
CSE 573:
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Reinforcement Learning

Double Bandits

Double-Bandit MDP

o Actions: Blue, Red
o States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

No discount
10 time steps

Both states have
the same value

Offline Planning

o Solving MDPs is offline planning
o You determine all quantities through computation
o You need to know the details of the MDP
o You do not actually play the game!

Play Red

Play Blue

Value

No discount
10 time steps

15

10

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0

Online Planning

o Rules changed! Red’s win chance is different.

W L
$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Let’s Play!

$0 $0 $2
$0 $2 $2 $0 $0

$0

$0

What Just Happened?

o That wasn’t planning, it was learning!
o Specifically, reinforcement learning
o There was an MDP, but you couldn’t solve it with just computation
o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
o Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly
o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (MDP):
o A set of states s Î S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy p(s)

o New twist: don’t know T or R
o I.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

Reinforcement Learning

o Basic idea:
o Receive feedback in the form of rewards
o Agent’s utility is defined by the reward function
o Must (learn to) act so as to maximize expected rewards
o All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

Robotics Rubik Cub

o https://www.youtube.com/watch?v=x4O8pojMF0w

https://www.youtube.com/watch?v=x4O8pojMF0w

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Reinforcement Learning

o Still assume a Markov decision process (MDP):
o A set of states s Î S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy p(s)

o New twist: don’t know T or R
o I.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

o Model-Based Idea:
o Learn an approximate model based on experiences
o Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a
o Normalize to give an estimate of
o Discover each when we experience (s, a, s’)

o Step 2: Solve the learned MDP
o For example, use value iteration, as before

Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1

C, east, D, -1

D, exit, x, +10

B, east, C, -1

C, east, D, -1

D, exit, x, +10

E, north, C, -1

C, east, A, -1

A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1

C, east, D, -1

D, exit, x, +10

T(s,a,s’).

T(B, east, C) = 1.00

T(C, east, D) = 0.75

T(C, east, A) = 0.25

…

R(s,a,s’).

R(B, east, C) = -1

R(C, east, D) = -1

R(D, exit, x) = +10

…

Analogy: Expected Age
Goal: Compute expected age of cse573 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Announcements

o HW1 is due: Feb. 12
o Project proposal is due: Feb 19th
o PS3 is released: Feb 21st
o Wait for paper reports.
o Mid-quarter review: Feb 12

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

?

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Analogy: Expected Age
Goal: Compute expected age of cse573 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

o Simplified task: policy evaluation
o Input: a fixed policy p(s)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o Goal: learn the state values

o In this case:
o Learner is “along for the ride”
o No choice about what actions to take
o Just execute the policy and learn from experience
o This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

o Goal: Compute values for each state under
p

o Idea: Average together observed sample
values
o Act according to p
o Every time you visit a state, write down what

the sum of discounted rewards turned out to be
o Average those samples

o This is called direct evaluation

Example: Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

o What’s good about direct evaluation?
o It’s easy to understand
o It doesn’t require any knowledge of T, R
o It eventually computes the correct average

values, using just sample transitions

o What bad about it?
o It wastes information about state connections
o Each state must be learned separately
o So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy:
o Each round, replace V with a one-step-look-ahead layer over V

o This approach fully exploited the connections between the states
o Unfortunately, we need T and R to do it!

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),s’
s’

Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:

o Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

o Big idea: learn from every experience!
o Update V(s) each time we experience a transition (s, a, s’, r)
o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values
o Policy still fixed, still doing evaluation!
o Move values toward value of whatever successor occurs: running

average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

o Exponential moving average
o The running interpolation update:

o Makes recent samples more important:

o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’re sunk:

o Idea: learn Q-values, not values
o Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation
o This is NOT offline planning! You actually take actions in the world

and find out what happens…

Detour: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V0(s) = 0, which we know is right
o Given Vk, calculate the depth k+1 values for all states:

o But Q-values are more useful, so compute them instead
o Start with Q0(s,a) = 0, which we know is right
o Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimate:
o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

no longer policy
evaluation!

Q-Learning Demo

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning:
act according to current optimal (and also explore…)

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation
o This is NOT offline planning! You actually take actions in the world

and find out what happens…

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you’re acting suboptimally!

o This is called off-policy learning

o Caveats:
o You have to explore enough
o You have to eventually make the learning rate

small enough
o … but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

How to Explore?

o Several schemes for forcing exploration
o Simplest: random actions (e-greedy)

oEvery time step, flip a coin
oWith (small) probability e, act randomly
oWith (large) probability 1-e, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep

thrashing around once learning is done
oOne solution: lower e over time
oAnother solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states
as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Discussion: Model-Based vs Model-Free RL

57

