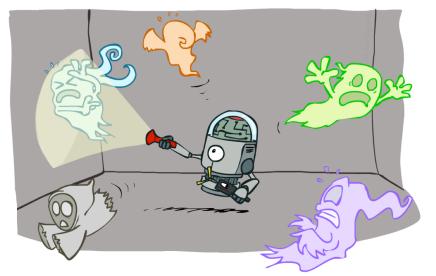
CSE 573: Artificial Intelligence

Hanna Hajishirzi HMMs Inference, Particle Filters

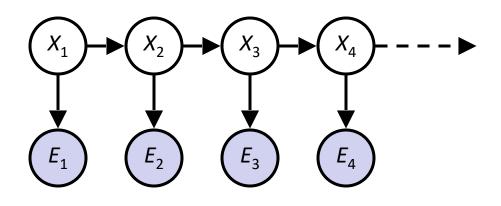
slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

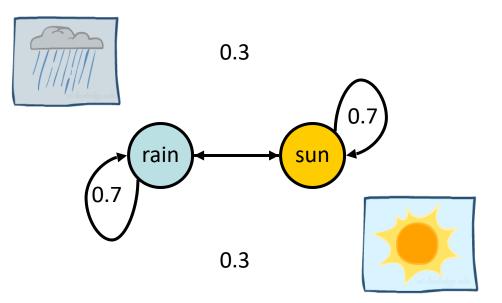


Recap: Reasoning Over Time

• Markov models $\begin{array}{c}
x_1 & x_2 & x_3 \\
P(X_1) & P(X|X_{-1})
\end{array}$

Hidden Markov models



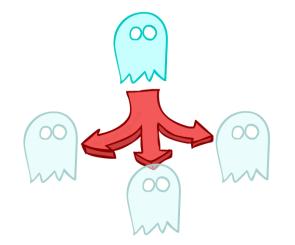


P(E|X)

Х	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Example: Ghostbusters HMM

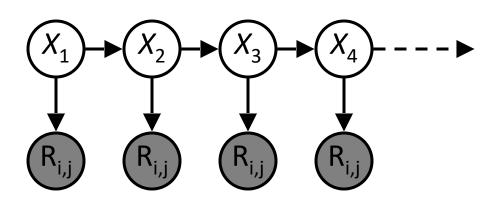
- $P(X_1) = uniform$
- P(X|X') = usually move clockwise, but sometimes move in a random direction or stay in place

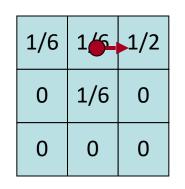


1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

P(X₁)

 P(R_{ij}|X) = same sensor model as before: red means close, green means far away.





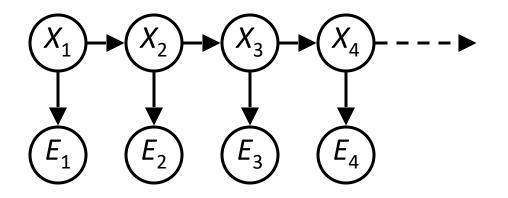
P(X|X'=<1,2>)

Video of Demo Ghostbusters – Circular Dynamics -- HMM

	* • O • Q • @ / • @ • 2 • 2 • 5 • 4 • 4 •	🔡 🍓 Pydev 🔒 Tea
	 a^p 1 ghostbusters (beliefs dynamic, center) 2 ghostbusters (beliefs dynamic, circle) 3 ghostbusters (beliefs dynamic, basic) 4 pacman sonar.py (no beliefs) 5 pacman sonar.py 6 ghostbusters (beliefs dynamic, circle, particles) (tons) 7 ghostbusters (beliefs dynamic, circle, particles) 8 ghostbusters (beliefs dynamic, circle, particles, some) 9 ghostbusters (beliefs dynamic, circle, no noise) 1st class pacman Run As Run Configurations Organize Favorites 	
Console (<terminated></terminated>		
		*

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process: future depends on past via the present
 - Current observation independent of all else given current state



- Does this mean that evidence variables are guaranteed to be independent?
 - [No, they tend to correlated by the hidden state]

Real HMM Examples

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Speech recognition HMMs:

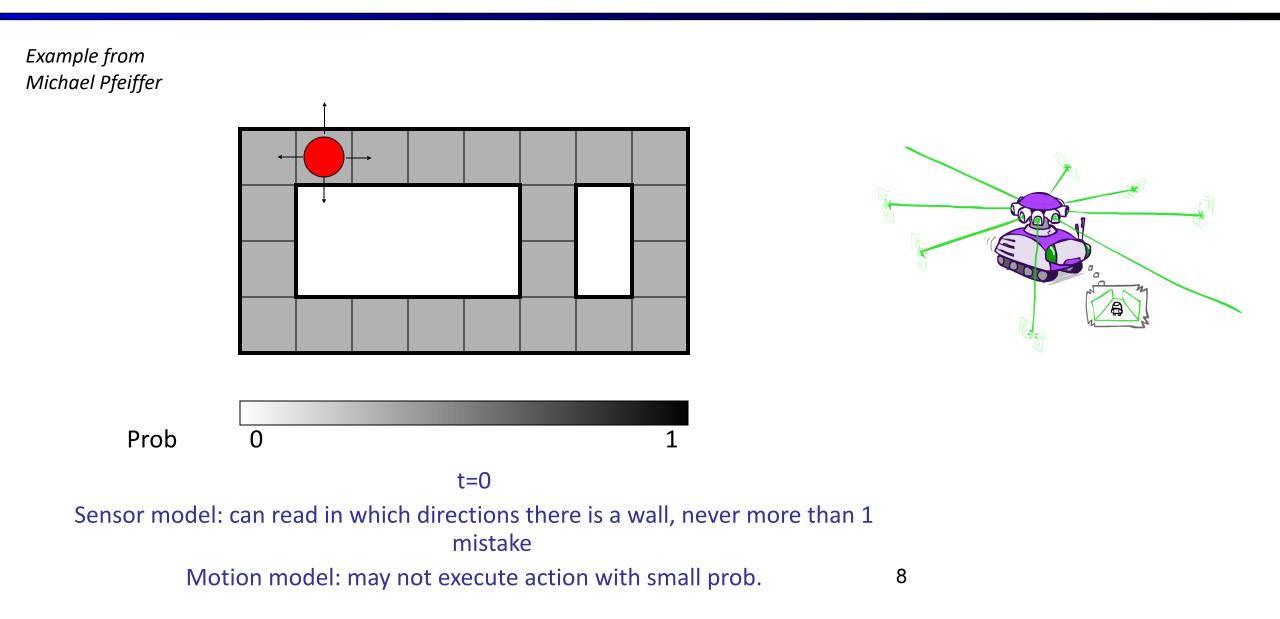
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

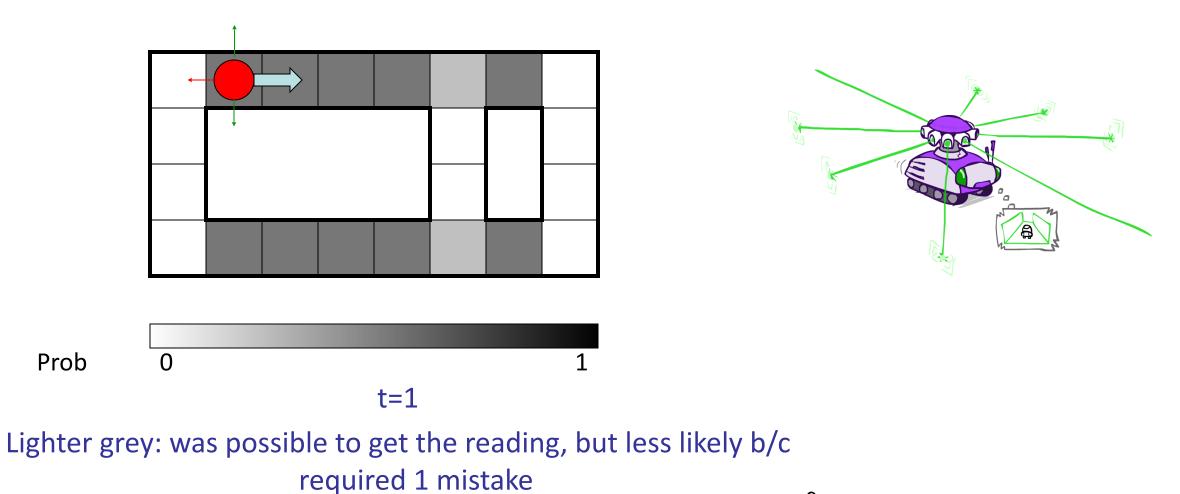
Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

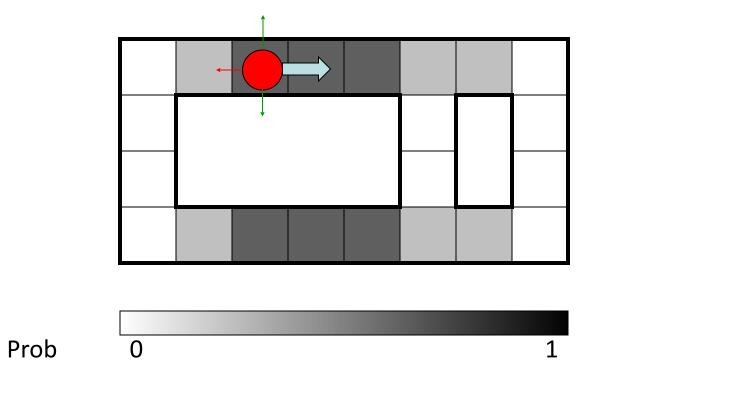
Filtering / Monitoring

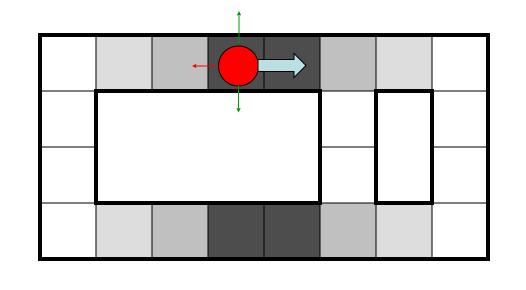
- Filtering, or monitoring, is the task of tracking the distribution
 B_t(X) = P_t(X_t | e₁, ..., e_t) (the belief state) over time
- We start with B₁(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

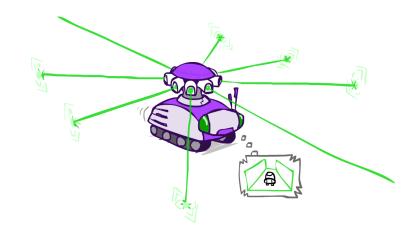


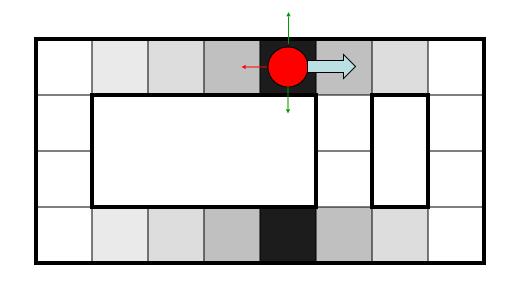


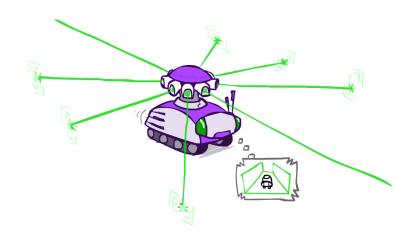
9

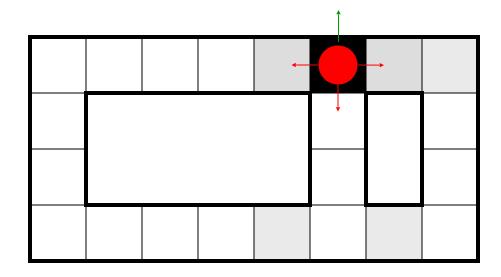


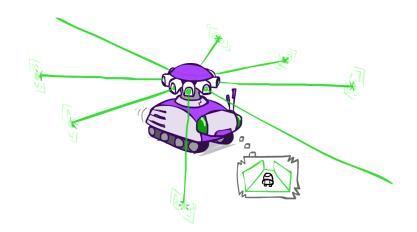












Inference: Find State Given Evidence

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

- Idea: start with P(X₁) and derive B_t in terms of B_{t-1}
 - equivalently, derive B_{t+1} in terms of B_t

Background: Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

P(W)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W)?

P(sun)=.3+.1+.1+.15=.65

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W)?

P(sun)=.3+.1+.1+.15=.65 P(rain)=1-.65=.35

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter)?

P(sun|winter)~.1+.15=.25

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter)?

P(rain|winter)~.05+.2=.25

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter)?

P(sun|winter)~.25 P(rain|winter)~.25 P(sun|winter)=.5 P(rain|winter)=.5

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05 P(sun|winter,hot)=2/3 P(rain|winter,hot)=1/3

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix} X_1, X_2, \dots X_n$ All variables

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1\ldots e_k)$$

 Step 1: Select the entries consistent with the evidence

-3

-1

5

 \odot

Pa

0.05

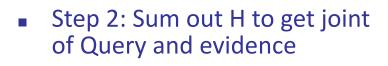
0.25

0.2

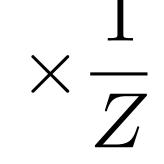
0.01

0.07

0.15



Step 3: Normalize



 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

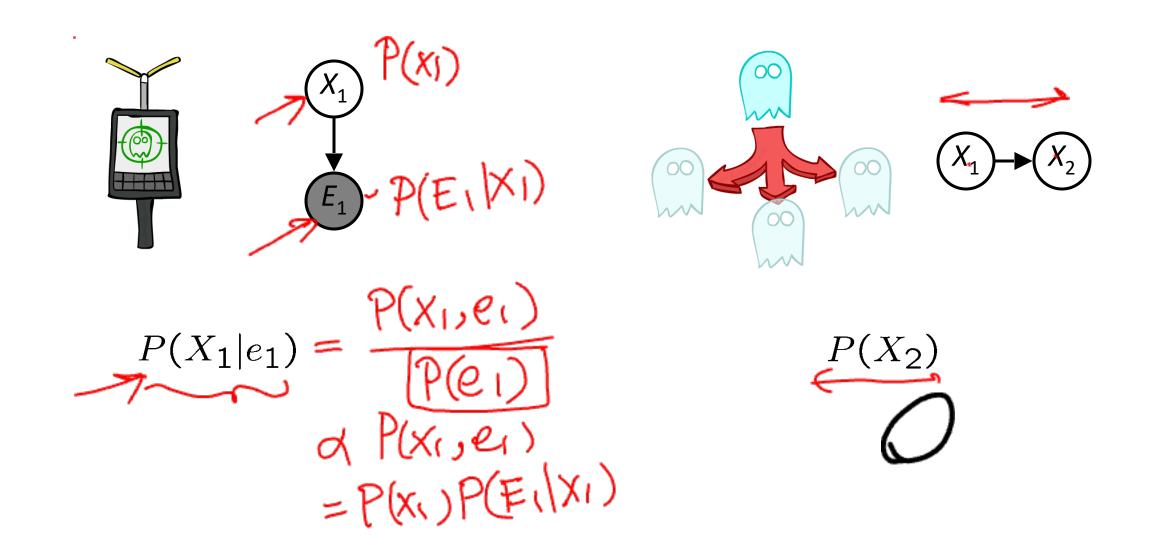
HMM Inference: Find State Given Evidence

We are given evidence at each time and want to know

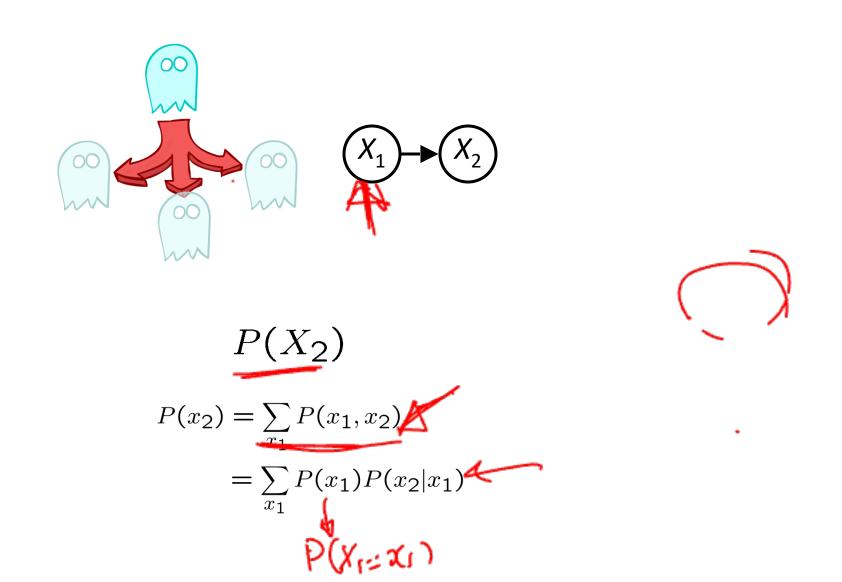
$$B_t(X) = P(X_t | e_{1:t})$$

- Idea: start with P(X₁) and derive B_t in terms of B_{t-1}
 - equivalently, derive B_{t+1} in terms of B_t

Inference: Base Cases

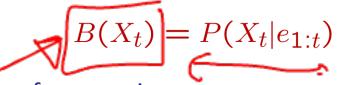


Inference: Base Cases



Passage of Time

Assume we have current belief P(X | evidence to date)



Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$
= Specified as beliefs get "bushed" through the transitions

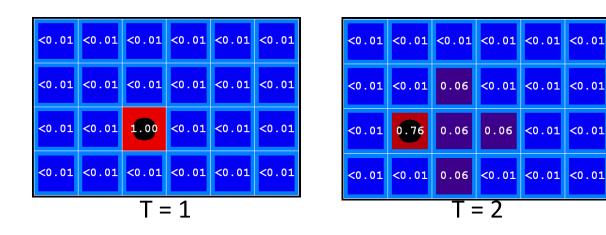
- Basic idea: beliefs get x_{t} pushed through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Or compactly:

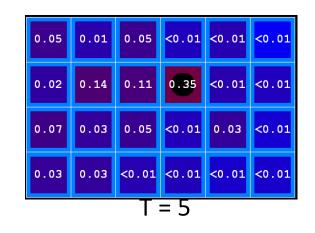
$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

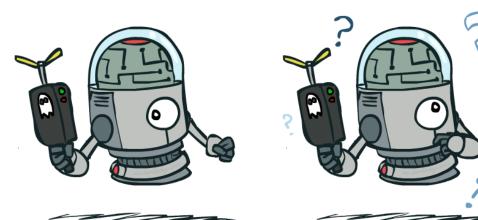
Example: Passage of Time

As time passes, uncertainty "accumulates"

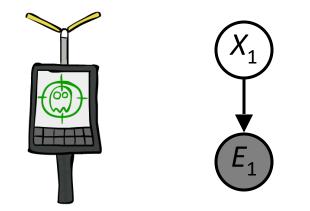


(Transition model: ghosts usually go clockwise)





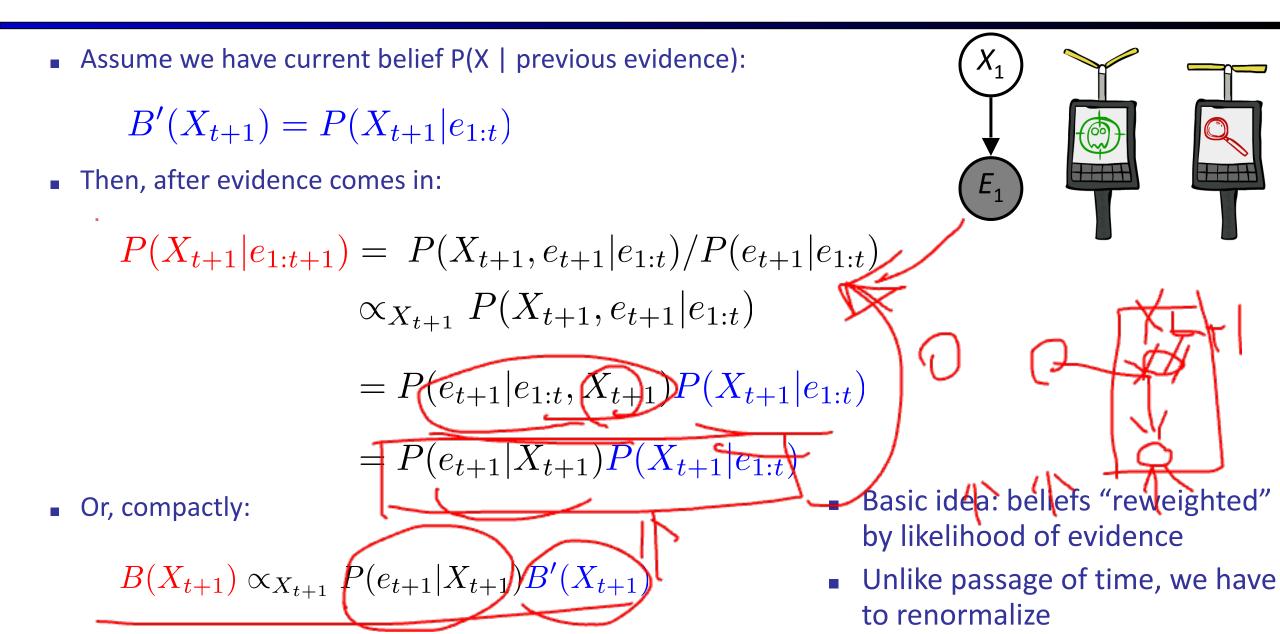
Inference: Base Cases



$P(X_1|e_1)$

 $P(x_1|e_1) = P(x_1, e_1) / P(e_1)$ $\propto_{X_1} P(x_1, e_1)$ $= P(x_1) P(e_1|x_1)$

Observation

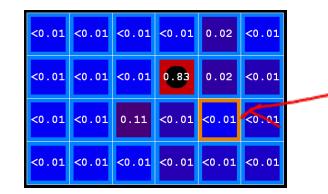


Example: Observation

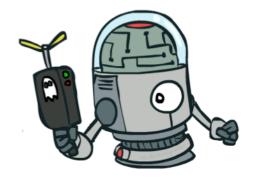
• As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation



After observation

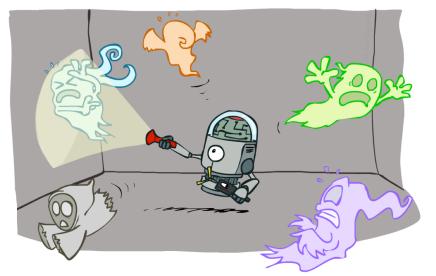


 $B(X) \propto P(e|X)B'(X)$

CSE 573: Artificial Intelligence

Hanna Hajishirzi HMMs Inference, Particle Filters

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer



Announcements

- PS4 March 10th
- HW2 March 12th
 - Gradescope instructions
- Project Presentation March 15th
 - Presentations, send us a link to your recorded presentation
- Final report March 17th

HMM Inference: Find State Given Evidence

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

- Idea: start with P(X₁) and derive B_t in terms of B_{t-1}
 equivalently, derive B_{t+1} in terms of B_t

Online Belief Updates

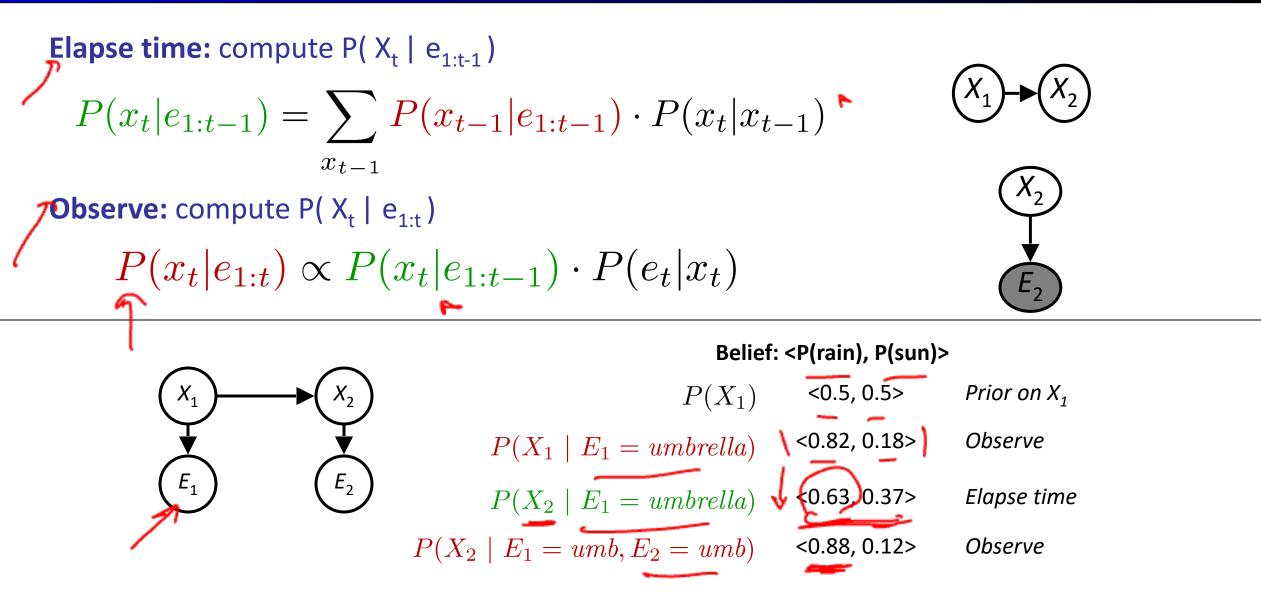
P (se

- Every time step, we start with current P(X | evidence)
- We update for time:

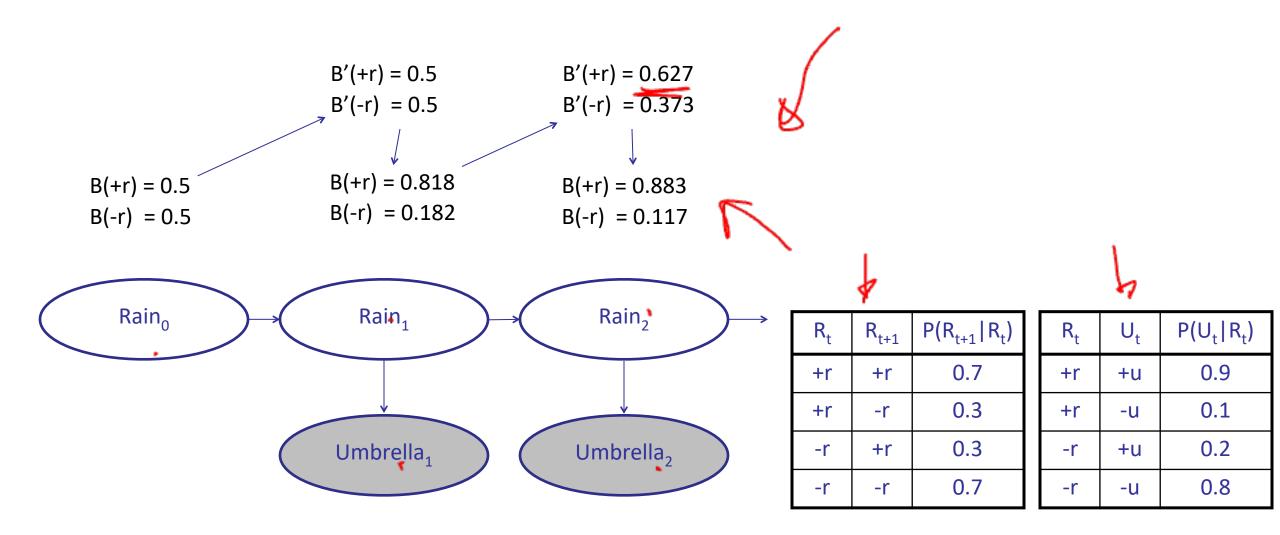
 $P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$

We update for evidence: $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

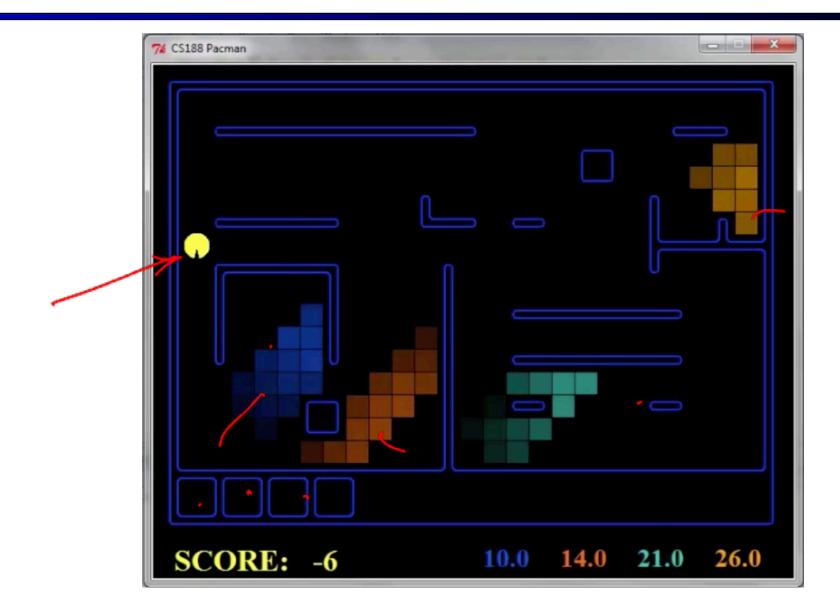
Filtering: P(X_t | evidence_{1:t})



Example: Weather HMM



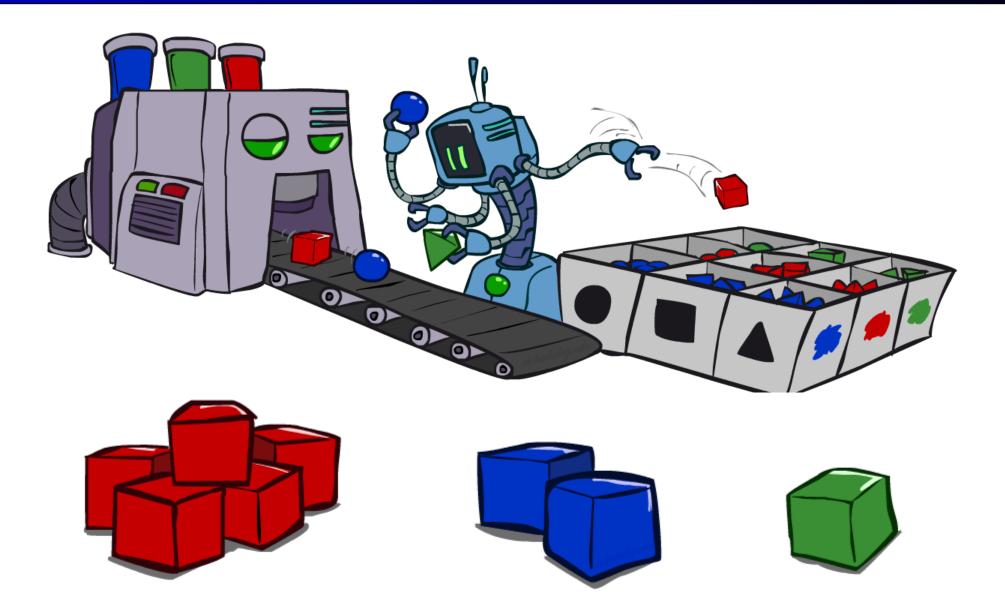
Pacman – Sonar (P4)



Approximate Inference X

- Sometimes |X| is too big for exact inference
 - |X| may be too big to even store B(X)
 - E.g. when X is continuous
 - |X|² may be too big to do updates
- Solution: approximate inference by sampling
- How robot localization works in practice

Approximate Inference: Sampling

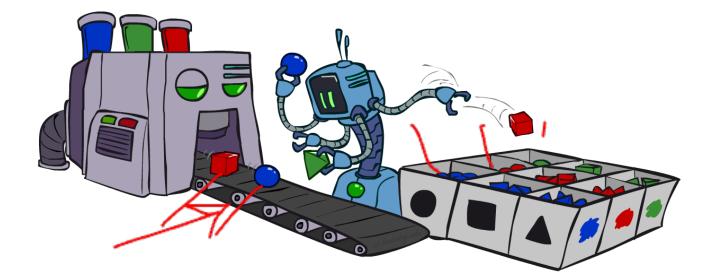


P(XELXE-1) 2(etlXE)

Sampling

- Sampling is a lot like repeated simulation
 - Predicting the weather, basketball games, ...
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate probability

- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer

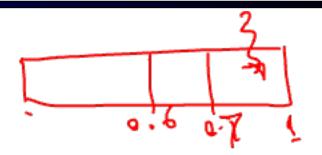


Sampling

- Sampling from given distribution
 - Step 1: Get sample *u* from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample *u* into an outcome for the given distribution by having each target outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

Example

C P(C) red 0.6 green 0.1 blue 0.3

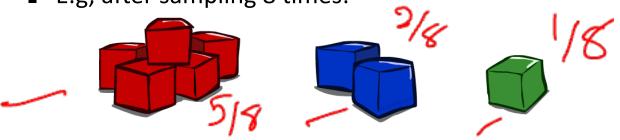


 $\begin{array}{l} 0 \leq u < 0.6, \rightarrow C = red \\ 0.6 \leq u < 0.7, \rightarrow C = green \\ 0.7 \leq u < 1, \rightarrow C = blue \end{array}$

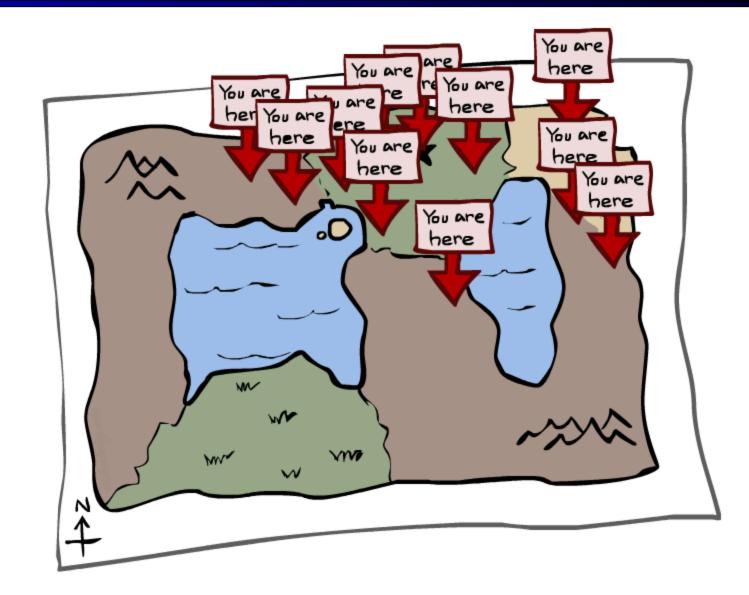
0

 If random() returns u = 0.83, then our sample is C = blue

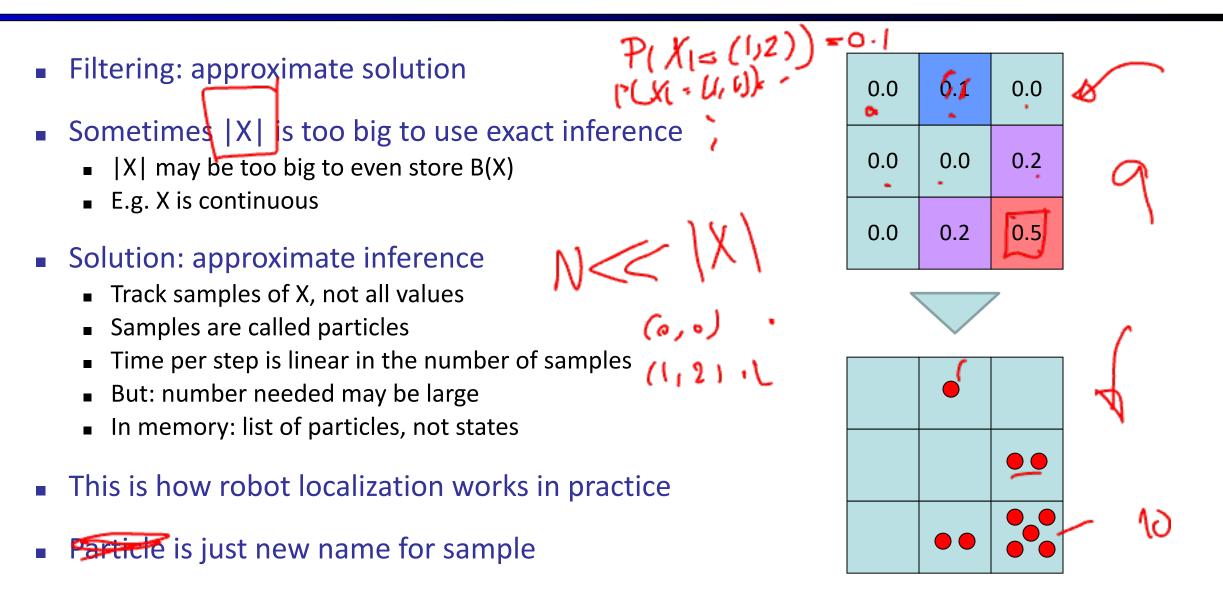
• E.g, after sampling 8 times:



Particle Filtering

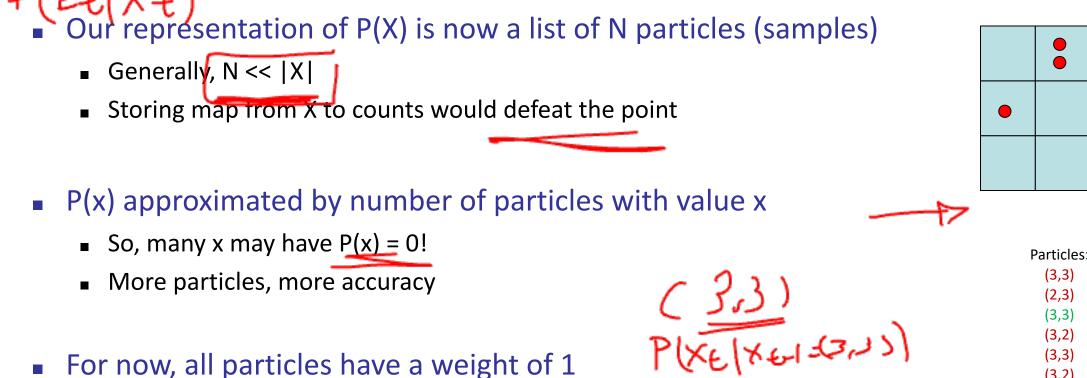


Particle Filtering P(X_l)



Representation: Particles

(3,2)(1,2) (3,3) (3,3) (2,3)



For now, all particles have a weight of 1

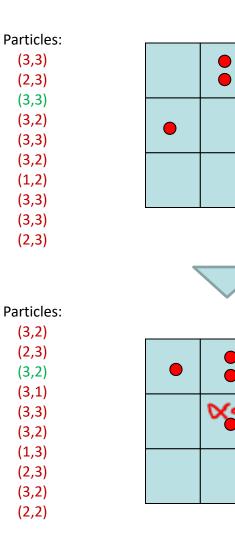
Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

$$x' = \operatorname{sample}(P(X'|x)) \quad P(X_{+}|(3,3))$$

01

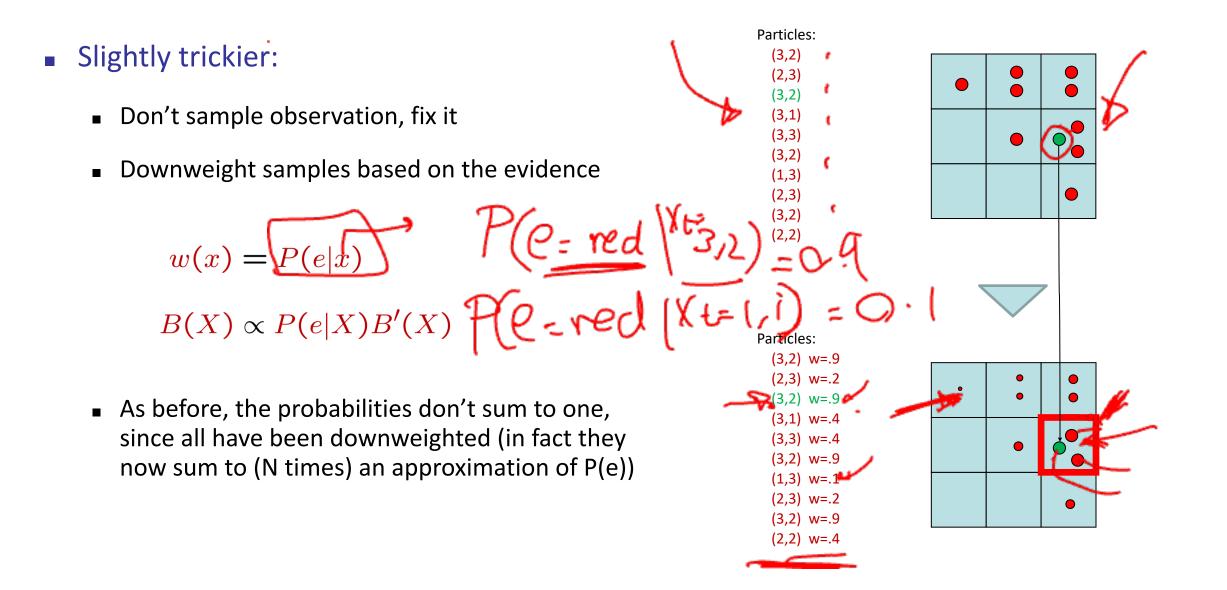
- Samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



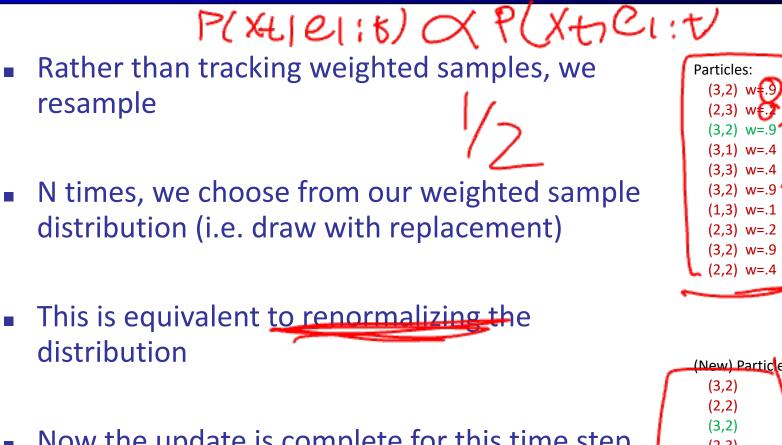
(3, 2)

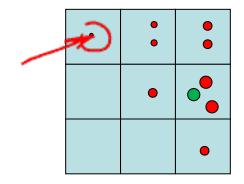
(3,1

Particle Filtering: Observe

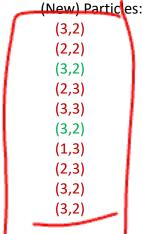


Particle Filtering: Resample

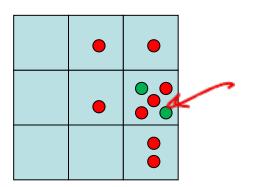




 Now the update is complete for this time step, continue with the next one



w=.9 🗖



Recap: Particle Filtering P(Xt/e(:t))

Particles: track samples of states rather than an explicit distribution HX4=3,2 (e(it) Elapse Weight Resample • igodol \bigcirc • Particles: Particles: (New) Particles: Particles: (3,2) w=.9 (3,3) (3,2) (3,2) (2,3) w=.2 (2,3) (2,2) (2,3) <mark>(3,2)</mark> (2,3) (3,3) (3,2) (3,2) w=.9 (3,1) (3,2) (3,1) w=.4 (3,3) (3,2) (3,3) (3.3) w=.4 (3,3)(3,2) (3,2) (3,2) w=.9 (1,3) (1,2) (1,3) (1,3) w=.1 (3,3) (2,3) (2,3) w=.2 (3,3) (3,2) (3,2) w=.9 (3,2) (2,3) (2,2) (2,2) w=.4 $x' = \operatorname{sample}(P(X'|x))$ w(x)

Video of Demo – Moderate Number of Particles

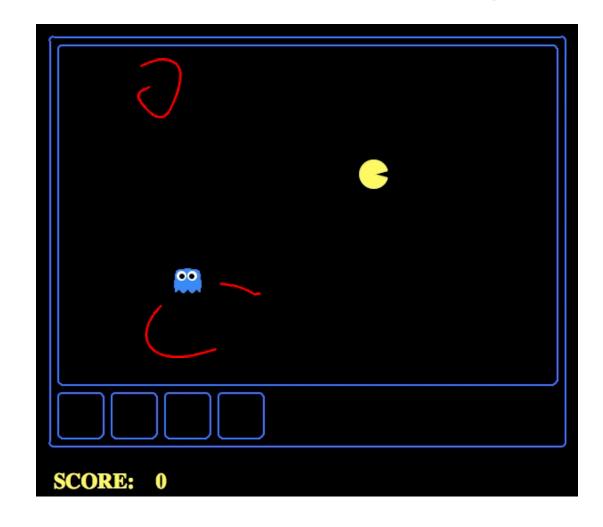
Pydev - Eclipse File Edit Navio	e igate Search Project Run Window Help	
		E Pydev f ⁰ Team **
	 ^a ^a ^b ^b ^b ^b ^b ^b ^b ^b ^b ^b	
Console circle	: *	
0	🚔 📑 📑 🛃 🖉	96%) 🕞 🔺 .ııl 🛱 😻 💊 1:58 PM 10/31/2013

Video of Demo – Huge Number of Particles

	iearch Project Run Window Help ▼ Ø ▼ Ø ▼	🖽 🛹 Pydev 🖆 Tean
	 a ghostbusters (beliefs dynamic, circle, particles) 2 ghostbusters (beliefs dynamic, circle, particles, some) 3 ghostbusters (beliefs dynamic, circle) 4 ghostbusters (beliefs dynamic, center) 5 ghostbusters (beliefs dynamic, basic) 6 pacman sonar.py 7 pacman sonar.py 8 ghostbusters (beliefs dynamic, circle, particles) (tons) 9 ghostbusters (beliefs dynamic, circle, no noise) 1 st class pactionan Run As Run Configurations Organize Favorites 	
Console 🛛		
<terminated> 1</terminated>		
	init', 'module', 'busts', 'display', 'gameOver', 'getBustingOptions', 'getGhostTupl	epistributionGivenFreviousGnostrupie, getGn

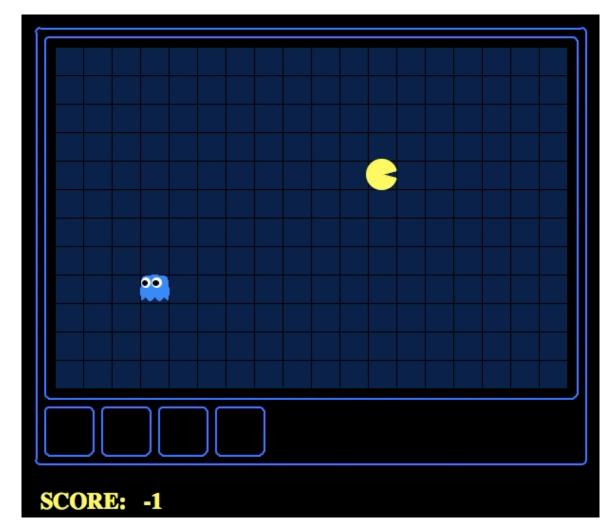
Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles



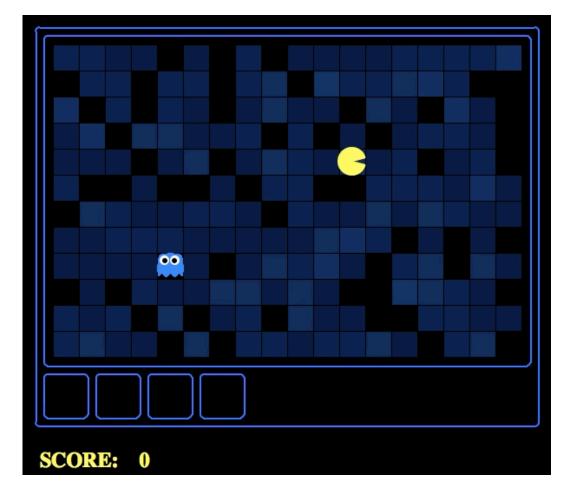
Which Algorithm?

Exact filter, uniform initial beliefs



Which Algorithm?

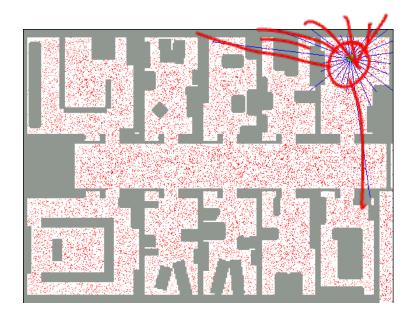
Particle filter, uniform initial beliefs, 300 particles

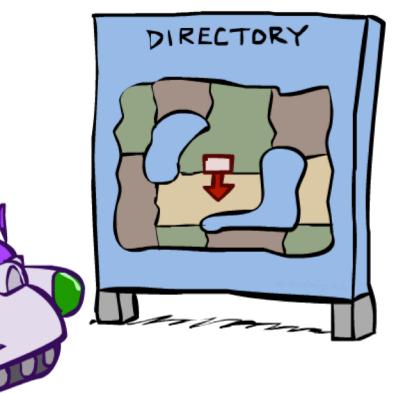


Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique





Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

