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Reinforcement Learning



Double Bandits



Double-Bandit MDP

o Actions: Blue, Red
o States: Win, Lose
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Offline Planning

o Solving MDPs is offline planning
o You determine all quantities through computation
o You need to know the details of the MDP
o You do not actually play the game!
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Let’s Play!
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Online Planning

o Rules changed!  Red’s win chance is different.

W L
$1

1.0

$1

1.0

?? $0

?? 
$2

?? $2

?? 
$0
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What Just Happened?

o That wasn’t planning, it was learning!
o Specifically, reinforcement learning
o There was an MDP, but you couldn’t solve it with just computation
o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
o Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly
o Difficulty: learning can be much harder than solving a known MDP



Reinforcement Learning

o Still assume a Markov decision process (MDP):
o A set of states s Î S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy p(s)

o New twist: don’t know T or R
o I.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn



Reinforcement Learning

o Basic idea:
o Receive feedback in the form of rewards
o Agent’s utility is defined by the reward function
o Must (learn to) act so as to maximize expected rewards
o All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]



Robotics Rubik Cub

o https://www.youtube.com/watch?v=x4O8pojMF0w

https://www.youtube.com/watch?v=x4O8pojMF0w


The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Video of Demo Crawler Bot



Reinforcement Learning

o Still assume a Markov decision process (MDP):
o A set of states s Î S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy p(s)

o New twist: don’t know T or R
o I.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning



Model-Based Learning



Model-Based Learning

o Model-Based Idea:
o Learn an approximate model based on experiences
o Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a
o Normalize to give an estimate of
o Discover each when we experience (s, a, s’)

o Step 2: Solve the learned MDP
o For example, use value iteration, as before



Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1

C, east, D, -1

D, exit,  x, +10

B, east, C, -1

C, east, D, -1

D, exit,  x, +10

E, north, C, -1

C, east,   A, -1

A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1

C, east,   D, -1

D, exit,    x, +10

T(s,a,s’).

T(B, east, C) = 1.00

T(C, east, D) = 0.75

T(C, east, A) = 0.25

…

R(s,a,s’).

R(B, east, C) = -1

R(C, east, D) = -1

R(D, exit, x) = +10

…



Analogy: Expected Age
Goal: Compute expected age of cse573 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.



Announcements

o HW1 is due: Feb. 12
o Project proposal is due: Feb 19th
o PS3 is released: Feb 21st
o Wait for paper reports.
o Mid-quarter review: Feb 12



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

?

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP



Analogy: Expected Age
Goal: Compute expected age of cse573 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.



Model-Free Learning



Passive Reinforcement Learning



Passive Reinforcement Learning

o Simplified task: policy evaluation
o Input: a fixed policy p(s)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o Goal: learn the state values

o In this case:
o Learner is “along for the ride”
o No choice about what actions to take
o Just execute the policy and learn from experience
o This is NOT offline planning!  You actually take actions in the world.



Direct Evaluation

o Goal: Compute values for each state under 
p

o Idea: Average together observed sample 
values
o Act according to p
o Every time you visit a state, write down what 

the sum of discounted rewards turned out to be
o Average those samples

o This is called direct evaluation



Example: Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Problems with Direct Evaluation

o What’s good about direct evaluation?
o It’s easy to understand
o It doesn’t require any knowledge of T, R
o It eventually computes the correct average 

values, using just sample transitions

o What bad about it?
o It wastes information about state connections
o Each state must be learned separately
o So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy:
o Each round, replace V with a one-step-look-ahead layer over V

o This approach fully exploited the connections between the states
o Unfortunately, we need T and R to do it!

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),s’
s’



Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:

o Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost!  But we can’t 
rewind time to get sample 
after sample from state s.



Temporal Difference Learning

o Big idea: learn from every experience!
o Update V(s) each time we experience a transition (s, a, s’, r)
o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values
o Policy still fixed, still doing evaluation!
o Move values toward value of whatever successor occurs: running 

average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:



Exponential Moving Average

o Exponential moving average 
o The running interpolation update:

o Makes recent samples more important:

o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States



Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation, 
mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’re sunk:

o Idea: learn Q-values, not values
o Makes action selection model-free too!

a

s

s, a

s,a,s’
s’



Active Reinforcement Learning



Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value 
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation
o This is NOT offline planning!  You actually take actions in the world 

and find out what happens…



Detour: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V0(s) = 0, which we know is right
o Given Vk, calculate the depth k+1 values for all states:

o But Q-values are more useful, so compute them instead
o Start with Q0(s,a) = 0, which we know is right
o Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning

o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimate:
o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

no longer policy 
evaluation! 



Q-Learning Demo



Video of Demo Q-Learning -- Gridworld



Video of Demo Q-Learning -- Crawler



Q-Learning: 
act according to current optimal (and also explore…)

o Full reinforcement learning: optimal policies (like value 
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation
o This is NOT offline planning!  You actually take actions in the world 

and find out what happens…



Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you’re acting suboptimally!

o This is called off-policy learning

o Caveats:
o You have to explore enough
o You have to eventually make the learning rate

small enough
o … but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select actions (!)



Exploration vs. Exploitation



How to Explore?

o Several schemes for forcing exploration
o Simplest: random actions (e-greedy)

oEvery time step, flip a coin
oWith (small) probability e, act randomly
oWith (large) probability 1-e, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep 

thrashing around once learning is done
oOne solution: lower e over time
oAnother solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Exploration Functions

o When to explore?
o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states 
as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Discussion: Model-Based vs Model-Free RL

57


