CSE 573: Introduction to
Artificial Intelligence

Hanna Hajishirzi

Search
(Un-informed, Informed Search)

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Recap: Search

o Search problem:
o States (configurations of the world)
o Actions and costs
o Successor function (world dynamics)
o Start state and goal test

o Search tree:
o Nodes: represent plans for reaching states

o Search algorithm:
o Systematically builds a search tree
o Chooses an ordering of the fringe (unexplored nodes)
o Optimal: finds least-cost plans

Example: Pancake Problem

{C
\

1
“3

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

/’ Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

— @

9\\

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

D

A
Action: flip top two
Cost: 2

Path to reach goal:
Flip four, flip three
Total cost: 7

Uniform Cost Issues

o Remember: UCS explores increasing cost
contours

0 The good: UCS is complete and optimal!

o The bad:

o Explores options in every “direction”
o No information about goal location

o We'll fix that soon!

Up next: Informed Search

o0 Uninformed Search = Informed Search/
o DFS » Heuristics
o BFS = Greedy Search
o UCS » A*Search

= Graph Search

noPe. () GoAL!

Search Heuristics

» A heuristic is:

= A function that estimates how close a state is to a goal %/\\\iw
ort. .

= Designed for a particular search problem
= Pathing?

= Examples: Manhattan distance, Euclidean distance for

>
Heuristi—Tron J

~ =
Heuristi — Tron J

Example: Heuristic Function

92
99 Fagaras

] Vaslui

Rimnicu Vilcea

Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75
Bucharest

Dobreta []

L Eforie
|] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ﬁra ight—line distance

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

J

h(X)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

3 =
f = n(x)
[|
§— B-E-_
= =
4 — 4_\ /3-\5-
I 4= ~

CSE 573: Introduction to
Artificial Intelligence

Hanna Hajishirzi

Search
(Un-informed, Informed Search)

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Up next: Informed Search

o0 Uninformed Search = Informed Search/
o DFS » Heuristics
o BFS = Greedy Search
o UCS » A*Search

= Graph Search

noPe. () GoAL!

Greedy Search

Greedy Search

o Expand the node that seems closest...

— > Arad 4_/
e —— 4 Giurgiu Eforie
Sibiu
329
Fagaras Oradea
380 193
253 0

o Is it optimal?
© No. Resulting path to Bucharest is not the shortest!

Greedy Search

O Strategy: expand a node that you think is
closest to a goal state

o Heuristic: estimate of distance to nearest goal
for each state

O A common case:
O Best-first takes you straight to the (wa:ér@)g{al

O Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

B S 0O C h Strategies Demo

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search UC S5

CWA%

5 r
#_}UC e

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost g(n) . O {
L, o Greedy orders by goal proximity, or forward cost h(n)

g\ét

)—--f'D

o A* Sear%gg@grs%_ﬁe wr/ f(n) = g(n) + h(n)

Sah L€ Example: Teg Grenager

When should A* terminate?

o Should we stop when we enqueue a goal?

SACH

h=2

RSOt .
L 04 N - S->B->G 505

S ONg:onl-ystopw oal Sy
SAG G40 e

SB—24) : 2

SgG 5x0 -

Is A* Optimal?

SAG
gh +
=S 077
S>A 167
S->G 505
=S O +7)
O\/ﬁ‘nﬁtweﬂqtfw@)ng?

O @91 bddl geal)cost < estimated good goal cost
o We need estimates to be less than actual costs!

: Admissibility A

— —

Heuristi - Tron @

Inadmissible (pessimistic) heuristics Admissible (optimistic) heuristics
break optimality by trapping slow down bad plans but
good plans on the fringe never outweigh true costs

Admissible Heuristics

o A heuristic % is admissible (optimistic) if:

—

0 < h(n) < hfn)
— =
where 7 * (n)is the tise-eosttoanearest goal

o Coming up with admissible heuristics is most of what’s involved in
using A* in practice.

o Examples:

Properties of A™

Uniform-Cost A~

b b

UCS vs A* Contours

o Uniform-cost expands equally in
all “directions” @
t / Goal

0 A* expands mainly toward the

goal, but does hedge its bets to @

: : Start Goal
ensure optimality

Comparison

SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

Video of Demo Contours (Empty) -- UC@

® O O

Video of Demo Contours (Empty) -- Greedy

® O O Search Strategies Demo

Video of Demo Contours (Empty) — A*

® O O Search Strategies Demo

Video of Demo Contours (Pacman Small Maze) — A*

Which algorithm?

SCORE:

Which algorithm?

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
o Ais an optimal goal node

O B is a suboptimal goal node
O _his'admissible

Claim:

o A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof: 7

o Imagine B is on the fringe

O Some ancestor # of A is on the fringe,
too (maybe Al)

o Claim: n will be expanded betore B

-——

f(n) = g(n) + ()
f(n) < g(A)

\g(A) = J"’(AJ)7

1. f(n)is less or equal to f(A) .
Sehr (A
—D

Definit%n of f-cost
Admissibility of h

h =0 at a goal

~

J

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe

O Some ancestor n of A is on the
fringe, too (maybe A!)

o Claim: n will be expanded betore B

1. f(n)is less or equal to f(A)

2. f(A)is less than {(B)

f(A) < f(B)

B is suboptimal

_h=0ata goal

J

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe

o Some ancestor 1 of A is on the fringe, too
(maybe Al)

o Claim: n will be expanded before B
1. f(n)isless or equal to f(A)
2. f(A)isless than f(B) f(,(\) <§(A <§(P
3. nexpands before B

o All ancestors of A expand b ’Y

o A expands before B

f(n) < f(A) < f(B) }

o A*search is optimal

A*: Summary

v~

- o
y
g o

e i e ——

A”: Summary

o A* uses both backward costs and (estimates of) forward
costs

0 A* is optimal with admissible (optimistic) heuristics

o0 Heuristic design is key: often use relaxed problems

=
& 2 @% o
— = Sk -— e ——— s — ———

Video of Demo Empty Water Shallow /Deep
— Guess Algorithm

e T T |

File Edit Nawgaste Search Project Run Window |elp

[~ -0 -Q- - - - - P Y= T/ [Pyder | &0 Team

1 search -- plan Liny astar

2 search - plan tryy ucs

on

3 search demo empty

4 search - Ccontours greedy v ucs (greedy)
S search - cantours greedy vs ucs (ucs)

6 search -- contours greedy vs ucs (astar)

I search - greedy bad

8 search -« greedy good

9 search demo maze

search :{:?vu costs

Run Ay »

L5512 ELSLLN 0N

Run Canrfigurations -

Organize Favorites

J) Console ® % n—‘r‘—” il = I v Ll
<terminated> 1 5

I9Tal cosr: 27 -

Nurber of nodea expanded: 182

Nunber of unigue nodes expanded: 182
Facman energes victorious! Scere: 573
{'numKilla’: [0], 'resulta': ['Win’'), 'numMoven': [27], ‘'scorea’': [S573

11:54 AM

.II" ‘.\ '

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

0 Most of the work in solving hard search problems optimally is in coming up with
admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where new actions are
available

Example: 8 Puzzle

w -
7 2 %
5 %

3171
) 2 45
8 3 1 s8N 6

Start State Actions

.(o What are the states?
o How many states?

o What are the actions? AdmISSIble

o How many successors from the start state?

ST
o What should the costs be? heur 1st1Cs:

8 Pu_zzle |

O Heuristic: Number of tiles misplaced
© Why is it admissible?
O h(start) _S

O This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded when
the optimal path has...

—

.(4'§t_e§s ...8 steps (.12 step}
(1‘1\2) 6,300 | 3.6xT08 |
13 39 227

{T

1

Statistics from Andrew Moore

8 Puzzle 11

What if we had an easier 8-puzzle
where any tile could slide any direction
at any time, ignoring other tiles?

Total Manhattan distance Start State

Why is it admissible? S
3+1+2+..

-

Goal State

Average nodes expanded when
the optimal path has...

h(start)=_ — = .4 steps |...8 steps |...12 steps
TILES 13 » 39 227 A
MANHATTAN 12 25 3

{
N\

A

8 Puzzle III

© How about using the actual cost as a heuristic?
o Would it be admissible?

© Would we save on nodes expanded? 'I m
© What's wrong with it? ;

N 5

o With A*: a trade-off between quality of estimate and work per node

O As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance
!

ha,
o Dominance: h_ > h_if @/
vn (ha n) >©(n) / |

max(hg, h b)/
O Heuristics form a semi-lattice:
o Max of admissible heuristics is admissible
h(n) = h — h b <"
(n) = maz(ha(n), hp(n))
o Trivial heuristics @
o Bottom of lattice is the zero heuristic (what
does this give us?) @ U ,:.

o Top of lattice is the exact heuristic

A*: Summary

A”: Summary

o A* uses both backward costs and (estimates of) forward
costs

0 A* is optimal with admissible (optimistic) heuristics

o0 Heuristic design is key: often use relaxed problems

=
& 2 @% o
— = Sk -— e ——— s — ———

Graph Search

Tree Search: Extra Work!

O Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

O

O

Graph Search

Idea: never expand a state twice

How to implement:

———

o Tree search + g€t of expanded states (“closed set”)

o Expand the séarch tree node-by-node, but...

expanded before
o If not new, skip it, if new add to closed set
Important: store the closed set as a set, not a list

e
Can graph search wreck completeness? Why/why not?

How about optimality?

A* Graph Search Gone Wrong?

State space graph Search tree CS B.CA

5(0+2)

. /\A
A(1+4) B(1+1)

y 4
%@Iﬁ) %@iﬁ

v v
G (5+0) G (6+0)

Closed Set:S B C A

Consistency of Heuristics

O Main idea: estimated heuristic costs < actual costs

o Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from A to G
o Consistency: heuristic “arc” cost < actual cost for each arc

h(A) - h(C) < cost(A to C)

@= 1 o Consequ CONSiStETTy ==

o The f value along a path gever decreases
Q _,\ h(A)%ost(Lo C) + h(C)

o A* graph search is optimal

72 S
e

» @R JIe
9 NN —e T
/

A* Graph Search - 0dm igsib o K
— Covslends

o Sketch: consider what A* does with a
consistent heuristic:

o Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

o Fact 2: For every states, nodes that reach s
optimally are expanded before nodes that
reach s suboptimally

o Result: A* graph search is optimal

o Wit
o With &
o Witl

Optimality of A* Search

N a M e heuristic, Tree A* is optimal.
euristic, Graph A* is optimal.

(h=0

e same proof shows that UCS is optimal.
C——

Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe - INSERT(MAKE-NODE(INITIAL-STATE[problem]|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do
fringe < INSERT(child-node, fringe)
end
end

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE(problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

A* Applications

© Video games

o Pathing / routing problems

o Resource planning problems

o Robot motion planning &
o Language analysis

© Machine translation

o Speech recognition

O ...

A*in Literature

o Joint A* CCG Parsing and
Semantic Role Labeling (EMNLP’15)

© Diagram

Understanding (ECCV’17)

,\

(S\NP); \P NP

_-T-

S\NP \NP)/NP

l

ARGO ARGI1

l

He

DNy

reports refused

Food Web

nnnnnn

2
v e T
il <5 i L
A ?\ L 1 e
N I [

Multiple Choice Question:

From the
of deer

above food web diagram, what will lead to an
? 4] ircraase is bon b decresse n plarts ¢ decrease in Bom &) ircrease n pha

increase in the population

Search and Models

O Search operates over
models of the world
O The agent doesn’t
actually try all the plans
out in the real world!
o Planning is all “in
simulation”

© Your search is only as
good as your models...

Search Gone Wrong?

——CTCT L -

. - — e Microsoft*
MAPQVEST: S |=) - ARCTIC OCEAN A% MapPoint

A) B A% ;

S E — g e ¢

e \L ICELAND End fE 5
L e P e
4

“- ‘."‘.‘ S

Q\é £ -RUSSIA

PN alllgns w0

~ " Helsinki Tver
Relngfors

Riga _ e
‘9._$\rp_¢len350

Vilnius i

-

) i
e’ Biaystok 5, BELARUS,
"“ POLAND -'i‘r"K'w@
P Y i Wroctaw »

km 500 1000
mi 200 400 600

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. no.f'allridmo'ro

