CSE 573:
Artificial Intelligence

Hanna Hajishirzi
Markov Decision Processes

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Example: Grid World

A maze-like problem

= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as
planned

= 80% of the time, the action North takes the agent
North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

0.1

0.8

0.1

Recap: Defining MDPs

o Markov decision processes:
o Set of states S
o Start state s,
o Set of actions A
o Transitions P(s” | s,a) (or T(s,a,s”))
o Rewards R(s,a,s”) (and discount v) 53,8

o MDP quantities so far:
o Policy = maps of states to actions
o Utility = sum of (discounted) rewards

MDP Search Trees

o Each MDP state projects an expectimax-like search tree

(s,a,s) called a transition
T(s,a,s") = P(s” |s,a)

R(s,a,s”)

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

" The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out o

having taken action a from state s and
(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

Sis a
state

(s, a)is a
g-state

(s,a,s’) is a
transition

Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Cridworl¢

S
Y e

PV

0-V

Values of States (Bellman Equations)

o Fundamental operation: compute the (expectimax) value of a state

o Expected utility under optimal action
o Average sum of (discounted) rewards
o This is just what expectimax computed!

o Recursive definition of value:

V*(s) = maxQ* (s, a)
Q*(s,a) =Y T(s,a,8) |[R(s,a,s") +yV*(s)]

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S

Racing Search Tree

Racing Search Tree

I?%i; Ié?il ¢§?%£ lféi; ! ‘ifzi jé?;¥ ‘Z?;i)
N EERER AR AR

W i

TR TIELL LT HETARLLL THITRLLL

Racing Search Tree

o We're doing way too much &
work with expectimax!

dx,
o Problem: States are repeated
o Ideaquantities: Only compute m ?/R

needed once

o Problem: Tree goes on fl f\l m fl fl

forever .

AR NN
o Idea: Do a depth-limited
computation, but with
increasing depths until change
is small VORI CHEANTEMI L FATEAN T T

o Note: deep parts of the tree
eventually don’t matter if y <1

Time-Limited Values

o Key idea: time-limited values

o Define Vi(s) to be the optimal value of s if the game
ends in k more time steps

o Equivalently, it's what a depth-k expectimax would give

from s
& Va(@)
v >
RO R AN

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

n

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

e

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

.H

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Gridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

0.64 »| 0.74)»

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

ie) i) vim) <3]

Vi) V(@)] (= []

i) e) < [& =)

V() Vi(e)]<: UL i b]
VO | W || T T O O T T Y S|
A

Vo(@) Vol &)] <}: I ORI TR TRERREERRE L

Value Iteration

Value Iteration

o Start with Vi(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vi(s) values, do one ply of expectimax from each state:
Vk+1(s)

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + ka(s/)}

o Repeat until convergence

o Complexity of each iteration: O(S?A)

o Theorem: will converge to unique optimal values

o Basic idea: approximations get refined towards optimal values
o Policy may converge long before values do

Example: Value Iteration

S:]‘ . ol ' O—v'erheated 4
Vi | F 594.59=0

Assume no discount!

" [)) 0] Vip1(8) < max 3 T(s,0,8) [R(s.a,8) +7 Vi)

S

Example: Value Iteration

2 S: .5*1+.5*1:1 o ' (;v'erheated 4
1 F: 10

Assume no discount!

" [)) 0] Vip1(8) < max 3 T(s,0,8) [R(s.a,8) +7 Vi)

S

Example: Value Iteration

Overheated

Assume no discount!

: [¥) 0] Vip1(8) < max 3 T(s,0,8) [R(s.a,8) +7 Vi)

S

Example: Value Iteration

Overheated

Assume no discount!

Viet1(8) maaXZT(s, a,s) [R(s, a,s’) + 'ka(s’)]

S

Example: Value Iteration

Assume no discount!

0 0] Vk+1(3) « mC?XZT(S’ a, s/) [R(S, a, S,) + Vk(sl)]

S

The Bellman Equations

How to be optimal: l

Step 1: Take correct first action

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values 7

V*(s) = max Q*(s, a)

Q*(Sa (I) — ZT(S, a, S/) {R(S, a, S/) + 'Yv*(S,)} o

V*i(s) = ma?XZT(S, a,s) [R(s,a, s + ny*(s’)}

S

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Value lteration

o Bellman equations characterize the optimal values:

V*i(s) = mC?XZT(S, a,s) {R(s,a, s") + ny*(s/)}

S

o Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + ’ka(s/)}

S

o Value iteration is just a fixed point solution method

o ... though the V, vectors are also interpretable as time-limited values

Convergence®

How do we know the V| vectors are going to converge?

Vi(s) Vieya(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

o Sketch: For any state V| and V,,; can be viewed as depth
k+1 expectimax results in nearly identical search trees

o The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

That last layer is at best all Ryax

It is at worst Ry / \ /

But everything is discounted by y* that far out
So Vi and V., are at most y* max|R| different

O O O O O

So as k increases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what = says to do
S
n(s)
s, T(s)
S,a,S
N , A& » , A
A s A s

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy n(s), then the tree would be simpler — only one action
per state

o ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

o Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy m:

V7(s) = expected total discounted rewards starting in s and
following n

o Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V()]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

O

O

O

O

Policy Evaluation

How do we calculate the V’s for a fixed policy n?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vig1(8) < > T(s,7m(s), sH[R(s,m(s),s") + V()]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve with Matlab (or your favorite linear system solver)

Policy Extraction

—

i)
_ l
h J

\y

O

a

Computing Actions from Values

o Let’s imagine we have the optimal values V*(s) .n.
0.95) 0.98 » 1.00
o How should we act?
. 4« 0.89 -1.00
o It’s not obvious!
o] 0.92 |« 0.91 0.80
o Weneed to do a mini-expectimax (one step) _

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

o This is called policy extraction, since it gets the policy implied by the
values

Computing Actions from Q-Values

o Let’s imagine we have the optimal v v v
g-values: A A 0'98
o How should we act?

o Completely trivial to decide!
L R

o Important lesson: actions are easier to select from g-values than
values!

Policy Iteration

Problems with Value Iteration

o Value iteration repeats the Bellman updates:

Viet1(8) < mC?XZT(S, a,s) [R(S, a,s’) + 'ka(s’)}

S

o Problem 1:It's slow — O(5*A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

o Alternative approach for optimal values:

o Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

o Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

o Repeat steps until policy converges

o This is policy iteration
o It’s still optimal!
o Can converge (much) faster under some conditions

Policy Iteration

o Evaluation: For fixed current policy , find values with policy evaluation:

o Iterate until values converge:

Vi1 (s) ZT(s mi(s),8") |R(s,mi(s),s") + vV (s))]

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

mi4+1(s) = arg maxZT(s, a,s) {R(s, a,s’) + vVﬁi(S/)}

Sl

O

O

O

O

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

o Every iteration updates both the values and (implicitly) the policy
o We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
o We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)
o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

o The new policy will be better (or we're done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

o So you want to....

o Compute optimal values: use value iteration or policy iteration

o Compute values for a particular policy: use policy evaluation

o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!

o Tl
o Tl

ney basically are — they are all variations of Bellman updates
hey all use one-step lookahead expectimax fragments

o Tl

hey differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

How to be optimal: l

Step 1: Take correct first action

Next Time: Reinforcement Learning!

