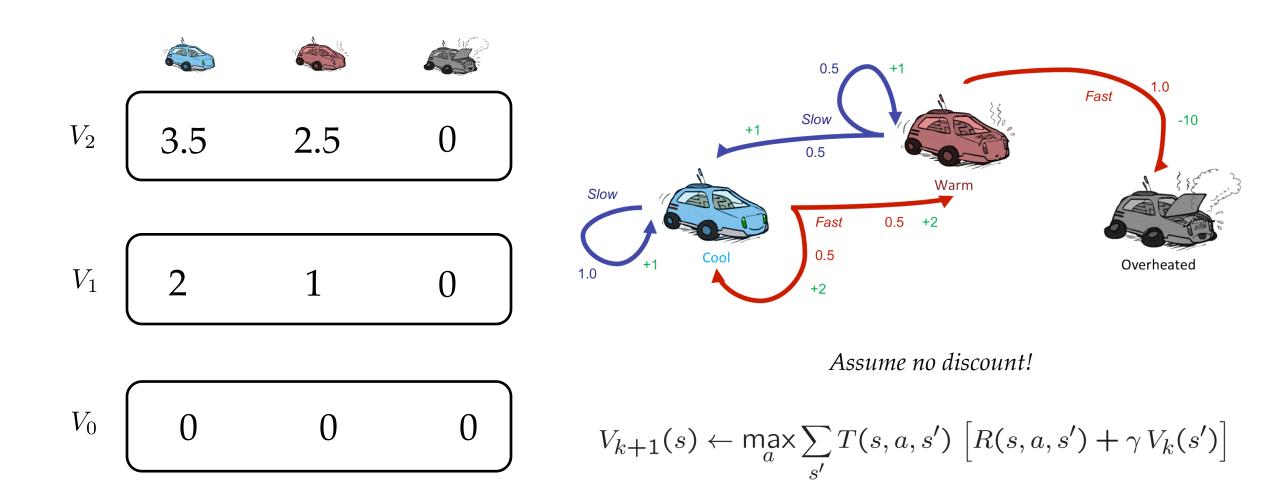












Value Iteration

1

• Bellman equations characterize the optimal values:

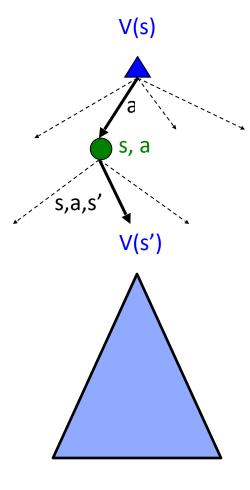
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_{k}(s') \right]$$

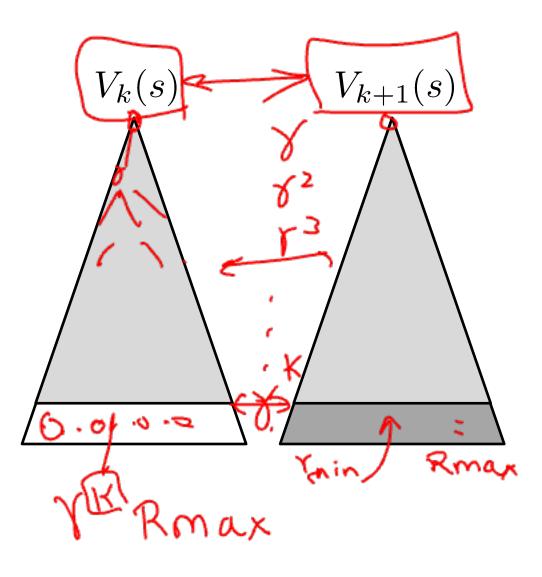
Value iteration is just a fixed point solution method

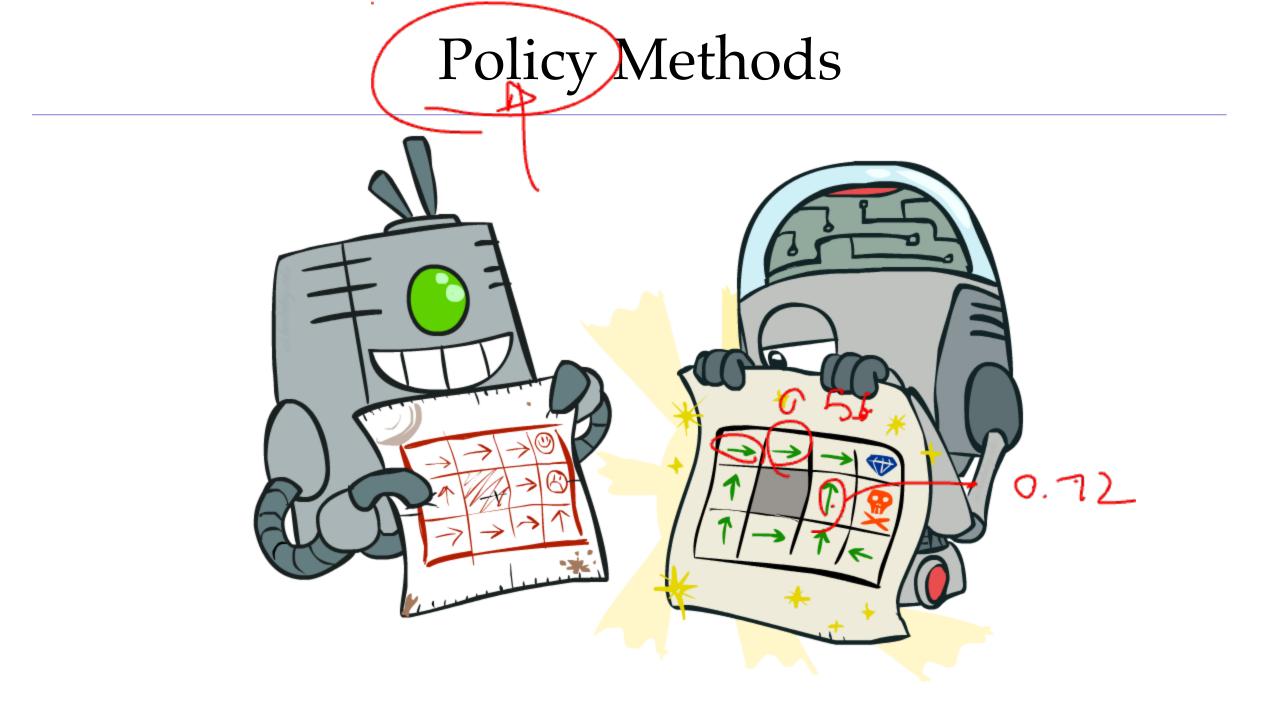
 $_{\rm O}$... though the V_k vectors are also interpretable as time-limited values

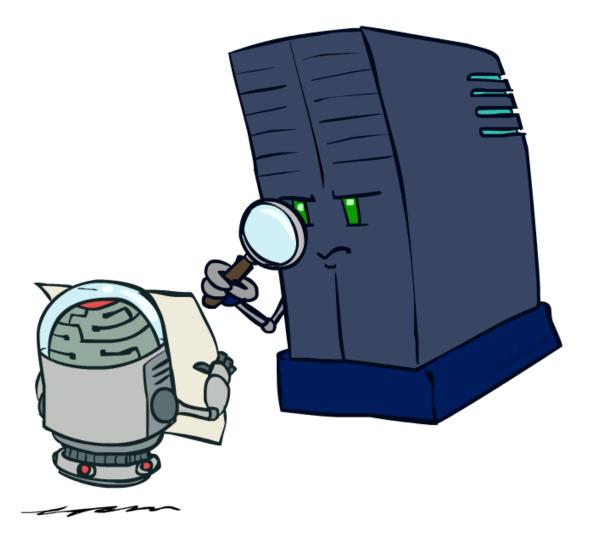


Convergence*

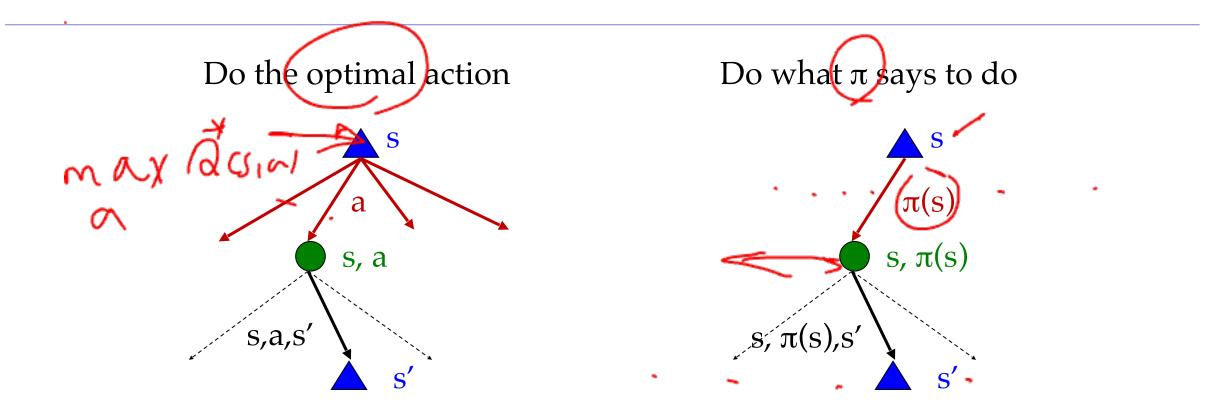
- O How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - $_{\rm O}~$ Sketch: For any state V $_{\rm k}$ and V $_{\rm k+1}$ can be viewed as depth k+1 expectimax results in nearly identical search trees
 - $_{\rm O}~$ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - $_{\rm O}$ $\,$ That last layer is at best all $\rm R_{MAX}$
 - $_{\rm O}$ It is at worst R_{MIN}
 - $_{\odot}~$ But everything is discounted by γ^k that far out
 - $_{O}~~So~V_{k}$ and V_{k+1} are at most γ^{k} max $|\,R\,|$ different
 - o So as k increases, the values converge







Fixed Policies



Expectimax trees max over all actions to compute the optimal values
 If we fixed some policy π(s), then the tree would be simpler – only one action per state
 ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

 $\pi(s)$

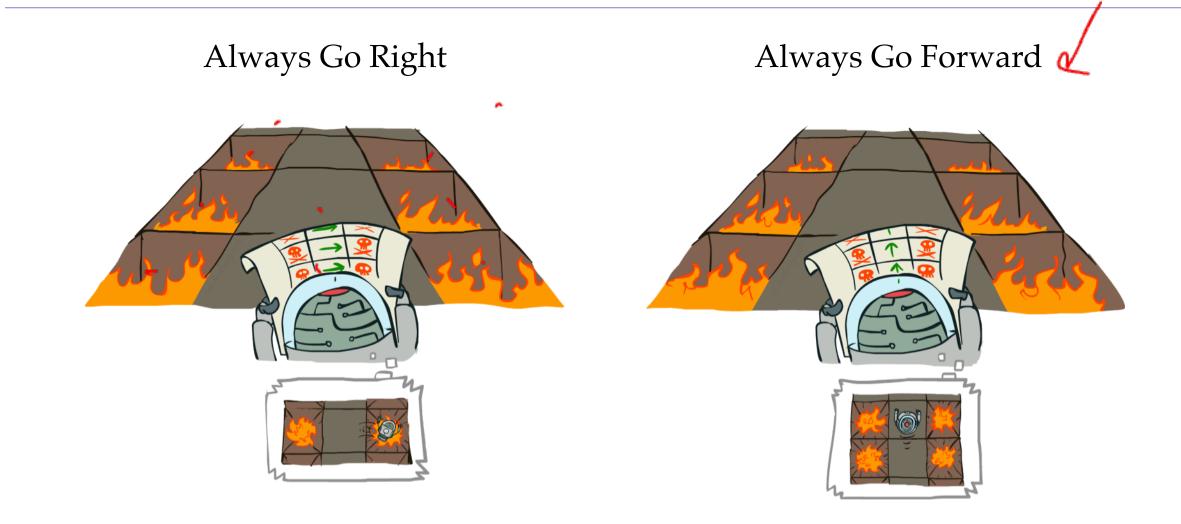
s, $\pi(s)$

 Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

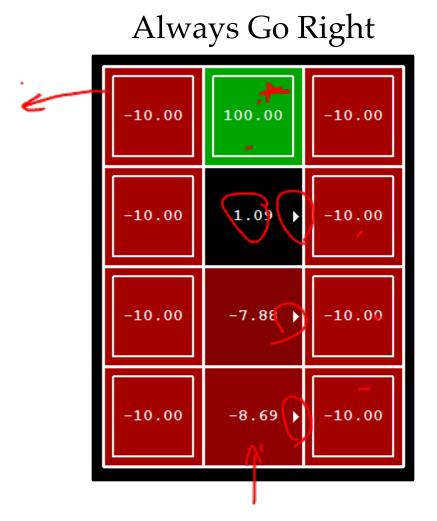
• Define the utility of a state s, under a fixed policy π : $\forall \pi(s) =$ expected total discounted rewards starting in s and following π $\forall \Pi(S) = (S, R \cup S), S, \pi(S)$ $(S, R \cup S), S, \pi(S) = (S, R \cup S), S, \pi(S), S, \pi(S), S, \pi(S))$

• Recursive relation (one-step look-ahead / Bellman equation): $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

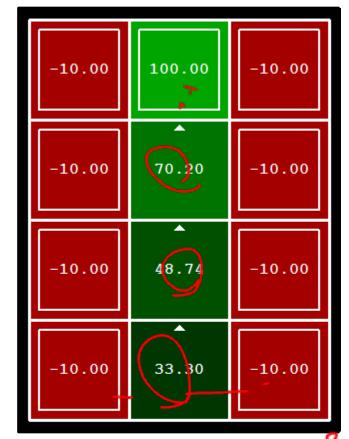
Example: Policy Evaluation



Example: Policy Evaluation



Always Go Forward



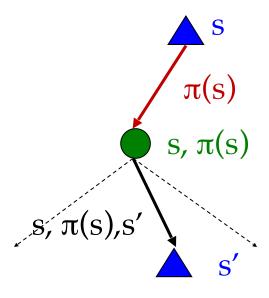
Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

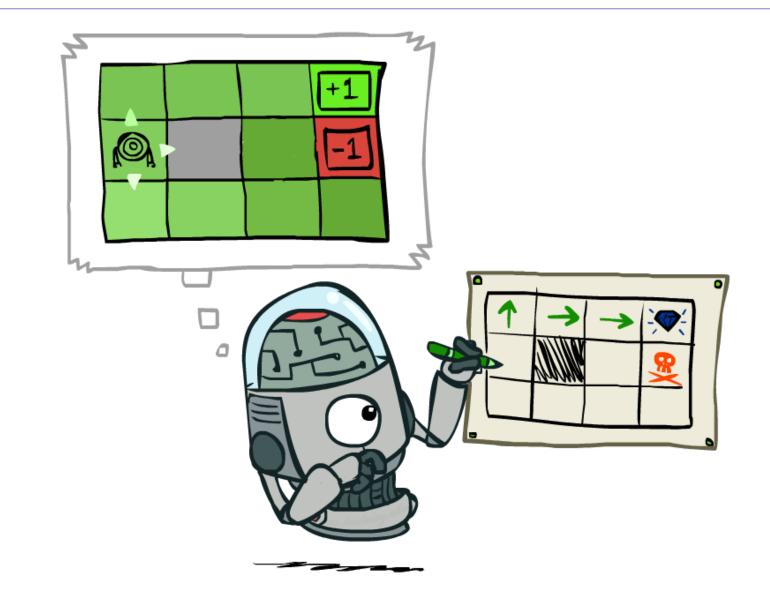
• Efficiency: O(S²) per iteration
$$V_{0}^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_{k}^{\pi}(s')]$$

Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

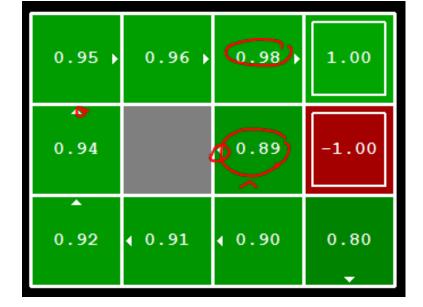


Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 It's not obvious!
- We need to do a mini-expectimax (one step)



$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

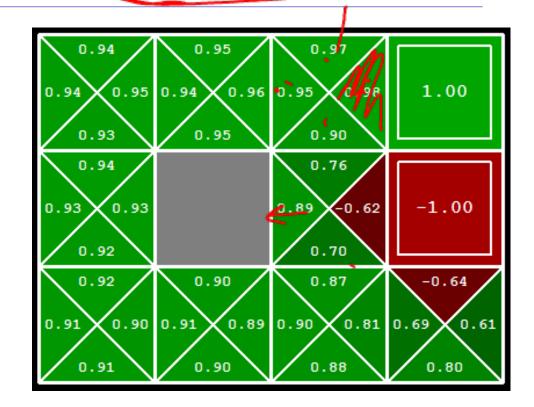
• This is called **policy extraction**, since it gets the policy implied by the values

Computing Actions from Q-Values

• Let's imagine we have the optimal q-values:

• How should we act?

• Completely trivial to decide! $\pi^*(s) = \arg \max_a Q^*(s, a)$



• Important lesson: actions are easier to select from q-values than values!

Recap: MDPs

• Search problems in uncertain environments

• Model uncertainty with transition function

• Assign utility to states. How? Using reward functions

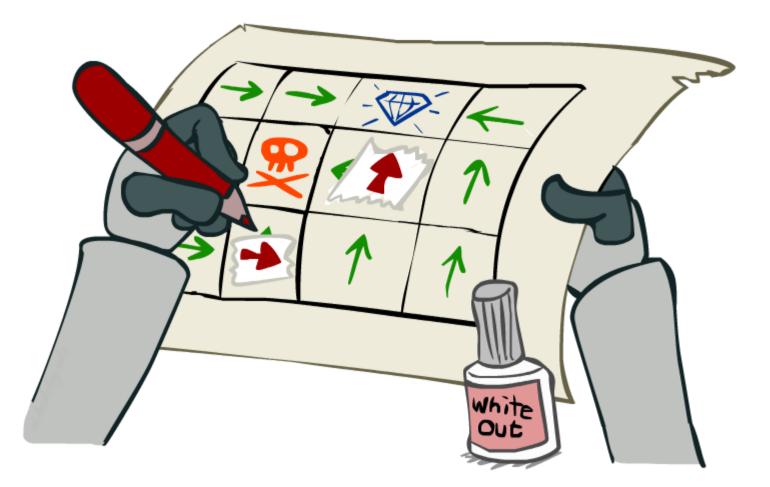
 Decision making and search in MDPs <-- Find a sequence of actions that maximize expected sum of rewards

• Value of a state

• Q-Value of a state

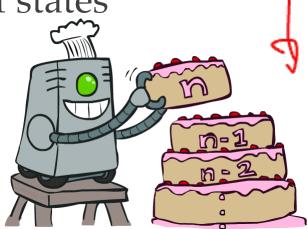
• Policy for a state

Policy Iteration



○ Finding the best policy → mapping of actions to states
○ So far, we have talked about two methods
○ Policy evaluation: computes the value of a fixed policy

• Value iteration: computes the **optimal** values of states



Problems with Value Iteration

s, a

0.72-0.7

s,a,s'

• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \mathcal{V}$$

 \circ Problem 1: It's slow – O(S²A) per iteration

• Problem 2: The "max" at each state rarely changes

• Problem 3: The policy often converges long before the values

k=12

k=100

Gridworld Display					
o	0.64)	0.74 →	0.85 →	1.00	
o	•.57		• 0.57	-1.00	
o	• •.49	∢ 0.43	0.48	∢ 0.28	
v	VALUES AFTER 100 ITERATIONS				

Noise = 0.2 Discount = 0.9 Living reward = 0

Policy Iteration

• Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

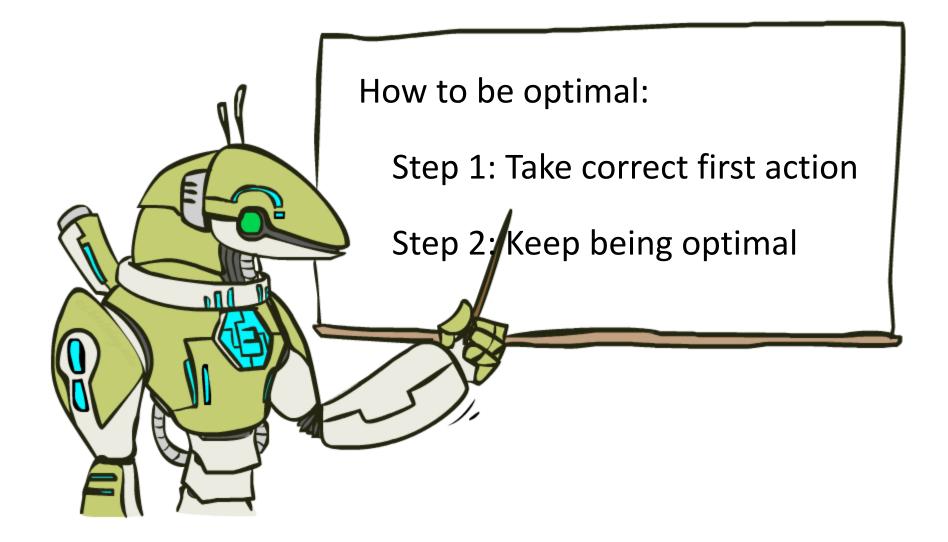
• So you want to....

- Compute optimal values: use value iteration or policy iteration
 Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations



Next Topic: Reinforcement Learning!