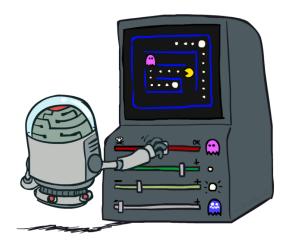
CSE 573: Artificial Intelligence

Hanna Hajishirzi Reinforcement Learning II

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer



Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - \circ A set of states $s \in S$
 - o A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - o I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn
- Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal

Compute V*, Q*, π *

Evaluate a fixed policy π

Technique

Value / policy iteration

Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

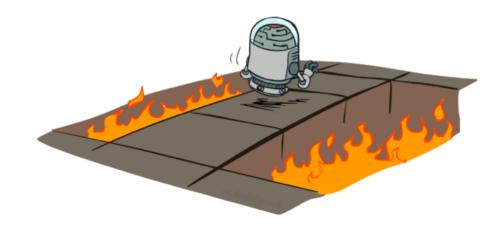
Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Model-Free Learning

- o act according to current optimal (based on Q-Values)
- but also explore...



Q-Learning

Q-Learning: sample-based Q-value iteration

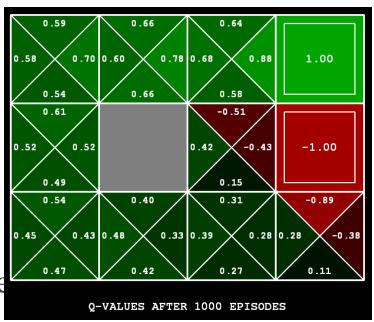
$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - o Receive a sample (s,a,s',r)
 - o Consider your old estimatQ(s, a)
 - o Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$
 no longer policy evaluation!

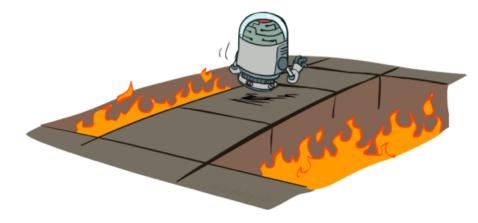
o Incorporate the new estimate into a running average

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$



Q-Learning: act according to current optimal (and also explore...)

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - o You don't know the rewards R(s,a,s')
 - o You choose the actions now
 - Goal: learn the optimal policy / values

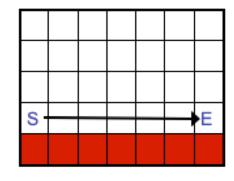


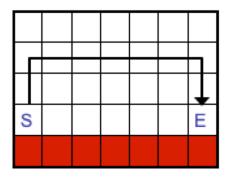
• In this case:

- o Learner makes choices!
- o Fundamental tradeoff: exploration vs. exploitation
- o This is NOT offline planning! You actually take actions in the world and find out what happens...

Q-Learning Properties

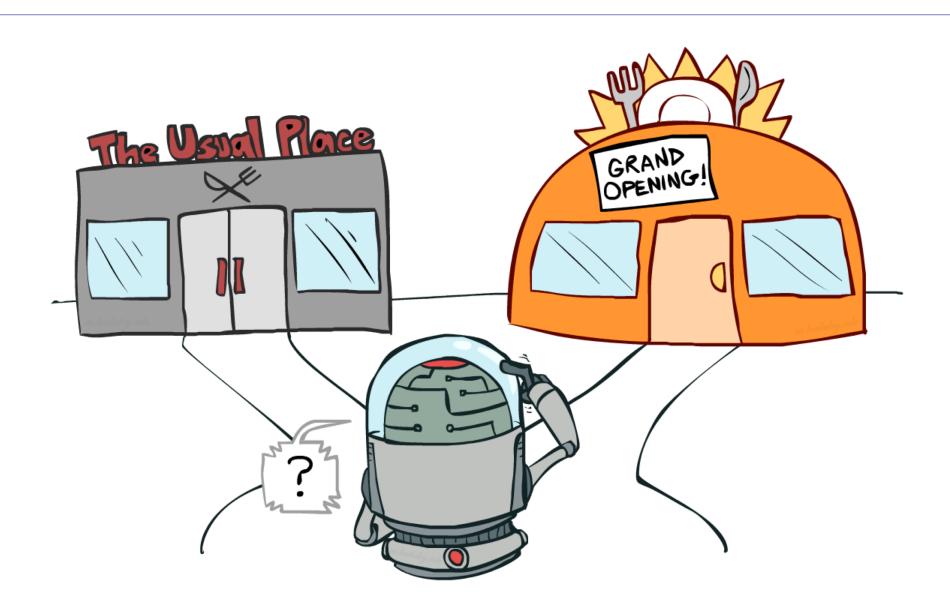
- Amazing result: Q-learning converges to optimal policy -even if you're acting suboptimally!
- This is called off-policy learning





- o Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - o ... but not decrease it too quickly
 - o Basically, in the limit, it doesn't matter how you select actions

Exploration vs. Exploitation



How to Explore?

- Several schemes for forcing exploration
 - ο Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - ο With (small) probability ε, act randomly
 - ο With (large) probability 1-ε, act on current policy
 - o Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - o One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

• When to explore?

- o Random actions: explore a fixed amount
- o Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

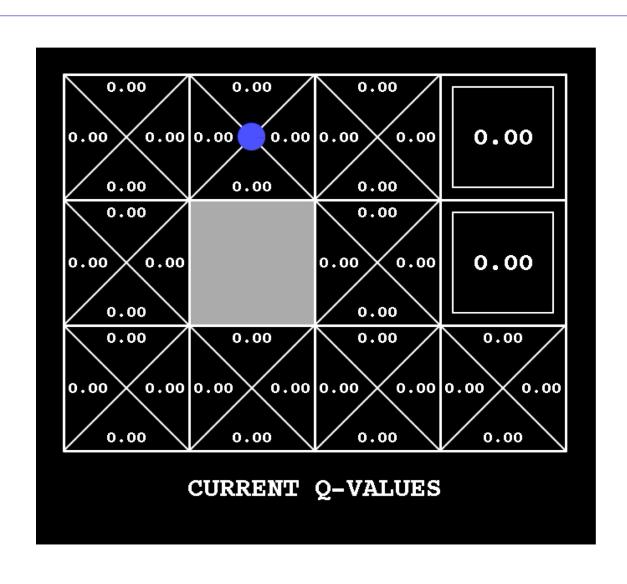
Exploration function

o Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

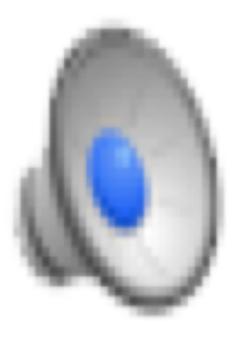
Regular Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Modified Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$$

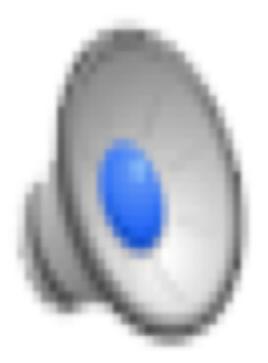
Q-Learn Epsilon Greedy



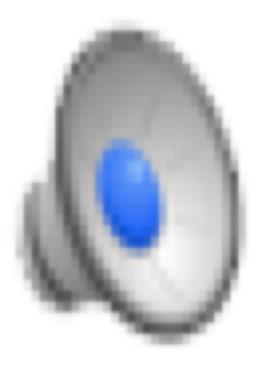
Video of Demo Q-learning – Manual Exploration – Bridge Grid



Video of Demo Q-learning – Epsilon-Greedy – Crawler

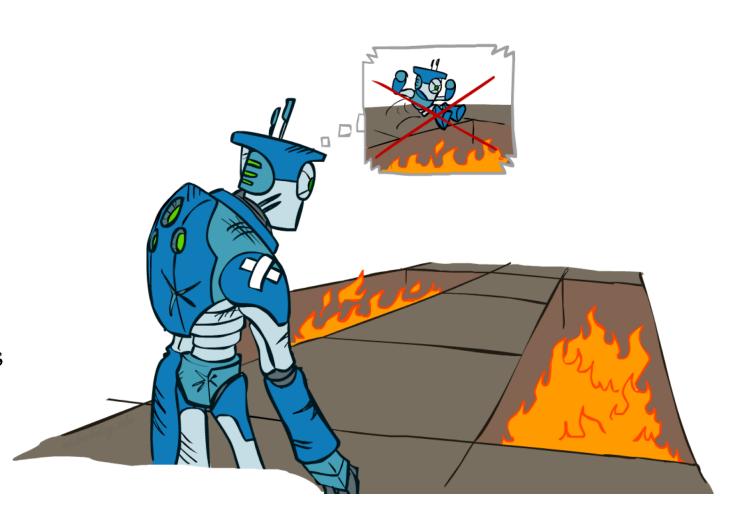


Video of Demo Q-learning – Exploration Function – Crawler

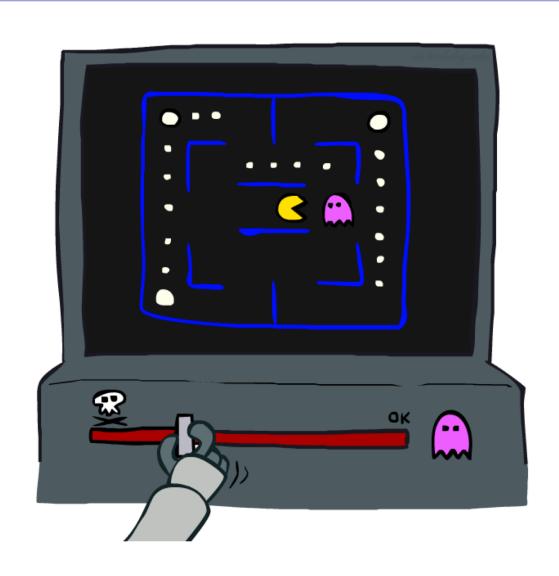


Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

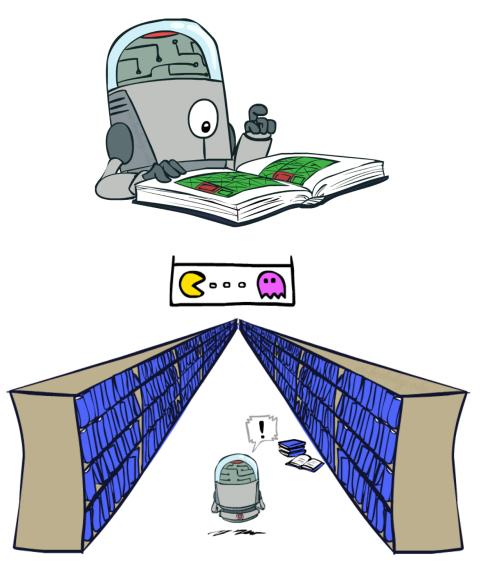


Approximate Q-Learning



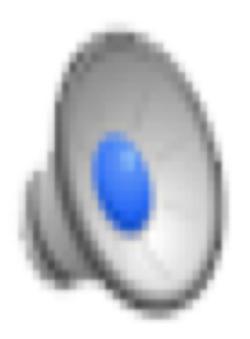
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - o Too many states to visit them all in training
 - o Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - o Generalize that experience to new, similar situations
 - o This is a fundamental idea in machine learning, and we'll see it over and over again

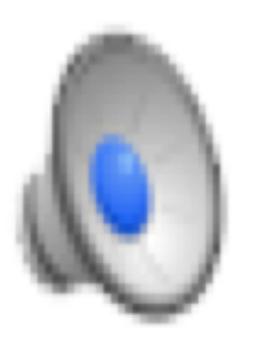


Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train



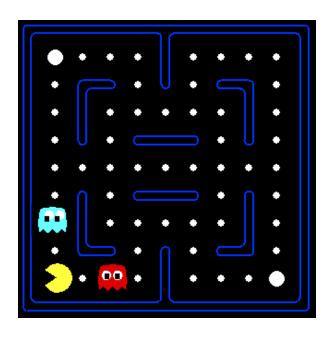
Video of Demo Q-Learning Pacman – Tricky – Watch All

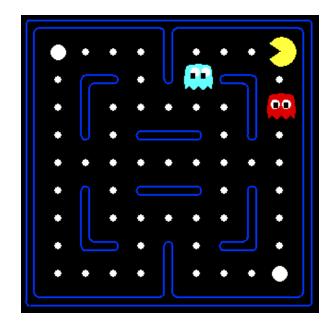


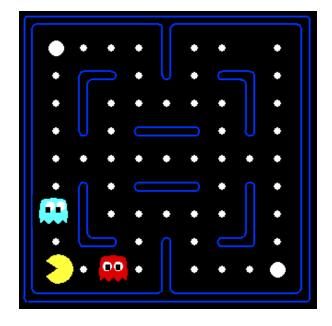
Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

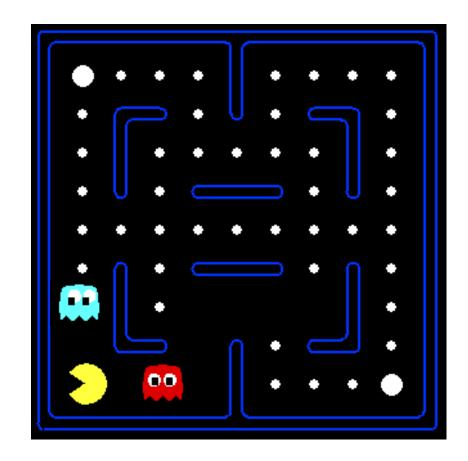






Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - o Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - o Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - \circ 1 / (dist to dot)²
 - \circ Is Pacman in a tunnel? (0/1)
 - o etc.
 - Is it the exact state on this slide?
 - o Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$
$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

- o Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

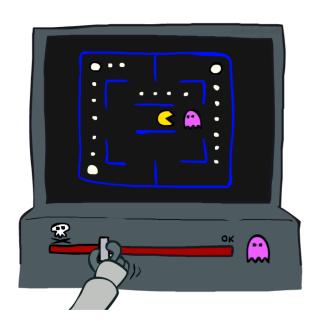
transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference]
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$

Exact Q's

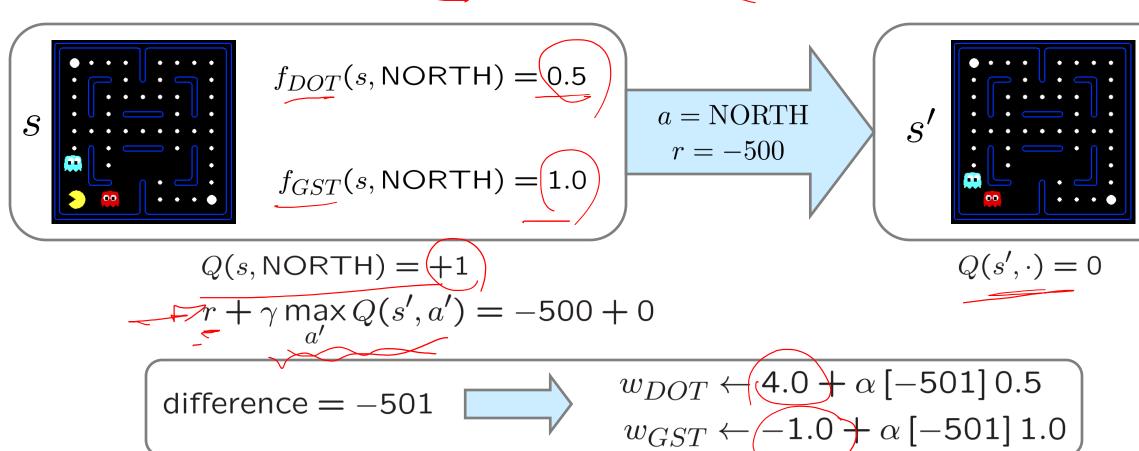
Approximate Q's

- Adjust weights of active features
- o E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares



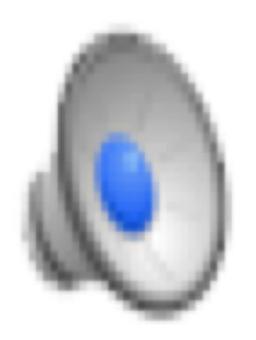
Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) = 1.0 f_{GST}(s,a)$$

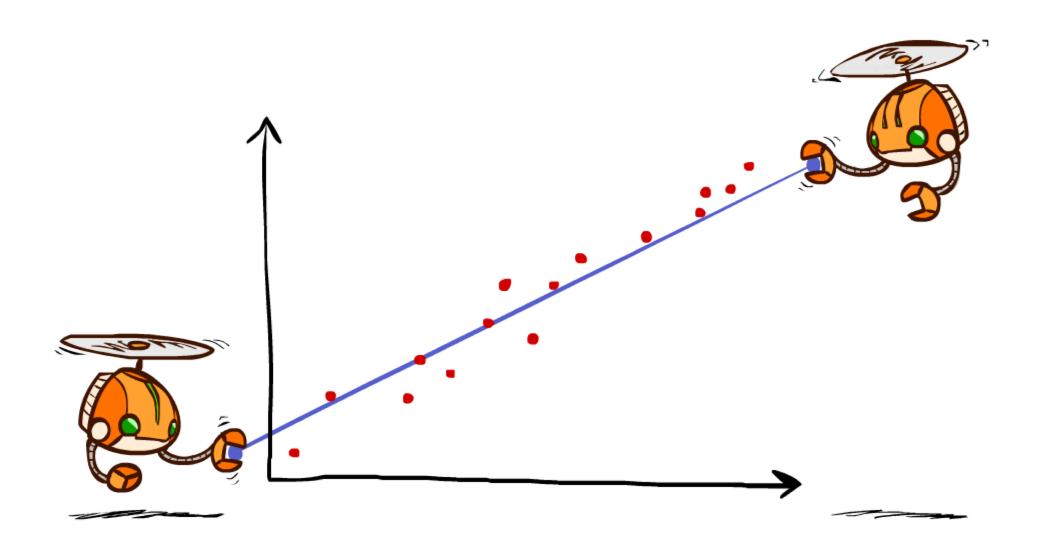


$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

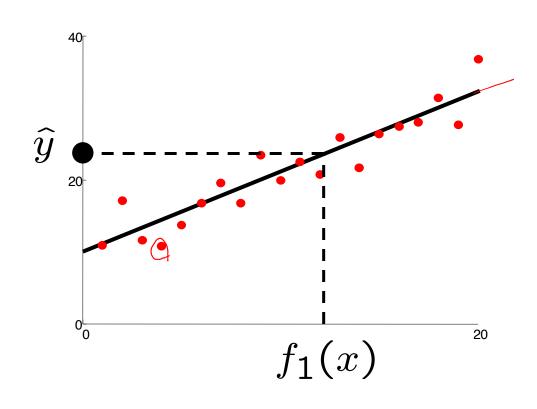
Video of Demo Approximate Q-Learning -- Pacman

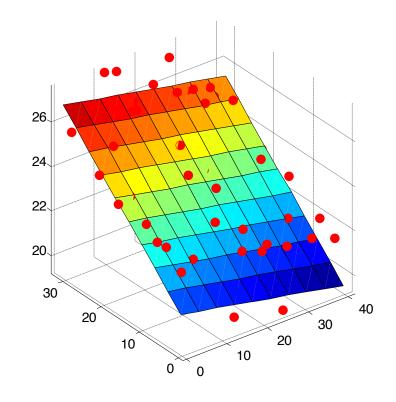


Q-Learning and Least Squares



Linear Approximation: Regression





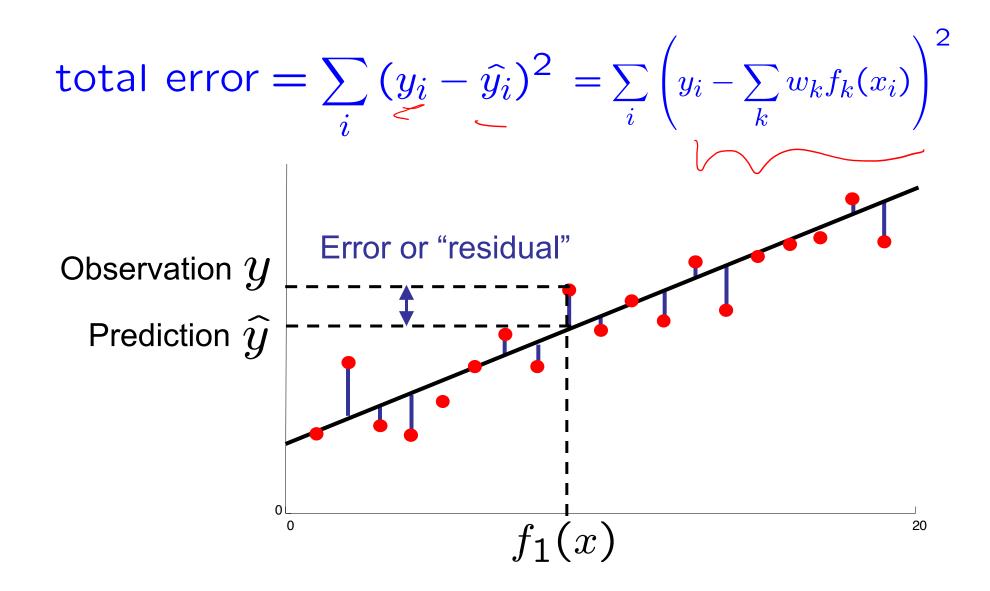
Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares



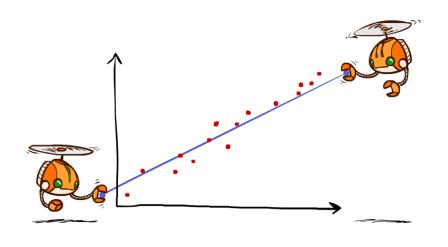
Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

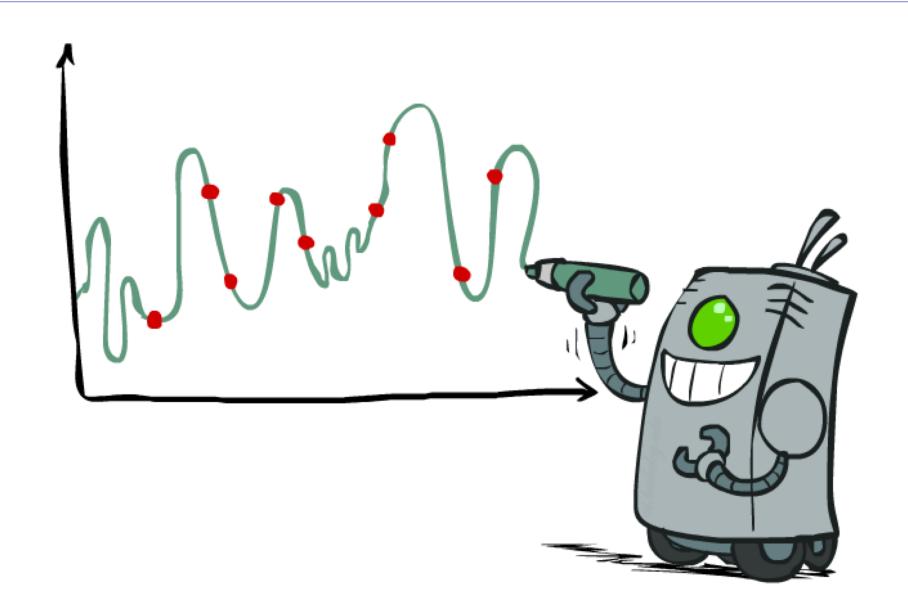
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$



Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a)\right] f_m(s, a)$$
"target" "prediction"

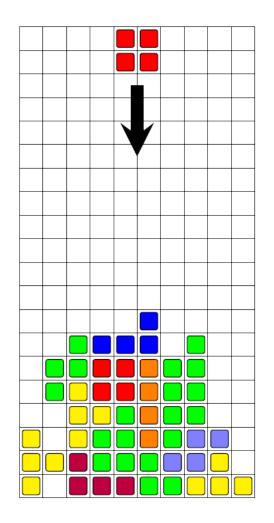
Overfitting: Why Limiting Capacity Can Help

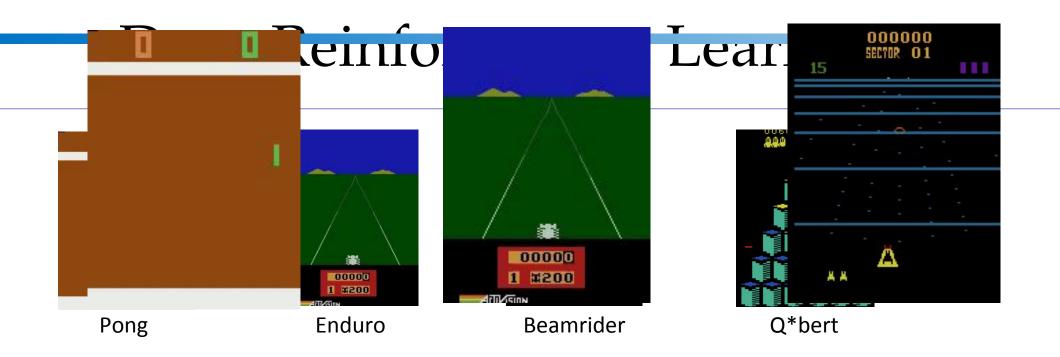


Engineered Approximate Example: Tetris

- state: naïve board configuration + shape of the falling piece ~10⁶⁰ states!
- action: rotation and translation applied to the falling piece
- ullet 22 features aka basis functions $\,\phi_i$
 - Ten basis functions, $0, \ldots, 9$, mapping the state to the height h[k] of each column.
 - Nine basis functions, $10, \ldots, 18$, each mapping the state to the absolute difference between heights of successive columns: |h[k+1] h[k]|, $k = 1, \ldots, 9$.
 - One basis function, 19, that maps state to the maximum column height: $\max_k h[k]$
 - One basis function, 20, that maps state to the number of 'holes' in the board.
 - One basis function, 21, that is equal to 1 in every state.

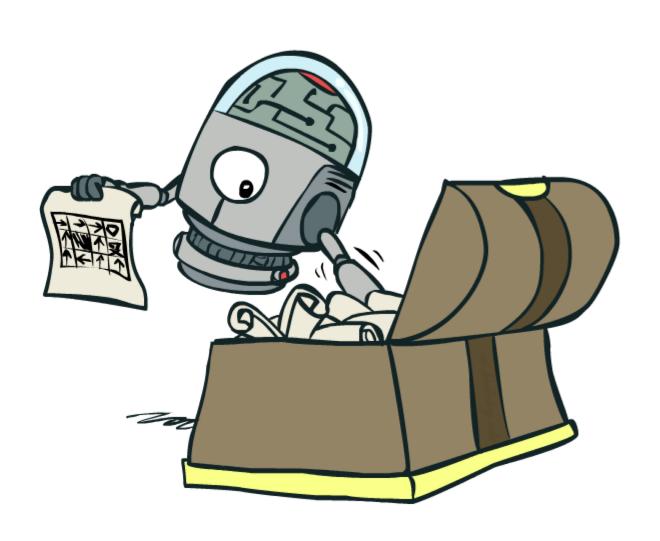
$$\hat{V}_{\theta}(s) = \sum_{i=0}^{21} \theta_i \phi_i(s) = \theta^{\top} \phi(s)$$





- 49 ATARI 2600 games.
- From pixels to actions.
- The change in score is the reward.
- Same algorithm.
- Same function approximator, w/ 3M free parameters.
- Same hyperparameters.
- Roughly human-level performance on 29 out of 49 games.

Policy Search



Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - o Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - o We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

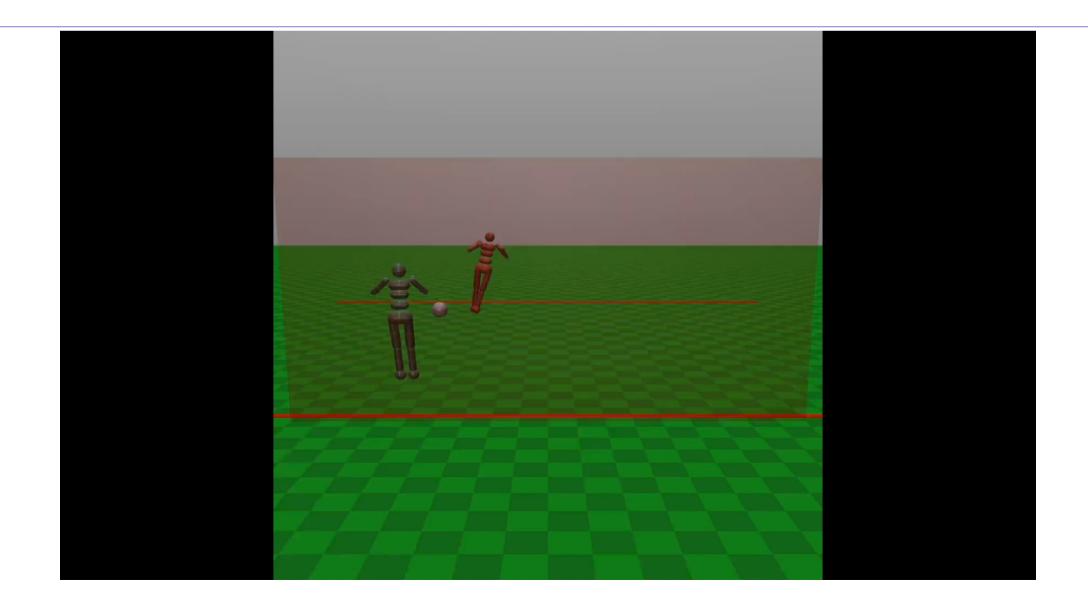
Simplest policy search:

- o Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before

o Problems:

- o How do we tell the policy got better?
- o Need to run many sample episodes!
- o If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Iteration 0



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V^* , Q^* , π^* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

*use features

Goal to generalize Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

*use features

Goal to generalize Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - o Search
 - o Games
 - Markov Decision Problems
 - o Reinforcement Learning
- Next up: Uncertainty and Learning!

