CSE 573: Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer
Reinforcement Learning
Double Bandits
Double-Bandit MDP

- Actions: *Blue, Red*
- States: *Win, Lose*

No discount
10 time steps
Both states have the same value
Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

<table>
<thead>
<tr>
<th>Value</th>
<th>Play Red</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Play Blue</td>
<td>10</td>
</tr>
</tbody>
</table>

```
No discount
10 time steps
```

```
0.25 $0
0.75 $2
0.25 $0
```
Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0
Rules changed! Red’s win chance is different.
Let’s Play!
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$
- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of **rewards**
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to **maximize expected rewards**
 - All learning is based on observed samples of outcomes!
Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Robotics Rubik Cub

- https://www.youtube.com/watch?v=x4O8pojMF0w
The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]
Video of Demo Crawler Bot
Still assume a Markov decision process (MDP):
- A set of states $s \in S$
- A set of actions (per state) A
- A model $T(s,a,s')$
- A reward function $R(s,a,s')$

Still looking for a policy $\pi(s)$

New twist: don’t know T or R
- I.e. we don’t know which states are good or what the actions do
- Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Passive Reinforcement Learning
Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- Step 2: Solve the learned MDP
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Learned Model

$\hat{T}(s, a, s')$

- $T(B, east, C) = 1.00$
- $T(C, east, D) = 0.75$
- $T(C, east, A) = 0.25$

$\hat{R}(s, a, s')$

- $R(B, east, C) = -1$
- $R(C, east, D) = -1$
- $R(D, exit, x) = +10$
Analogy: Expected Age

Goal: Compute expected age of cse573 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
</tr>
</thead>
</table>
| \[
E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots
\] |

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

Unknown P(A): “Model Based”

\[
\hat{P}(a) = \frac{\text{num}(a)}{N}
\]

\[
E[A] \approx \sum_a \hat{P}(a) \cdot a
\]

Unknown P(A): “Model Free”

\[
E[A] \approx \frac{1}{N} \sum_i a_i
\]

Why does this work? Because eventually you learn the right model.

Why does this work? Because samples appear with the right frequencies.
Model-Free Learning
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - **Goal: learn the state values**

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Input Policy π

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-10</td>
<td>+8</td>
<td>+4</td>
<td>+10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+2</td>
<td></td>
<td></td>
<td>-2</td>
</tr>
</tbody>
</table>
```

If B and E both go to C under this policy, how can their values be different?
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V^\pi_0(s) = 0$$

$$V^\pi_{k+1}(s) \leftarrow \sum T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi_k(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:
 \[
 V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')] \]

- Idea: Take samples of outcomes s' (by doing the action!) and average

 \[
 \text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1) \\
 \text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2) \\
 \ldots \\
 \text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n) \\
 V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i \text{sample}_i
 \]
Temporal Difference Learning

- **Big idea:** learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

 Sample of $V(s)$:
 \[
 \text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s')
 \]

 Update to $V(s)$:
 \[
 V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)\text{sample}
 \]

 Same update:
 \[
 V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s))
 \]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)
 - Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: \(\gamma = 1, \alpha = 1/2 \)

\[
V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]
\]
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[\pi(s) = \arg \max_a Q(s, a) \]

\[Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right] \]

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with \(V_0(s) = 0 \), which we know is right
 - Given \(V_k \), calculate the depth \(k+1 \) values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But Q-values are more useful, so compute them instead
 - Start with \(Q_0(s, a) = 0 \), which we know is right
 - Given \(Q_k \), calculate the depth \(k+1 \) q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- Q-Learning: sample-based Q-value iteration
 \[Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right] \]

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: \(Q(s,a) \)
 - Consider your new sample estimate:
 \[sample = R(s,a,s') + \gamma \max_{a'} Q(s',a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s,a) \leftarrow (1 - \alpha) Q(s,a) + (\alpha) [sample] \]

-Demo: Q-learning – gridworld (L10D2) [Demo: Q-learning – crawler (L10D3)]
Q-Learning Demo
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Active Reinforcement Learning
Q-Learning:
act according to current optimal (and also explore…)

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - **Goal: learn the optimal policy / values**

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens…
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called **off-policy learning**

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - … but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions!
Model-Based Learning

Input Policy π

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

act according to current optimal
also explore!
How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Q-Learn Epsilon Greedy
Discussion: Model-Based vs Model-Free RL