CSE 573: Artificial Intelligence

Hanna Hajishirzi Markov Decision Processes

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Recap: Defining MDPs

- Markov decision processes:

 Set of states S
 Start state s₀
 Set of actions A
 Transitions P(s' | s,a) (or T(s,a,s'))
 Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 Policy = maps of states to actions
 Utility = sum of (discounted) rewards

MDP Search Trees

Solving MDPs

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:
 π^{*}(s) = optimal action from state s

Snapshot of Demo – Gridworld V Values

000	C Cridworld Display			
	0.64 →	0.74 →	0.85)	1.00
	• 0.57		• 0.57	-1.00
	▲ 0.49	∢ 0.43	• 0.48	∢ 0.28
	VALUES	AFTER 1	LOO ITERA	ATIONS

Snapshot of Demo – Gridworld Q Values

Values of States (Bellman Equations)

• Fundamental operation: compute the (expectimax) value of a state

o Expected utility under optimal action
o Average sum of (discounted) rewards
o This is just what expectimax computed!

• Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Racing Search Tree

Racing Search Tree

Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Ideaquantities: Only compute needed once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

○ ○ Gridworld Display					
• • • • • • • • • • • • • • • • • • • •	• 0.00	• 0.00	0.00		
• 0.00		• 0.00	0.00		
•	•	•	•		

VALUES AFTER O ITERATIONS

○ ○ Gridworld Display				
	^			
0.00	0.00	0.00 →	1.00	
^				
0.00		• 0.00	-1.00	
	^	^		
0.00	0.00	0.00	0.00	
			_	
VALUES AFTER 1 ITERATIONS				

○ ○ Gridworld Display				
•	0.00 >	0.72 →	1.00	
		^		
0.00		0.00	-1.00	
0.00	0.00	0.00	0.00	
			-	
VALUES AFTER 2 ITERATIONS				

k=3

000	Gridworld	d Display			
0.00 >	0.52 →	0.78 →	1.00		
• 0.00		• 0.43	-1.00		
•	•	•	0.00		
VALUE	VALUES AFTER 3 ITERATIONS				

k=4

O O Gridworld Display			
0.37)	0.66)	0.83)	1.00
•		• 0.51	-1.00
•	0.00 →	• 0.31	∢ 0.00
VALUE	S AFTER	4 ITERA	TIONS

k=5

C Cridworld Display				
	0.51 →	0.72 →	0.84)	1.00
	• 0.27		• 0.55	-1.00
	• 0.00	0.22 →	• 0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS				

k=6

Gridworld Display				
0.59)	0.73)	0.85)	1.00	
• 0.41		• 0.57	-1.00	
• 0.21	0.31 →	• 0.43	∢ 0.19	
VALU	ES AFTER	6 ITERA	FIONS	

k=7

00	Gridworld	d Display	
0.62)	0.74 →	0.85)	1.00
• 0.50		• 0.57	-1.00
• 0.34	0.36 →	• 0.45	◀ 0.24
VALUE	S AFTER	7 ITERA	TIONS

k=8

O O Gridworld Display				
0.63)	0.74)	0.85)	1.00	
• 0.53		• 0.57	-1.00	
• 0.42	0.39 ▸	• 0.46	∢ 0.26	
VALUES AFTER 8 ITERATIONS				

C C Gridworld Display				
ſ				
	0.64 →	0.74 →	0.85)	1.00
	^		^	
	0.55		0.57	-1.00
	•		^	
	0.46	0.40 →	0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS				

0 0	Gridworld Display				
	0.64)	0.74 →	0.85)	1.00	
	^		^		
	0.56		0.57	-1.00	
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27	
	VALUES AFTER 10 ITERATIONS				

000	Gridworld Display				
	0.64 →	0.74 →	0.85)	1.00	
	0. 56		• 0.57	-1.00	
	▲ 0.48	◀ 0.42	• 0.47	∢ 0.27	
	VALUES AFTER 11 ITERATIONS				

C Cridworld Display				
0.64 →	0.74 →	0.85 →	1.00	
0.57		• 0.57	-1.00	
• 0.49	◀ 0.42	• 0.47	∢ 0.28	
VALUES AFTER 12 ITERATIONS				

O Gridworld Display				
0.64)	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.43	• 0.48	∢ 0.28	
VALUES	VALUES AFTER 100 ITERATIONS			

Computing Time-Limited Values

Value Iteration

Value Iteration

• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

• Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

The Bellman Equations

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

• Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• Value iteration **computes** them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method
 ... though the V_k vectors are also interpretable as time-limited values

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - $\circ~$ That last layer is at best all R_{MAX}
 - $\circ~$ It is at worst R_{MIN}
 - $\circ~$ But everything is discounted by γ^k that far out
 - $\circ~So~V_k$ and V_{k+1} are at most γ^k max[R] different
 - $\circ~$ So as k increases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) =$ expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

-10.00 100.00 -10.00 -10.00 -10.00 1.09 N -10.00 -10.00 -7.88 🕨 -10.00 -10.00 -8.69

Always Go Right

Always Go Forward

-10.00	100.00	-10.00
-10.00	▲ 70.20	-10.00
-10.00	▲ 48.74	-10.00
-10.00	▲ 33.30	-10.00

Policy Evaluation

• How do we calculate the V's for a fixed policy π ?

Idea 1: Turn recursive Bellman equations into updates Ο (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

$$\sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') +$$

- Efficiency: $O(S^2)$ per iteration Ο
- Idea 2: Without the maxes, the Bellman equations are just a linear system • Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act? • Completely trivial to decide! $\pi^*(s) = \arg \max_a Q^*(s, a)$

 Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

• Problem 1: It's slow – $O(S^2A)$ per iteration

• Problem 2: The "max" at each state rarely changes

• Problem 3: The policy often converges long before the values

C Cridworld Display				
0.64 →	0.74 →	0.85 →	1.00	
0.57		• 0.57	-1.00	
• 0.49	◀ 0.42	• 0.47	∢ 0.28	
VALUES AFTER 12 ITERATIONS				

O Gridworld Display				
0.64)	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.43	• 0.48	∢ 0.28	
VALUES	VALUES AFTER 100 ITERATIONS			

Policy Iteration

• Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 Repeat steps until policy converges

• This is policy iteration

- o It's still optimal!
- o Can converge (much) faster under some conditions

Policy Iteration

Evaluation: For fixed current policy π, find values with policy evaluation:
 Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction
 One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

• Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

• So you want to....

- o Compute optimal values: use value iteration or policy iteration
- o Compute values for a particular policy: use policy evaluation
- o Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

They basically are – they are all variations of Bellman updates
They all use one-step lookahead expectimax fragments
They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

Next Time: Reinforcement Learning!