CSE 573:
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Reinforcement Learning

Double Bandits

o Actions: Blue, Red
o States: Win, Lose

Double-Bandit MDP

-

-

No discount
10 time steps

Both states have
the same value

~

J

Ofttline Planning

o Solving MDPs is oftline planning ~ N

o You determine all quantities through computation No discount
o You need to know the details of the MDP 10 time steps
o You do not actually play the game! _)

4 N

Value

Play Red 15

Play Blue 10

- /

Let’s Play!

S2 S2 S0 S2 S2
$2 $2 SO0 SO SO

Online Planning

o Rules changed! Red’s win chance is different.

?2? $0

Let’s Play!

ii)) S0 $2 SO
$2
” $2 S0 SO

What Just Happened?

o That wasn’t planning, it was learning!
o Specifically, reinforcement learning
o There was an MDP, but you couldn’t solve it with just computation
o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
o Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly
o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of statess € S

o A set of actions (per state) A @
o A model T(s,a,s’) \ T

o A reward function R(s,a,s’)

Overheated

o Still looking for a policy n(s)

o New twist: don’t know T or R
o Le. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

Reinforcement Learning

\

Agent

State: s

Reward: r Actions: a

/

Environment

(&

Receive feedback in the form of rewards

Agent’s utility is defined by the reward function

Must (learn to) act so as to maximize expected rewards
All learning is based on observed samples of outcomes!

o Basic idea:

O
O
O
O

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

Robotics Rubik Cub

o https:/ /www.youtube.com / watch?v=x408pojMFQw

https://www.youtube.com/watch?v=x4O8pojMF0w

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of statess € S

o A set of actions (per state) A @
o A model T(s,a,s’) \ T

o A reward function R(s,a,s’)

Overheated

o Still looking for a policy n(s)

o New twist: don’t know T or R
o Le. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

»

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

o Model-Based Idea:

o Learn an approximate model based on experiences
o Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a
o Normalize to give an estimate T'(s, a, s’)
o Discover each R(s,a,s’) when we experience (s, a, s”)

o Step 2: Solve the learned MDP

o For example, use value iteration, as before

Example: Model-Based Learning

Input Policy &t

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

[+
% D, exit, X, 10)

Episode 3

4)
E, north, C, -1
C,east, D, -1

' +
\D, exit, X, 10)

Episode 2

-
B, east, C, -1
C, east, D, -1

[+
% D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

% A, exit, X, -10)

Learned Model

T(s,a,s")

-

-

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

~

J

R(s,a,s")

-

-

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

~

J

Analogy: Expected Age

Goal: Compute expected age of cse573 students

Known P(A)
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a\]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this : _ num(a) Why does this
P(a) =

work? Because N E[A] ~ i Za' work? Because

eventually you A TN &= samples appear

learn the right ElA] = Z P(a)-a ‘ with the right

model. g / \ frequencies.

—

Announcements

o HW1 is due: Feb. 12

o Project proposal is due: Feb 19th
o PS3 is released: Feb 21st

o Wait for paper reports.

o Mid-quarter review: Feb 12

The Story So Far: MDPs and RL

Known MDP: Offline Solution

a2 . I
Goal Technique
Compute V*, Q*, n* Value / policy iteration
Evaluate a fixed policy Policy evaluation
\— %
Unknown MDP: Model-BaseM Unknown MDP: Model-Free
4 ,) 4)
Goal Technique
Compute V*, Q*, n* VI/PIl on approx. MDP ?

Evaluate a fixed policy PE on approx. MDP

N\ J - J

Analogy: Expected Age

Goal: Compute expected age of cse573 students

— Known P(A)

@]:@:(wwz(w...
N oo

Without P(A), instead collect samples [a,, a,, ... a\]

AN

/\bﬁﬁown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this P(a) _ num(a) Why does this
work? Because —— N E[A] ~ 1 Za' work? Because
eventually you A t1—Po / N &~ samples appear
learn the right ElA] = Z P(a)-a ‘ with the right

model. U == / \ﬁ frequencies.

Model-Free Learning

Passive Reinforcement Learning

[|

Passive Reinforcement Learning

o Simplified task: policy evaluation
o Input: a fixed policy n(s)
o You don’t know the transitions T(s,a,s”
o You don’t know the rewards R(m
o Goal: learn the state values

o In this case:
o Learner is “along for the ride”
o No choice about what actions to take
o Just execute the policy and learn from experience
o This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

o Goal: Compute values for each state under
s

o Idea: Average together observed sample
values

o Act according to w

o Every time you visit a state, write down what
the sum of discounted rewards turned out to be

o Average those samples

o This is called direct evaluation

Example: Direct Evaluation

Input Policy & Observed Episodes (Training) Output Values
~ 10 Episode 1 Episode 2
4 B, east, C, -1 N (B, east, C, -1 h
. C east, D, -1 C,east, D, -1
-} (D)exit, x, +10 éijdt, X, +10
_—__ — _J \ \
T —+
Episode 3 Episode 4
4 E, north, C, -1 N\ (E, north, C,‘-l A
east, D, -1 C, east, A, -1
Jexit, x, +10 A, exit, x,-10 If B and E both go to C
\ \) und?r this policy,.how can
AJI—)] their values be different?

+ & 17

Problems with Direct Evaluation

o What's good about direct evaluation? Output Values

o It's easy to understand

o It doesn’t require any knowledge of T, R

o It eventually computes the correct average
values, using just sample transitions

o What bad about it?

o It wastes information about state connections

If B and E both go to C

. . under this policy, how can
o So, it takes a long time to learn their values be different?

o Each state must be learned separately

Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy:

o Each round, replace V with a one-step-look-ahead layer over V

<§7%T£3 —OZTS TC@)«SJ @/{@75)/ Y\[(]/

v, jQS}%%T(S 7, DR 7(6),)+ VD] _s7(e)s

o This approach tully explolted the connections between the states
o Unfortunately, we need T and R to do it!

7(s)

s, T(s)

J
A S

o Key question: how can we do this update to V without knowing T and R?

o In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:

ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + q/V,f(s/)]

o Idea: Take samples of outcomes s’ (by doing the action!) and average

sampleq R(s,m(s), 5/1) + Vi

/ 7
sampley = R(s,7(s),s>) + Vi (s5)

samplen, = R(s, m(s), an) -+ WV,:(S%)

~~—" ~—

1
Vid 1(8) + -) sample;
1

‘%

Temporal Ditference Learning

o Bigidea: learn from every experience!
o Update V(s) each time we experience a transitio% @

o Likely outcomes s” will contribute updates more often

s, mt(s)

o Temporal ditference learning of values
o Policy still fixed, still doing evaluation!

o Move values toward value of whatever successor occurs: running
average 5)01/57;“/
Sample of V(s): sample = R(s,m(s),s") +~V™(s)
—_— \/’\/"‘—\—/ -
Update to V(s): V7 (s) +— (1 —a)V7(s) + (a)sample

Same update: VT(s) + V”(s) -+ (sample — V”(s))g

Exponential Moving Average

o Exponential moving average
o The running interpolation updat¢: z, = (1 — @) - ZTp_1 + @ - Ty,

Vv -
o Makes recent samples more important'

l—a)—|- l—a
M

o Forgets about the past (distant past values were wrong anyway)

Vie (S)

o Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference @

States

Observed Transitions

V7(s) + (1 = a)V7(s) + a |R(s,m(s),s) +4V7(s))

S\ij\z“}g?{@ \/ZXGAY//Q%C

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’re sunk:

w(s) = arg Cana

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + WV(S,)}
\/\/

o Idea: learn Q-values, not values

o Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoffs exploration vs. exploitation\
o This is NOT offline planningt—You acttally take actions in the world

and find out what happens...

Detour: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V(s) =0, which we know is right
o Given V,, calculate the depth k+1 values for all states:

Vir1(s) MY T(s, als) [R(s,a,5) + 7 Vi(s")
L~ ! C/\/\/ =
o But Q-values are more useful, so compute them instead

o Start with Qy(s,a) = 0, which we know is right
o Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(5,0) ¢ Y T(s,0,8) | R(s,0.8) + 7 max Qu(s',)
s’ (_a =

— J =

Q-Learning

o Q-Learning: sample-based Q-value iteration

Qit1(s,0) « Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

S/ a
o Learn Q(s,a) values as you go NN
o Receive a sample (s,a,s’,r) >!4>!4! 1.00
o Consider your old estimatQ(s, a) v v
o Consider your new sample estimate: >Q€.>Q4 "1.00

no longer policy
evaluation!

sample = R(s,a,s’) + 7 max (s',a")

DD

Q-VALUES AFTER 1000 EPISODES

o Incorporate the new estlmmmng average
Q(s,a) — (1 —a)Q(s,a) + (o) [sample]

.
[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning Demo

CURRENT QO-VALUES

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning:
act according to current optimal (and also explore...)

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

o This is called off-policy learning

me

S E S
o Caveats: [TTTII1] [LITTTT]

o You have to explore enough

o You have to eventually make the learning rate
small enough
o ... but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select action:s

Exploration vs. Exploitation

b7

GRAND

T
O
=

How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
o Every time step, flip a coin
o With (small) probability ¢, act randomly (|
o With (large) probability 1-g, act on current policy

o Problems with random actions?

o You do eventually explore the space, but keep

thrashing around once learning is done

o One solution: lower € over time e

o Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

o Exploration function

o Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) =u + k/n

Regular Q-Update: Q(s,a) <—a R(s,a,s") +ymaxQ(s’,a’)
Modified Q-Update: Q(s,a) < R(s,a,s’) + 7 max f(Q(s',d),N(s,d"))

o Note: this propagates the “bonus” back to states that lead to unknown states

f
as well! [Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Discussion: Model-Based vs Model-Free RL

57

