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Announcements

o PS3: Due today
o PS4 -> Released 
o HW2 -> Released
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Probability Summary
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Recap: Bayes’ Net Representation

o A directed, acyclic graph, one node per random variable 

o A conditional probability table (CPT) for each node 

o A collection of distributions over X, one for each combination of 
parents’ values 

o Bayes’ nets implicitly encode joint distributions 

o As a product of local conditional distributions 
o To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together:
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Quiz: Bayes’ Rule

o Given:

o What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3
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Quiz: Bayes’ Rule

o Given:

o What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

P(sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72 
P(rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06 
P(sun|dry)=12/13 
P(rain|dry)=1/13 

6



Ghostbusters, Revisited

o Let’s say we have two distributions:
o Prior distribution over ghost location: P(G)

o Let’s say this is uniform
o Sensor reading model: P(R | G)

o Given: we know what our sensors do
o R = reading color measured at (1,1)
o E.g. P(R = yellow | G=(1,1)) = 0.1

o We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:

[Demo: Ghostbuster – with probability (L12D2) ]
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Reasoning over Time or Space

o Often, we want to reason about a sequence of observations 

o Speech recognition 
o Robot localization 
o User attention 
o Medical monitoring 

o Need to introduce time (or space) into our models
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Markov Models

o Value of X at a given time is called the state

o Parameters: called transition probabilities or dynamics, specify how the state evolves 
over time (also, initial state probabilities)

o Stationarity assumption: transition probabilities the same at all times
o Same as MDP transition model, but no choice of action
o A (growable) BN: We can always use generic BN reasoning on it if we truncate the chain 

at a fixed length

X2X1 X3 X4
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Markov Assumption: Conditional Independence

o Basic conditional independence:
o Past and future independent given the present
o Each time step only depends on the previous
o This is called the (first order) Markov property
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Example Markov Chain: Weather

o States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun 

▪ CPT P(Xt | Xt-1): 
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Bayes Nets -- Independence

o Bayes Net
o Chain Rule
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Burglary Earthqk

Alarm

John 
calls

Mary 
calls



Markov Models (Markov Chains)

o A Markov model defines
o a joint probability distribution:

X2X1 X3 X4

▪ One common inference problem: 
▪ Compute marginals P(Xt) for all time steps t 

XN

▪ Why?
▪ Chain Rule,  

Indep. Assumption?
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Example Markov Chain: Weather

o Initial distribution: 1.0 sun

o What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1
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Mini-Forward Algorithm

o Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4
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Example Run of Mini-Forward Algorithm

▪ From initial observation of sun

▪ From initial observation of rain

▪ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X∞)P(X4)

P(X1) P(X2) P(X3) P(X∞)P(X4)

P(X1) P(X∞)
…

[Demo: L13D1,2,3]
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Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!
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Video of Demo Ghostbusters Circular Dynamics
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▪ Stationary distribution: 
▪ The distribution we end up with is called 

the stationary distribution           of the 
chain 

▪ It satisfies 

Stationary Distributions

o For most chains:
o Influence of the initial distribution 

gets less and less over time.
o The distribution we end up in is 

independent of the initial distribution
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Example: Stationary Distributions

o Question: What’s P(X) at time t = infinity?
X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:
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Application of Stationary Distribution: Web Link Analysis

o PageRank over a web graph
o Each web page is a possible value of a state
o Initial distribution: uniform over pages
o Transitions:

o With prob. c, uniform jump to a
random page (dotted lines, not all shown)
o With prob. 1-c, follow a random
outlink (solid lines)

o Stationary distribution
o Will spend more time on highly reachable pages
o E.g. many ways to get to the Acrobat Reader download page
o Google 1.0 returned the set of pages containing all your keywords in 

decreasing rank, now all search engines use link analysis along with 
many other factors (rank actually getting less important over time)
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Hidden Markov Models
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Pacman – Sonar
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Hidden Markov Models

o Markov chains not so useful for most agents 
o Need observations to update your beliefs 

o Hidden Markov models (HMMs) 
o Underlying Markov chain over states X 
o You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

o An HMM is defined by:
o Initial distribution:
o Transitions:
o Emissions:
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Example: Ghostbusters HMM

o P(X1) = uniform 

o P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or stay 
in place 

o P(Rij|X) = same sensor model as before: 
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X|X’=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X5

X2

Ri,j

X1 X3 X4

Ri,j Ri,j Ri,j
26



Video of Demo Ghostbusters – Circular Dynamics -- HMM
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Conditional Independence

o HMMs have two important independence properties: 

o Markov hidden process: future depends on past via the present 
o Current observation independent of all else given current state 

o Does this mean that evidence variables are guaranteed to be independent? 

o [No, they tend to correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Real HMM Examples

o Robot tracking:
o Observations are range readings (continuous)
o States are positions on a map (continuous)

o Speech recognition HMMs:
o Observations are acoustic signals (continuous valued)
o States are specific positions in specific words (so, tens of thousands)

o Machine translation HMMs:
o Observations are words (tens of thousands)
o States are translation options
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Filtering / Monitoring

o Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

o We start with B1(X) in an initial setting, usually uniform

o As time passes, or we get observations, we update B(X)

o The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program
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Example: Robot Localization

t=0 
Sensor model: can read in which directions there is a wall, never more than 1 

mistake 
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer
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Example: Robot Localization

t=1 
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob
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Example: Robot Localization

t=2

10Prob
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Example: Robot Localization

t=3

10Prob
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Example: Robot Localization

t=4

10Prob
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Example: Robot Localization

t=5

10Prob
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Inference: Find State Given Evidence

o We are given evidence at each time and want to know 

o Idea: start with P(X1) and derive Bt in terms of Bt-1 

o equivalently, derive Bt+1 in terms of Bt
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Background:  
Probabilistic Inference

o Probabilistic inference: compute a desired 
probability from other known probabilities (e.g. 
conditional from joint)

o We generally compute conditional probabilities 
o P(on time | no reported accidents) = 0.90
o These represent the agent’s beliefs given the evidence

o Probabilities change with new evidence:
o P(on time | no accidents, 5 a.m.) = 0.95
o P(on time | no accidents, 5 a.m., raining) = 0.80
o Observing new evidence causes beliefs to be updated
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Inference by Enumeration

o P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

39



Inference by Enumeration

o P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65
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Inference by Enumeration

o P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65 
P(rain)=1-.65=.35
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Inference by Enumeration
o General case:

o Evidence variables: 
o Query* variable:
o Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want: 

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize 
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Inference by Enumeration

o P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter)~.1+.15=.25
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Inference by Enumeration

o P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(rain|winter)~.05+.2=.25
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Inference by Enumeration

o P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter)~.25 
P(rain|winter)~.25 
P(sun|winter)=.5 
P(rain|winter)=.5
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter,hot)~.1 
P(rain|winter,hot)~.05
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter,hot)~.1 
P(rain|winter,hot)~.05 
P(sun|winter,hot)=2/3 
P(rain|winter,hot)=1/3
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▪ Obvious problems: 
▪ Worst-case time complexity O(dn)  
▪ Space complexity O(dn) to store the joint distribution 

Inference by Enumeration
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Next Topic

o Inference in HMMs
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