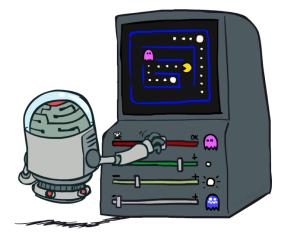
CSE 573: Artificial Intelligence

Hanna Hajishirzi Reinforcement Learning II

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer



Reinforcement Learning

• Still assume a Markov decision process (MDP):

- $\circ A \text{ set of states } s \in S$
- A set of actions (per state) A
- o A model T(s,a,s')
- A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

• New twist: don't know T or R

- o I.e. we don't know which states are good or what the actions do
- o Must actually try actions and states out to learn
- Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution				
	Goal	Technique		
	Compute V*, Q*, π^*	Value / policy iteration		
	Evaluate a fixed policy π	Policy evaluation		

Unknown MDP: Model-Based

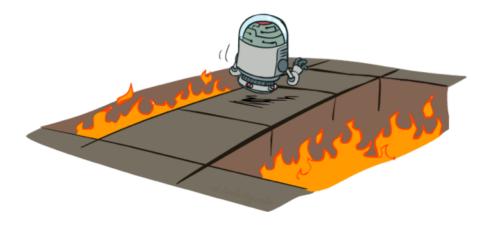
Goal	Technique
Compute V*, Q*, π^*	VI/PI on approx. MDP
Evaluate a fixed policy π	PE on approx. MDP

Unknown MDP: Model-Free

Goal	Technique
Compute V*, Q*, π^*	Q-learning
Evaluate a fixed policy π	Value Learning

Model-Free Learning

o act according to current optimal (based on Q-Values)o but also explore...



Q-Learning

• Q-Learning: sample-based Q-value iteration

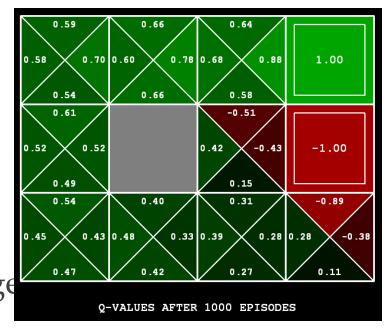
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - o Receive a sample (s,a,s',r)
 - \circ Consider your old estimatQ(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$ no longer policy evaluation!

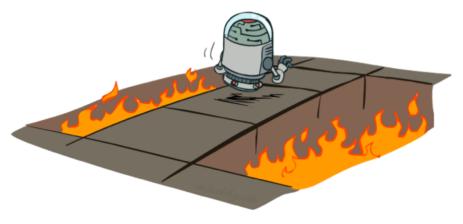
o Incorporate the new estimate into a running average

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$



Q-Learning: act according to current optimal (and also explore...)

- Full reinforcement learning: optimal policies (like value iteration)
 - o You don't know the transitions T(s,a,s')
 - o You don't know the rewards R(s,a,s')
 - You choose the actions now
 - o Goal: learn the optimal policy / values

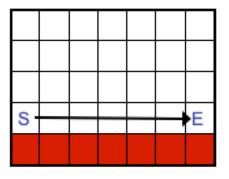


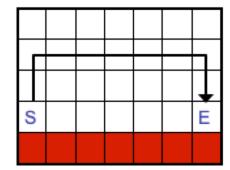
• In this case:

- o Learner makes choices!
- o Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

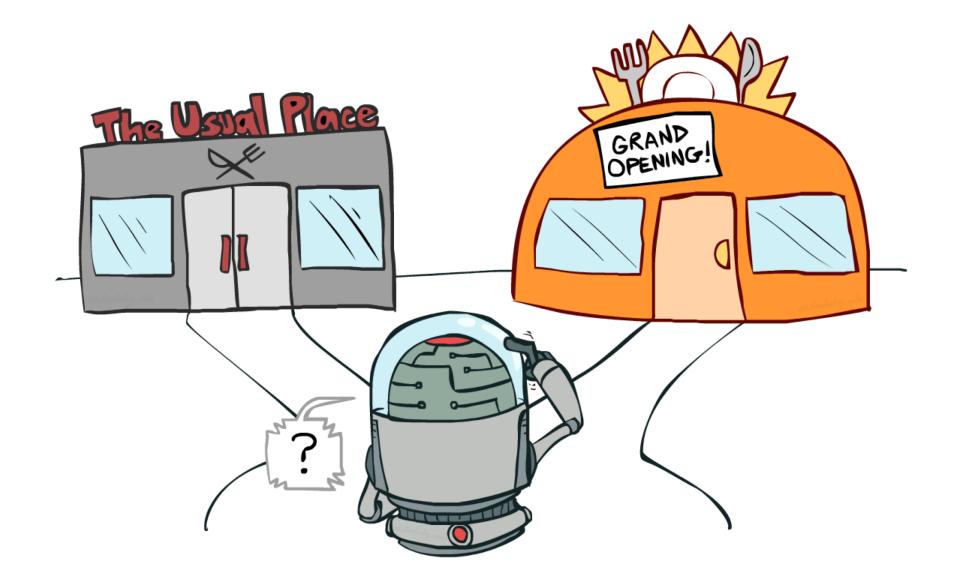
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - o ... but not decrease it too quickly
 - o Basically, in the limit, it doesn't matter how you select actions





Exploration vs. Exploitation



How to Explore?

Several schemes for forcing exploration
 Simplest: random actions (ε-greedy)
 Every time step, flip a coin
 With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy

O Problems with random actions?
O You do eventually explore the space, but keep thrashing around once learning is done
O ne solution: lower ε over time
O nother solution: exploration functions

Exploration Functions

• When to explore?

- o Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

• Exploration function

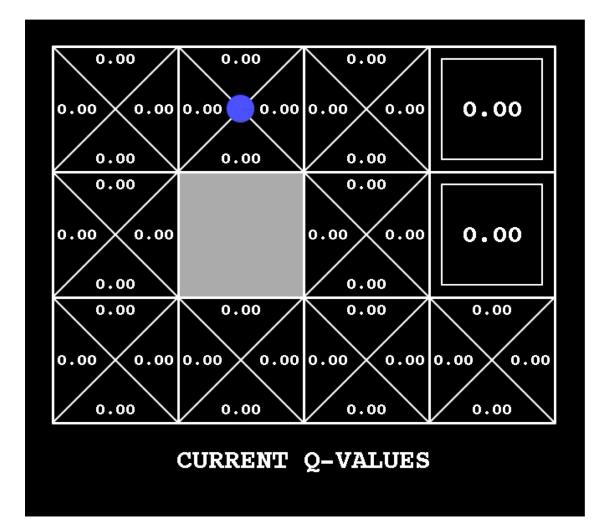
• Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$

Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$

 Note: this propagates the "bonus" back to states that lead to unknown states as well!
 [Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

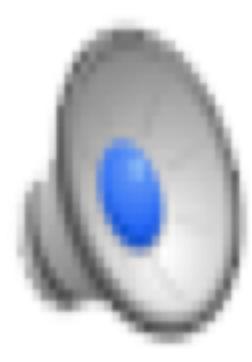
Q-Learn Epsilon Greedy



Video of Demo Q-learning – Manual Exploration – Bridge Grid

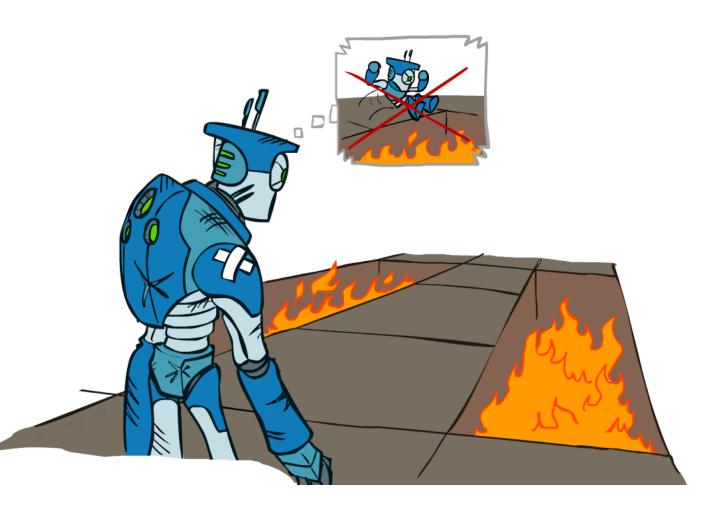
Video of Demo Q-learning – Epsilon-Greedy – Crawler

Video of Demo Q-learning – Exploration Function – Crawler

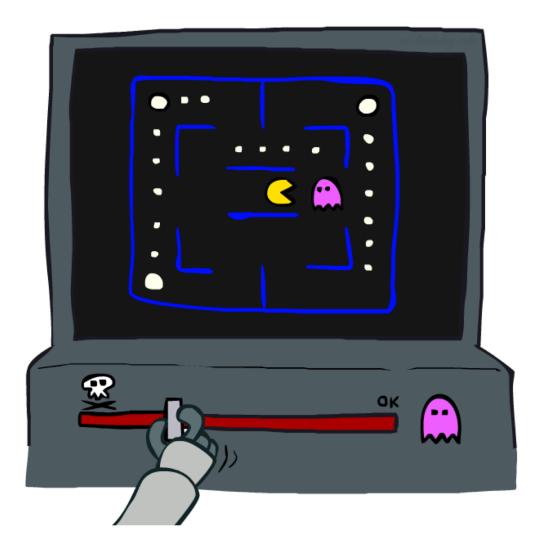


Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

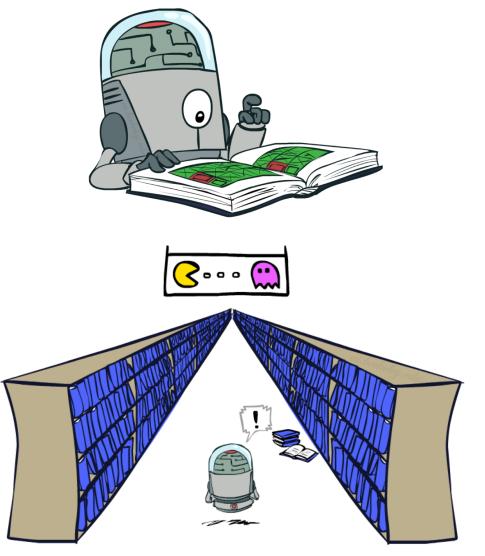


Approximate Q-Learning



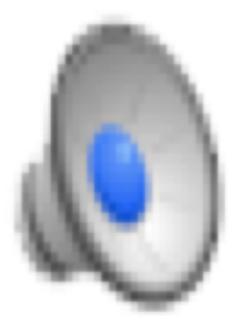
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again



Video of Demo Q-Learning Pacman – Tiny – Watch All

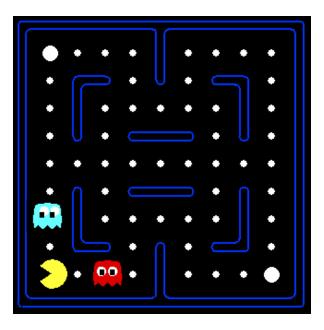
Video of Demo Q-Learning Pacman – Tiny – Silent Train



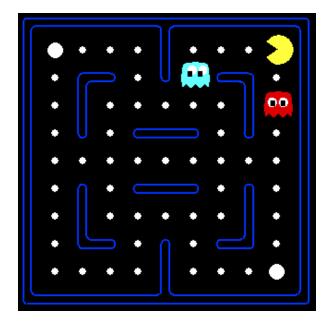
Video of Demo Q-Learning Pacman – Tricky – Watch All

Example: Pacman

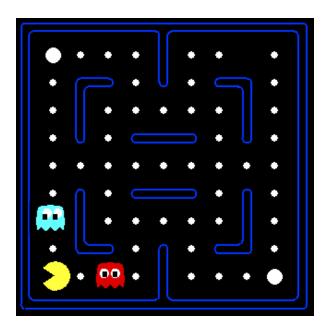
Let's say we discover through experience that this state is bad:



In naïve q-learning, we know nothing about this state:

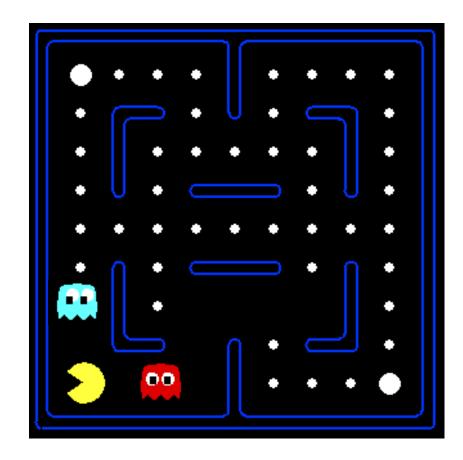


Or even this one!



Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - \circ 1 / (dist to dot)²
 - \circ Is Pacman in a tunnel? (0/1)
 - o etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

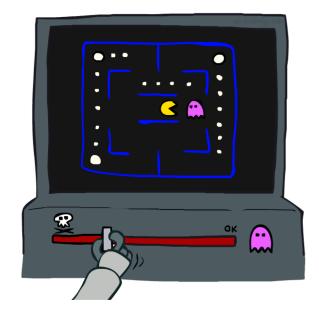
• Q-learning with linear Q-functions:

transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

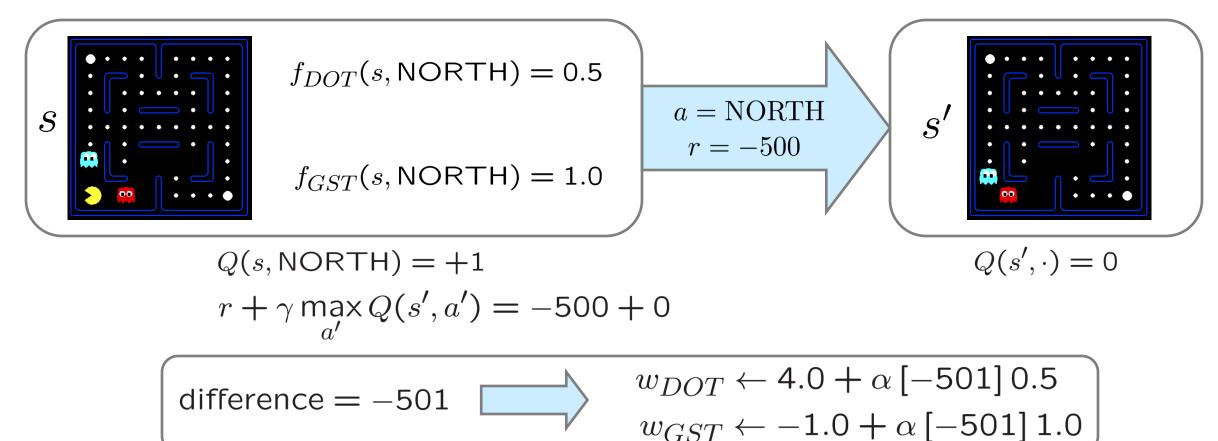
• Intuitive interpretation:

- o Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares



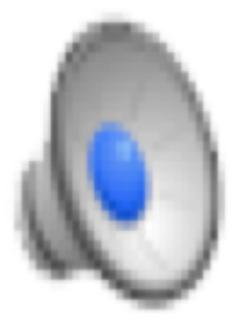
Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

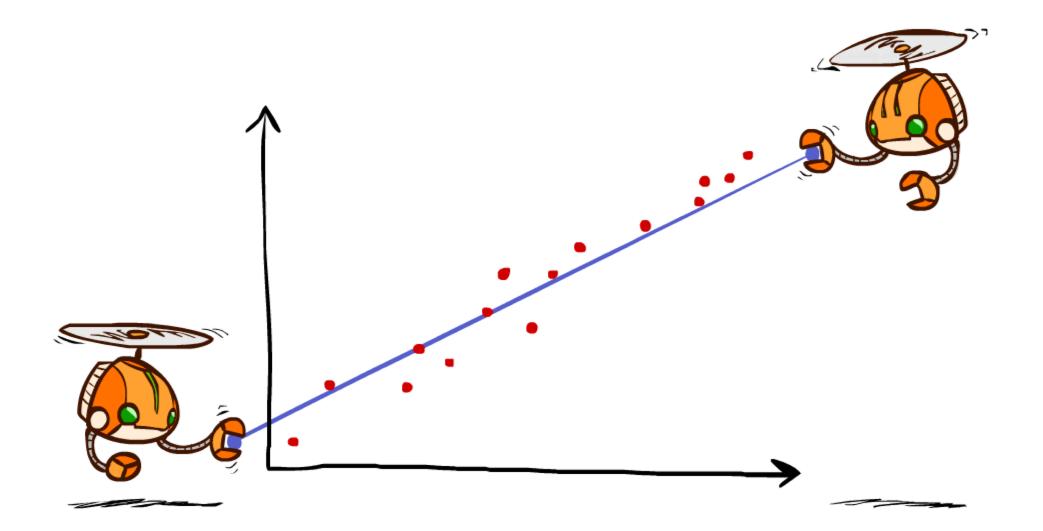


 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

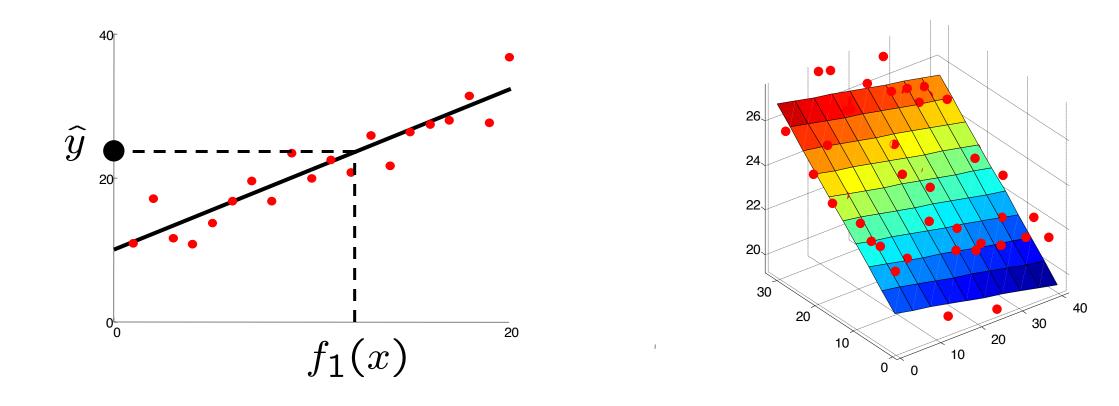
Video of Demo Approximate Q-Learning -- Pacman



Q-Learning and Least Squares

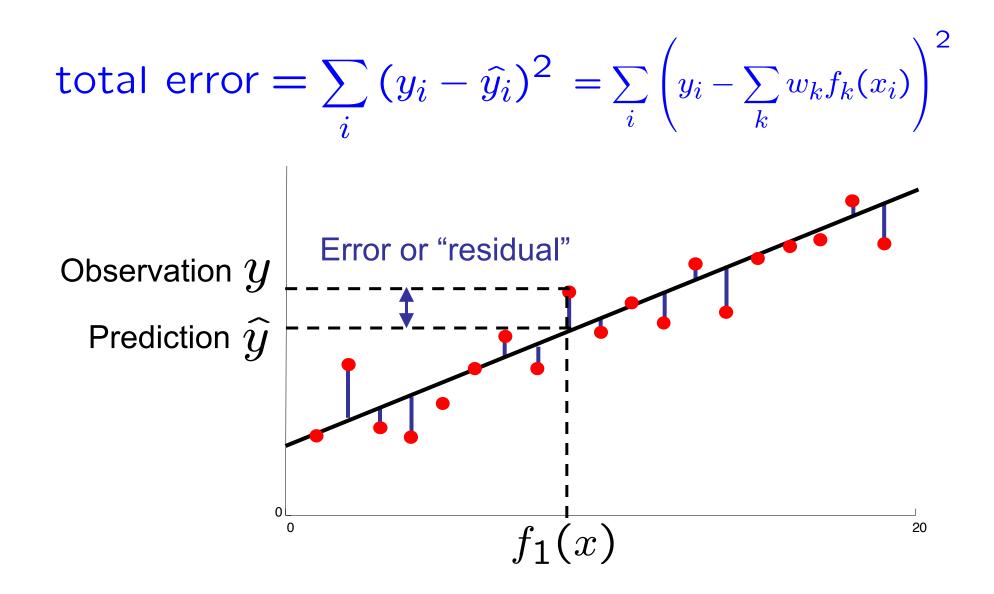


Linear Approximation: Regression



Prediction: $\hat{y} = w_0 + w_1 f_1(x)$ Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

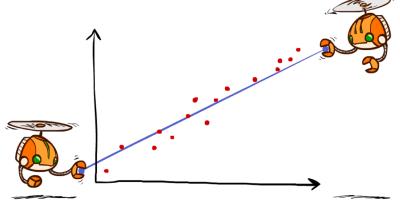
Optimization: Least Squares



Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$



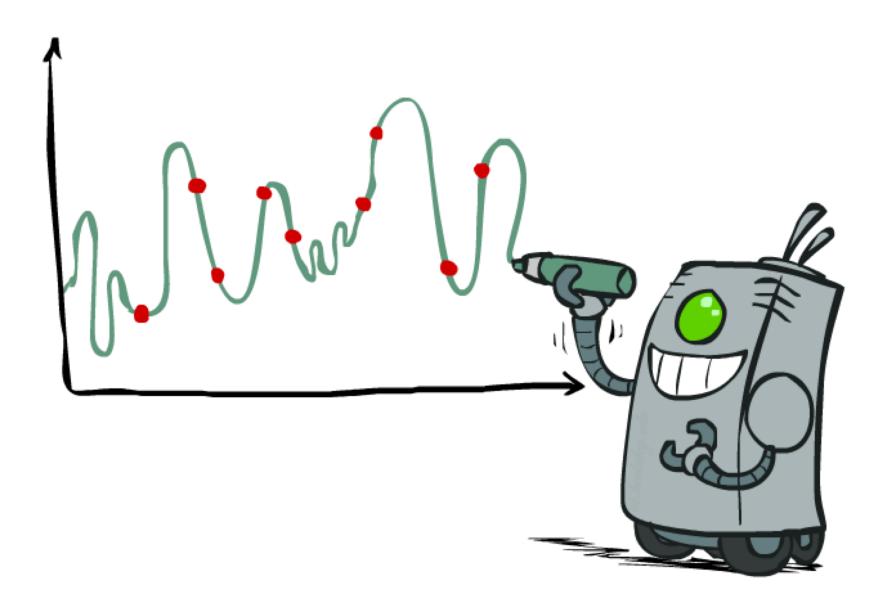
Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"prediction"

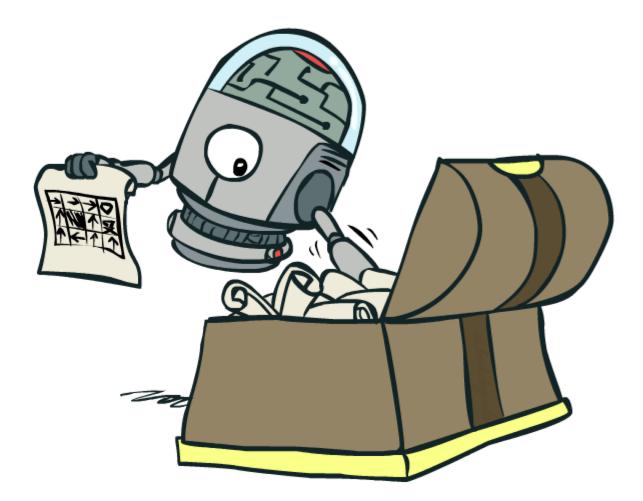
"target"

Overfitting: Why Limiting Capacity Can Help



New in Model-Free RL

Policy Search



Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - o We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - o Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

• Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- o If there are a lot of features, this can be impractical

 Better methods exploit lookahead structure, sample wisely, change multiple parameters...

The Story So Far: MDPs and RL

Known MDP: Offline Solution				
Goal	Technique			
Compute V*, Q*, π*	Value / policy iteration			
Evaluate a fixed policy π	Policy evaluation			

Unknown MDP: Model-Based

Goal	*use features to generalize	Technique
Compute V*,	Q*, π*	VI/PI on approx. MDP
Evaluate a fix	ed policy π	PE on approx. MDP

Unknown MDP: Model-Free

Je
ning

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - o Search
 - o Games
 - o Markov Decision Problems
 - o Reinforcement Learning
- Next up: Uncertainty and Learning!

