CSE 573: Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning Il

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of statess € S
o A set of actions (per state) A 6
o A model T(s,a,s’) \ s

o A reward function R(s,a,s’)

o Still looking for a policy n(s)

o New twist: don’t know T or R
o Le. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

o Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, n* Value / policy iteration
\ Evaluate a fixed policy Policy evaluation /
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, n* VI/PI on approx. MDP Compute V*, Q*, n* Q-learning
Evaluate a fixed policy PE on approx. MDP Evaluate a fixed policy Value Learning

- _/ - _/

Model-Free Learning

o act according to current optimal (based on Q-Values)
o but also explore...

Q-Learning

o Q-Learning: sample-based Q-value iteration

Qit1(s,0) « Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

a
S

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimatQ(s, a)
o Consider your new sample estimate:

no longer policy

. / /!
sample = R(S7 a, s) + mE/BXQ(S » &) evaluation!

a

o Incorporate the new estimate into a running average

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-Learning:
act according to current optimal (and also explore...)

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

o This is called off-policy learning

me

S E S
o Caveats: [TTTII1] [LITTTT]

o You have to explore enough

o You have to eventually make the learning rate
small enough
o ... but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select action:s

Exploration vs. Exploitation

b7

GRAND

T
O
=

How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
o Every time step, flip a coin
o With (small) probability ¢, act randomly (|
o With (large) probability 1-g, act on current policy

o Problems with random actions?

o You do eventually explore the space, but keep
thrashing around once learning is done

o One solution: lower € over time
o Another solution: exploration functions

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

o Exploration function

o Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) =u + k/n

Regular Q-Update: Q(s,a) <—a R(s,a,s") +ymaxQ(s’,a’)
Modified Q-Update: Q(s,a) < R(s,a,s’) + 7 max f(Q(s',d),N(s,d"))

o Note: this propagates the “bonus” back to states that lead to unknown states

f
as well! [Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Q-Learn Epsilon Greedy

N

A PANTANAS

Video of Demo Q-learning — Manual Exploration — Bridge
Grid

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Video of Demo Q-learning — Exploration Function —
Crawler

Regret

Even if you learn the optimal
policy, you still make mistakes
along the way!

Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards,
including youthful suboptimality,
and optimal (expected) rewards
Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration

has higher regret

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all g-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training
o Too many states to hold the g-tables in memory

o Instead, we want to generalize:

o Learn about some small number of training states
from experience

o Generalize that experience to new, similar situations

o This is a fundamental idea in machine learning, and
we'll see it over and over again

[demo — RL pacman]

Video of Demo Q-Learning Pacman —
Tiny — Watch All

Video of Demo Q-Learning Pacman —

Tiny — Silent Train

Video of Demo Q-Learning Pacman —
Tricky — Watch All

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)

o Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

o Example features:

o Distance to closest ghost

o Distance to closest dot

o Number of ghosts

o 1/ (dist to dot)?

o Is Pacman in a tunnel? (0/1)

o Is it the exact state on this slide?

o Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

V(s) = w1f1(s) +wafo(s) + ... + wnfn(s)
Q(s,a) = w1 f1(s,a)twafa(s,a)+.. . Fwnfn(s, a)
o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

QGs,0) = wifi(s @) bwafals,)+ Aunfals,a)

o Q-learning with linear Q-functions:

transition = (s,a,r,s’)

difference = [r + 7 max Q(s, a’)] — Q(s,a)

a

LN
Q(s,a) —Qfs;a)r+ aldifference] Exact Q's

w; <+ w; + « [difference] f;(s,a) Approximate Qs

o Intuitive interpretation:
o Adjust weights of active features

o E.g., if something unexpectedly bad happens, blame the features that were
on: disprefer all states with that state’s features

o Formal justification: online least squares

Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) =1.0fgsr(s,a)

) a4
fpor(s, NORTH) =@
- a = NORTH /

r = —500 5
fasT(s, NORTH) =@
— _
Q(s,NORTH) = +1\> Q(s’,)=0
&7 FymaxQ(s’,a’) = —500 + 0 -
- M

. 4. —501]0.
{difference:501) wbor LO}O‘[501]0.5 J

WG ST < —1.0 0 [—501] 1.0
S

Q(Sa a’) — 3°OfDOT(57 CL) — 3°OfGST(Sa CL)

Video of Demo Approximate

Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression

40r

|
|
‘@ :
|
|
|

20

f1(x)

Prediction: Prediction:
Yy =wo+wif1(x) yi = wo + w1 f1(z) + wafo(x)

Optimization: Least Squares

1

2
total error =Y (y; — §:)° =3 (yz- - Zwkfk(:vi)>
i < — "

. Error or “residual”
Observation Y

Prediction g

° f1(x) :

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(w)>
k

0 error(w)

OWwm,

- (y - Z’%fk(@) fm(x)
k

W, +— Wm + (y — > wifr(x) | fm(x)
— k
Approximate q update explW
wm — wm + a1 +7maxQ(s',a’) — Q(s,)| fm(s,)
<

S-> ——

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help

Engineered Approximate Example: Tetris

state: naive board configuration + shape of the falling piece ~10%° states!

2.
action: rotation and translation applied to the falling piece am
22 features aka basis functions ¢z
= Ten basis functions, O, . .., 9, mapping the state to the height h[k] of each column.
= Nine basis functions, 10, . .., 18, each mapping the state to the absolute difference
between heights of successive columns: |h[k+1] - h[k]|, k=1,..., 9.
= One basis function, 19, that maps state to the maximum column height: max, h[k] B
= One basis function, 20, that maps state to the number of ‘holes’ in the board. oeee O
OOeeoono
= One basis function, 21, that is equal to 1 in every state. 80eeEan
JO0E8a808
A 21 - O 08888808
Va(s) = Bii(s) = 07 ¢(s) 008888880
— O eeshedac
1=

[Bertsekas & loffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD); Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

Deep Reinforcement Learning

- 0000[]

Pong Enduro Beamrider

» 49 ATARI 2600 games.
From pixels to actions.
» The change in score is the reward.
+ Same algorithm.
- Same function approximator, w/ 3M free parameters.
« Same hyperparameters.
Roughly human-level performance on 29 out of 49 games.

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

o E.g. your value functions from project 2 were probably horrible estimates of future rewards,
but they still produced good decisions

o Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)
o We'll see this distinction between modeling and prediction again later in the course

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function

o Nudge each feature weight up and down and see if your policy is better than
before

o Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!
o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

0

1on

Iterat

il

[Video: GAE]

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, n* Value / policy iteration
\ Evaluate a fixed policy Policy evaluation /
Unknown MDP: Model-Based Unknown MDP: Model-Free
/ *use features \ f *use features \
Goal to generalize Technique Goal to generalize Technique
Compute V*, Q*, n* VI/PI on approx. MDP Compute V*, Q*, n* Q-learning
Evaluate a fixed policy PE on approx. MDP Evaluate a fixed policy Value Learning

- _/ - _/

Conclusion

o We’'re done with Part I: Search and
Planning!

o We’'ve seen how Al methods can solve
problems in:
o Search
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Uncertainty and Learning!

