CSE 573: Artificial Intelligence

Hanna Hajishirzi Markov Decision Processes

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Review and Outline

- Adversarial Games
 - Minimax search
 - α-β search
 - Evaluation functions
 - Multi-player, non-0-sum
- Stochastic Games
 - Expectimax
 - Markov Decision Processes
 - Reinforcement Learning

Agents vs. Environment

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its utility function.

Deterministic vs. stochastic Fully observable vs. partially observable

Non-Deterministic Search

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 (if there is no well there)
 - (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

• An MDP is defined by:

- $\circ \ A \ set \ of \ states \ s \in S$
- $\circ \ A \ set \ of \ actions \ a \in A$
- A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics

$$T(s_{11}, E, ...
T(s_{31}, N, s_{11}) = 0
...
T(s_{31}, N, s_{32}) = 0.8
T(s_{31}, N, s_{21}) = 0.1
T(s_{31}, N, s_{41}) = 0.1
...$$

T is a Big Table! 11 X 4 x 11 = 484 entries

For now, we give this as input to the agent

Markov Decision Processes

• An MDP is defined by:

- $\circ \ A \ set \ of \ states \ s \in S$
- $\circ \ A \ set \ of \ actions \ a \in A$
- A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
- A reward function R(s, a, s')
 - $\circ~$ Sometimes just R(s) or R(s')

$$R(s_{32}, N, s_{33}) = -0.01 \leftarrow R(s_{32}, N, s_{42}) = -1.01 \leftarrow R(s_{33}, E, s_{43}) = 0.99$$

Cost of breathing

R is also a Big Table!

For now, we also give this to the agent

Markov Decision Processes

• An MDP is defined by:

- $\circ \ A \ set \ of \ states \ s \in S$
- \circ A set of actions $a \in A$
- A transition function T(s, a, s')
 - \circ Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
- A reward function R(s, a, s')
 - \circ Sometimes just R(s) or R(s')
- o A start state
- o Maybe a terminal state

• MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- o We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

• This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal

policy $\pi^*: S \to A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.4 for all non-terminals s

Optimal Policies

R(s) = -0.01

R(s) = -0.03

R(s) = -2.0

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*

Racing Search Tree

MDP Search Trees

Utilities of Sequences

Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less? [1, 2, 2] or [2, 3, 4]

• Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

It's reasonable to maximize the sum of rewards
It's also reasonable to prefer rewards now to rewards later
One solution: values of rewards decay exponentially

Discounting

• How to discount?

 Each time we descend a level, we multiply in the discount once

• Why discount?

- Think of it as a gamma chance of ending the process at every step
- Also helps our algorithms converge
- Example: discount of 0.5
 - O U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 O U([1,2,3]) < U([3,2,1])

Quiz: Discounting

• Given:

o Actions: East, West, and Exit (only available in exit states a, e)o Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For $\gamma = 0.1$, what is the optimal policy? 1

• Quiz 3: For which γ are West and East equally good when in state d? 1 γ =10 γ ³

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - Discounting: use $0 < \gamma < 1$ $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$
 - Smaller γ means smaller "horizon" shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:

 Set of states S
 Start state s₀
 Set of actions A
 Transitions P(s' | s,a) (or T(s,a,s'))
 Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 Policy = Choice of action for each state
 Utility = sum of (discounted) rewards

Solving MDPs

