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Recap: Reasoning Over Time

= Markov models
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s Hidden Markov models
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Inference: Find State Given Evidence

= We are given evidence at each time and want to know
Bi(X) = P(X¢le1:t)

« ldea: start with P(X;) and derive B, in terms of B, ;

= equivalently, derive B,,, in terms of B,



Inference: Base Cases
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Inference: Base Cases
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P(X5)

P(zp) =) P(z1,22)

= > P(z1)P(z2|z1)



Passage of Time

= Assume we have current belief P(X | evidence to date)
(=)
B(Xy) = P(Xle1:)

= Then, after one time step passes:

P(Xt+1’61:t) — ZP(Xt+1>$t|€1:t)

Tt
_ Z P(Xis1|me, e14) P(x|ers) = Or compactly:
: (X P(X’
— P(Xiq1|xy)P(xilery) +1) Z )5

= Basic idea: beliefs get;[pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it includes

T4)



Example: Passage of Time

= Astime passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)
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Inference: Base Cases

P(X1le1)

P(xile1) = P(x1,e1)/P(e1)
o x, P(x1,e1)

= P(x1)P(e1|r1)



Observation

= Assume we have current belief P(X | previous evidence):

B'(Xi41) = P(X¢q1lers)

= Then, after evidence comes in:

P(Xt+1\€1:t+1) = P(Xt—|—176t—|—1|61:t)/P(6t—|—1|61:t)
XX P(Xt+1,€t+1\€1:t)
— P(€t+1 61:t,Xt+1)P(Xt+1|€1:t)
— P(€t+1 Xt+1)P(Xt+1|€1:t)

= Or, compactly: = Basic idea: beliefs “reweighted”
by likelihood of evidence

B(Xi41) <x,,, Plett1|Xe41)B (Xeq1) = Unlike passage of time, we have
to renormalize



Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”
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Before observation After observation

B(X) «x P(e|X)B'(X)




Filtering: P(X, | evidence,.,)

Elapse time: compute P( X, | e,..,)

P(zilert—1) = Z P(xi_ilers—1) - P(z¢|re—1) @_@

Lt—1
Observe: compute P( X, | e ) Q(P
4

P($t|€1:t) X P(xt\elzt—l) ' P(€t|33t)

Belief: <P(rain), P(sun)>

@_>@ P(X4) <0.5,0.5> Prior on X,

A 4 P(X, | E1 = umbrella <0.82,0.18> Observe

)
@ P(X5 | By = umbrella)  <0.63,0.37> Elapse time
)

P(X5 | By = umb, By = wmb)  <0.88,0.12>  Observe



Example: Weather HMM

B’(+r) = 0.5 B’(+r) = 0.627
B’(-r) =0.5 B’(-r) =0.373
B(+r) = 0.5 B(+r) =0.818 B(+r) = 0.883
B(-r) =0.5 B(-r) =0.182 B(-r) =0.117

Rt Rt+1 I:)(Rt+1 | Rt) Rt Ut I:)(Utl Rt)
+r +r 0.7 +r +Uu 0.9
+r -r 0.3 +r -u 0.1

Umbr‘e”a2 -r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8
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Approximate Inference

» Sometimes |X] is too big for exact inference
= |X| may be too big to even store B(X)
= E.g. when X'is continuous
» |X|2 may be too big to do updates

= Solution: approximate inference by sampling
= How robot localization works in practice



Approximate Inference: Sampling

Q = 2\




Sampling

= Samplingis a lot like repeated simulation = Why sample?

= Predicting the weather, basketball games, ... = Learning: get samples from a distribution
you don’t know

= Inference: getting a sample is faster than

= Basicidea
computing the right answer

= Draw N samples from a sampling distribution S

= Compute an approximate probability




Sampling

= Sampling from given distribution = Example

= Step 1: Get sample m uniform

distribution over [0, C P(C)
= E.g. random() in python Qed /—) 0.6 a4+— g< u< 06 = C=red
— o

= Step 2: Convert this sample v into an FWE/ 0.1 .,</().6 <u<07, —C= gree’rz\i
outcome for the given distribution by He. 0.3 ~— S
having each target outcome associated L_/D 0.7su< _1’ — C = blue
with a sub-interval of [0,1) with sub- B \\/
interval size equal to probability of the . If random() returns u = 0.83,
outcome

then our sample is C = blue ? (.\/Pﬂ) - N

= E.g, after sampling 8 times: P(‘g . ) CD
b =
57 & * 2/ : 7(? |




Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes | X| is too big to use exact inference
= |X]| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference
= Track samples of X, not all values
Samples are called particles
Time per step is linear in the number of samples
But: number needed may be large
In memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample
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Representation: Particles

= Our representation of P(X) is now a list of N particles (samples)
= Generally, N << [X]|
= Storing map from X to counts would defeat the point

= P(x) approximated by number of particles with value x
= S0, many x may have P(x) = 0!
= More particles, more accuracy

= For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

= Samples’ frequencies reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

= This captures the passage of time

» If enough samples, close to exact values before and
after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)
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Particle Filtering: Observe

Particles:

w
)

= Slightly trickier:

N

= Don’t sample observation, fix it

= Downweight samples based on the evidence
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w(x) = P(e|x)

B(X) < P(e|X)B'(X)

Particles:

3
n
©

= As before, the probabilities don’t sum to one,

since all have been downweighted (in fact they
now sum to (N times) an approximation of P(e))
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Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

= Thisis equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:

(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.
(3,2) w=.
(1,3) w=.
(2,3) w=.
(3,2) w=.
(2,2) w=.4

O N = O b

(New) Particles:

(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Recap: Particle Filtering

s Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
o |0 —m171~ ® ® o e
@ @ e @
-
@ ¢ ® % ® | ¢%
o 5 °
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)

v’ = sample(P(X'|z)) w(x) = P(e|x)



Video of Demo — Moderate Number of Particles

- Pydev - Eclipse
File Edit Navigate Search Project Run Window Help

v B Qv Q- v v v v B v i [ Pydev | &7 Team
P‘ 1 ghostbusters (beliefs -- dynamic, circle) ==
= @ 2 ghostbusters (beliefs -- dynamic, center) &
. & 3 ghostbusters (beliefs -- dynamic, basic) t
@ 4 pacman sonar.py (no beliefs
@ 5 pacman sonar.py
& 6 ghostbusters (beliefs -- dynamic, circle, particles) (tons
& 7 9'1L§lbu'.-(cl: (beliefs -- dynamic, circle, particles)
& 8 ghostbusters (beliefs -- dynamic, circle, particles, some)
@ 9 ghostbusters (beliefs -- dynamic, circle, no noise)
& 1st class -- pacman

Run As »
Run Configurations..

Organize Favorites...

Cl Console &3 ] x B [&]&) = . P v

circle

1:58 PM
10/31/2013
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Video of Demo — Huge Number of Particles

= Pydev - Eclipse

File Edt Navigate Search Project Run Window Help

v v Qv Q- v v v v o v v 1 [ Pydev | S0 Team
& 1 ghostbusters (beliefs -- dynamic, circle, particles) =
@ & 2 ghostbusters (beliefs -- dynamic, circle, particles, some S
. & 3 ghostbusters (beliefs -- dynamic, circle) t;
@ 4 ghostbusters (beliefs -- dynamic, center)
@ 5 ghostbusters (beliefs -- dynamic, basic)
& 6pacman sonar.py (no beliefs)
@ 7 pacman sonar.py
& '8 ghostbusters (beliefs -- dynamic, circle, particles) (tons
@ 9 ghostbusters (beliefs -- dynamic, circle, no noise)
& 1stclass-- pa %ar‘
Run As >
Run Configurations..
Organize Favorites...
] Console o3 x 5% ® |\‘Q' v
<terminated> 1
I: '_doc_ ', '__init ', '_module_ ', 'busts', 'display', 'gameOver',6 'getBustingOptions', 'getGhostTupleDistributionGivenPreviousGhostTuple', 'getGh
« »

1:59 PM
10/31/2013
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Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles




Which Algorithm?

Exact filter, uniform initial beliefs




Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles




Robot Localization

= In robot localization:

= We know the map, but not the robot’s position

= Observations may be vectors of range finder readings —
Y : & DI\RECTORY

i

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique




Particle Filter Localization (Sonar)

.

Global localization with
© SONar Sensors ?
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