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Recap: Search

o Search problem:
o States (configurations of the world)
o Actions and costs
o Successor function (world dynamics)
o Start state and goal test

o Search tree:
o Nodes: represent plans for reaching states

o Search algorithm:
o Systematically builds a search tree
o Chooses an ordering of the fringe (unexplored nodes)
o Optimal: finds least-cost plans



Example: Pancake Problem
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Cost: Number of pancakes flipped



Example: Pancake Problem
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For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.




Example: Pancake Problem

State space graph with costs as weights

— @

9\\




General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

D

A
Action: flip top two
Cost: 2

Path to reach goal:
Flip four, flip three
Total cost: 7




Uniform Cost Issues

o Remember: UCS explores increasing cost
contours

0 The good: UCS is complete and optimal!

o The bad:

o Explores options in every “direction”
o No information about goal location

o We'll fix that soon!




Up next: Informed Search

o0 Uninformed Search = Informed Search/
o DFS » Heuristics
o BFS = Greedy Search
o UCS » A*Search

= Graph Search

noPe. () GoAL!



Search Heuristics

» A heuristic is:

= A function that estimates how close a state is to a goal %/\\\iw
ort. .

= Designed for a particular search problem
= Pathing?

= Examples: Manhattan distance, Euclidean distance for

>
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Example: Heuristic Function
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Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place
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Up next: Informed Search

o0 Uninformed Search = Informed Search/
o DFS » Heuristics
o BFS = Greedy Search
o UCS » A*Search

= Graph Search
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Greedy Search




Greedy Search

o Expand the node that seems closest...
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o Is it optimal?
© No. Resulting path to Bucharest is not the shortest!



Greedy Search

O Strategy: expand a node that you think is
closest to a goal state

o Heuristic: estimate of distance to nearest goal
for each state

O A common case:
O Best-first takes you straight to the (wa:ér@)g{al

O Worst-case: like a badly-guided DFS



Video of Demo Contours Greedy (Empty)
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Video of Demo Contours Greedy (Pacman Small Maze)




A* Search
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Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost g(n) . O {
L, o Greedy orders by goal proximity, or forward cost h(n)
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o A* Sear%gg@grs%_ﬁe wr/ f(n) = g(n) + h(n)

Sah L€ Example: Teg Grenager




When should A* terminate?

o Should we stop when we enqueue a goal?
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Is A* Optimal?
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O @91 bddl geal)cost < estimated good goal cost
o We need estimates to be less than actual costs!



: Admissibility A
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Inadmissible (pessimistic) heuristics Admissible (optimistic) heuristics
break optimality by trapping slow down bad plans but
good plans on the fringe never outweigh true costs



Admissible Heuristics

o A heuristic % is admissible (optimistic) if:

—

0 < h(n) < hfn)
— =
where 7 * (n)is the tise-eosttoanearest goal

o Coming up with admissible heuristics is most of what’s involved in
using A* in practice.

o Examples:



Properties of A™

Uniform-Cost A~

b b




UCS vs A* Contours

o Uniform-cost expands equally in
all “directions” @
t / Goal

0 A* expands mainly toward the

goal, but does hedge its bets to @

: : Start Goal
ensure optimality



Comparison

SCORE: 0 SCORE: 0

Greedy Uniform Cost A*



Video of Demo Contours (Empty) -- UC@
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Video of Demo Contours (Empty) -- Greedy

® O O Search Strategies Demo




Video of Demo Contours (Empty) — A*

® O O Search Strategies Demo




Video of Demo Contours (Pacman Small Maze) — A*




Which algorithm?

SCORE:




Which algorithm?




Optimality of A* Tree Search




Optimality of A* Tree Search

Assume:
o Ais an optimal goal node

O B is a suboptimal goal node
O _his'admissible

Claim:

o A will exit the fringe before B



Optimality of A* Tree Search: Blocking

Proof: 7

o Imagine B is on the fringe

O Some ancestor # of A is on the fringe,
too (maybe Al)

o Claim: n will be expanded betore B

-——

f(n) = g(n) + ()
f(n) < g(A)

\g(A) = J"’(AJ)7

1. f(n)is less or equal to f(A) .
Sehr (A
—D

Definit%n of f-cost
Admissibility of h

h =0 at a goal
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Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe

O Some ancestor n of A is on the
fringe, too (maybe A!)

o Claim: n will be expanded betore B

1. f(n)is less or equal to f(A)

2. f(A)is less than {(B)

f(A) < f(B)

B is suboptimal

_h=0ata goal

J




Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe

o Some ancestor 1 of A is on the fringe, too
(maybe Al)

o Claim: n will be expanded before B
1. f(n)isless or equal to f(A)
2. f(A)isless than f(B) f(,(\ ) <§( A <§( P
3. nexpands before B

o All ancestors of A expand b ’Y

o A expands before B

f(n) < f(A) < f(B) }

o A*search is optimal




A*: Summary
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A”: Summary

o A* uses both backward costs and (estimates of) forward
costs

0 A* is optimal with admissible (optimistic) heuristics

o0 Heuristic design is key: often use relaxed problems
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Video of Demo Empty Water Shallow /Deep
— Guess Algorithm

e T T |

File Edit Nawgaste Search Project Run Window |elp

[~ -0 -Q- - - - - P Y= T/ [ Pyder | &0 Team

1 search -- plan Liny astar

2 search - plan tryy ucs

on

3 search demo empty

4 search - Ccontours greedy v ucs (greedy)
S search - cantours greedy vs ucs (ucs)

6 search -- contours greedy vs ucs (astar)

I search - greedy bad

8 search -« greedy good

9 search demo maze

search :{:?vu costs

Run Ay »

L5512 ELSLLN 0N

Run Canrfigurations -

Organize Favorites

J) Console ® % n—‘r‘—” il = I v Ll
<terminated> 1 5

I9Tal cosr: 27 -

Nurber of nodea expanded: 182

Nunber of unigue nodes expanded: 182
Facman energes victorious! Scere: 573
{'numKilla’: [0], 'resulta': ['Win’'), 'numMoven': [27], ‘'scorea’': [S573

11:54 AM

.II" ‘.\ '




Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!




Creating Admissible Heuristics

0 Most of the work in solving hard search problems optimally is in coming up with
admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where new actions are
available




Example: 8 Puzzle
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Start State Actions

.( o What are the states?
o How many states?

o What are the actions? AdmISSIble

o How many successors from the start state?

ST
o What should the costs be? heur 1st1Cs:



8 Pu_zzle |

O Heuristic: Number of tiles misplaced
© Why is it admissible?
O h(start) _S

O This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded when
the optimal path has...

—

.(4'§t_e§s ...8 steps (.12 step}
(1‘1\2) 6,300 | 3.6xT08 |
13 39 227

{T

1

Statistics from Andrew Moore



8 Puzzle 11

What if we had an easier 8-puzzle
where any tile could slide any direction
at any time, ignoring other tiles?

Total Manhattan distance Start State

Why is it admissible? S
3+1+2+..

-

Goal State

Average nodes expanded when
the optimal path has...

h(start)=_ — = .4 steps |...8 steps |...12 steps
TILES 13 » 39 227 A
MANHATTAN 12 25 3

{
N\

A




8 Puzzle III

© How about using the actual cost as a heuristic?
o Would it be admissible?

© Would we save on nodes expanded? 'I m
© What's wrong with it? ;

N 5

o With A*: a trade-off between quality of estimate and work per node

O As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself



Semi-Lattice of Heuristics



Trivial Heuristics, Dominance
!

ha,
o Dominance: h_ > h_if @/
vn (ha n) >©(n) / |

max(hg, h b)/
O Heuristics form a semi-lattice:
o Max of admissible heuristics is admissible
h(n) = h — h b <"
(n) = maz(ha(n), hp(n))
o Trivial heuristics @
o Bottom of lattice is the zero heuristic (what
does this give us?) @ U ,:.

o Top of lattice is the exact heuristic



A*: Summary




A”: Summary

o A* uses both backward costs and (estimates of) forward
costs

0 A* is optimal with admissible (optimistic) heuristics

o0 Heuristic design is key: often use relaxed problems
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Graph Search




Tree Search: Extra Work!

O Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \




Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)




O

O

Graph Search

Idea: never expand a state twice

How to implement:

———

o Tree search + g€t of expanded states (“closed set”)

o Expand the séarch tree node-by-node, but...

expanded before
o If not new, skip it, if new add to closed set
Important: store the closed set as a set, not a list

e
Can graph search wreck completeness? Why/why not?

How about optimality?




A* Graph Search Gone Wrong?

State space graph Search tree CS B.CA
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Closed Set:S B C A



Consistency of Heuristics

O Main idea: estimated heuristic costs < actual costs

o Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from A to G
o Consistency: heuristic “arc” cost < actual cost for each arc

h(A) - h(C) < cost(A to C)

@= 1 o Consequ CONSiStETTy ==

o The f value along a path gever decreases
Q _,\ h(A)%ost(Lo C) + h(C)

o A* graph search is optimal

72 S
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A* Graph Search - 0dm igsib o K
— Covslends

o Sketch: consider what A* does with a
consistent heuristic:

o Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

o Fact 2: For every states, nodes that reach s
optimally are expanded before nodes that
reach s suboptimally

o Result: A* graph search is optimal



o Wit
o With &
o Witl

Optimality of A* Search

N a M e heuristic, Tree A* is optimal.
euristic, Graph A* is optimal.

(h=0

e same proof shows that UCS is optimal.
C——



Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe - INSERT(MAKE-NODE(INITIAL-STATE[problem]|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do
fringe < INSERT( child-node, fringe)
end
end

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE(problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end




A* Applications

© Video games

o Pathing / routing problems

o Resource planning problems

o Robot motion planning &
o Language analysis

© Machine translation

o Speech recognition

O ...



A*in Literature

o Joint A* CCG Parsing and
Semantic Role Labeling (EMNLP’15)

© Diagram

Understanding (ECCV’17)
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Search and Models

O Search operates over
models of the world
O The agent doesn’t
actually try all the plans
out in the real world!
o Planning is all “in
simulation”

© Your search is only as
good as your models...




Search Gone Wrong?
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