CSE 573: Introduction to
Artificial Intelligence

Hanna Hajishirzi

Search
(Un-informed, Informed Search)

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

To Do:

o Check out PS1 in the webpage
o Start ASAP

o Submission: Canvas

o Website:

o Do readings for search algorithms

o Try this search visualization tool
o http:/ / qiao.github.io / PathFinding.js/ visual /

Recap: Search

Recap: Search

o Search problem:
o States (configurations of the world)
o Actions and costs
o Successor function (world dynamics)
o Start state and goal test

o Search tree:
o Nodes: represent plans for reaching states

o Search algorithm:
o Systematically builds a search tree
o Chooses an ordering of the fringe (unexplored nodes)
o Optimal: finds least-cost plans

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

<

Tiers

Search Algorithm Properties

Algorithm Complete [Optimal |Time Space
/ Path "
DFS (s | Y N O(b™) O(bm)
BFS Y Y* O(b%) O(b%)
(1 node
b nodes
d tiers <
b2 nodes
_ bd nodes

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

DFES vs BFS

o When will BFS outperform DFS?

o When will DFS outperform BFS?

Iterative Deepening

o Idea: get DFS’s space advantage with
BFS’s time / shallow-solution
advantages

o Run a DFS with depth limit 1. If no
solution...

o Run a DFS with depth limit 2. If no
solution...

o Run a DFS with depth limit 3.

o Isn’t that wastefully redundant?

o Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

p

" g

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
[t does not find the least-cost path. We will now cover How?
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

o What nodes does UCS expand?

o Processes all nodes with cost less than cheapest solution!

o If that solution costs C* and arcs cost at least ¢, then the

“effective depth” is roughly C*/¢ C¥/e tiers” <
o Takes time O(b¢7¢) (exponential in effective depth)

o How much space does the fringe take?
o Has roughly the last tier, so O(b®7¢)

M)
U/

o Isit complete?

o Assuming best solution has a finite cost and minimum
arc cost is positive, yes! (if no solution, still need depth !=

o)

o Is it optimal?
o Yes! (Proof via A¥)

Uniform Cost Issues

o Remember: UCS explores increasing
cost contours

o The good: UCS is complete and
optimal!

o The bad:

o Explores options in every “direction”
o No information about goal location

o We'll fix that soon!

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

—

I

N
‘
W

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

A (-
Action: flip top two A{ Path to reach goal:
Cost: 2 Flip four, flip three

/ i Total cost: 7
>

The One Queue

o All these search algorithms are
the same except for fringe L@ »\1‘— A EAQE_\L@"X . \\vﬂj

strategies

o Conceptually, all fringes are priority
queues (i.e. collections of nodes
with attached priorities)

o Practically, for DFS and BFS, you
can avoid the log(n) overhead from
an actual priority queue, by using
stacks and queues

o Can even code one implementation
that takes a variable queuing object

Up next: Informed Search

o Uninformed Search » Informed Search
o DFS » Heuristics
o BFS = Greedy Search
o UCS = A* Search

= Graph Search

nofe. [\ GoAl!

Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal

Designed for a particular search problem
Pathing?
Examples: Manhattan distance, Euclidean distance for

pathing

—

e

>
Heuristi - Tron \

—_

2

léa '

—

>
Heuristi - Tron J

Example: Heuristic Function

Arad

[] Vaslui

Timisoara

142

" Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75
Bucharest

Dobreta [

L Eforie
[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ﬁ traight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

J

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

= (9
I |
= ‘="=_
3 — 0 —/——

I i= \
4 _— NS 3 =

! 4 = ~
p—

Greedy Search

Greedy Search

o Expand the node that seems closest...

4 Arad

366

380

253 0

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!

Greedy Search

o Strategy: expand a node that you think is
closest to a goal state

o Heuristic: estimate of distance to nearest goal
for each state

o A common case:

0 Bes’i-first takes you straight to the (wrong)
goa

o Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small
Maze)

A* Search

A*: Summary

A* Search

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost g(n)

0 G%ders by goal proximity, or forward cost h(n)
8 _ .. _

Example: Teg Grenager

When should A* terminate?

o Should we stop when we enqueue a goal?

2 @j‘ 3

h=1

G@ N(? ?Ié‘)p i%g@éﬁ\we dequeue a goal

g h

—

|

(O

==A 22/

S~B 213

S->B->G 505
S->A->G 404

Is A* Optimal?

gh +

— —_—
S->A 167
S->G 505

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o Weneed estimates to be less than actual costs!

Idea: Admissibility

nadmissible (pessimistic) heuristics

break optimality by trapping
good plans on the fringe

Heuristi - Tron @

Admissible (optimistic) heuristics

slow down bad plans but
never outweigh true costs

Admissible Heuristics

o A heuristic / is admissible (optimistic) if:

0 < h@g h@n)

where 1,*(n) is the true cost to a nearest goal

o Examples:
- - 0.0

o Coming up with admissible heuristics is most of what’s
involved in using A” in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

o A is an optimal goal node

o Bis a suboptimal goal node
o his admissible

Claim:

o A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Prootf:
o Imagine B is on the fringe

o Some ancestor n of A is on the
fringe, too (maybe A!)

o Claim: n will be expanded before B
1. f(n)is less or equal to f(

\
f(n) = g(n) + h(n) Definition of f-cost
f(n) < g(A) Admissibility of h
g(A) = f(A4) h =0 at a goal

NG J

Optimality of A* Tree Search: Blocking

Prootf:
o Imagine B is on the fringe

o Some ancestor n of A is on the
fringe, too (maybe A!)

o Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

2. f(A)is less than f(@X
~

g(A) < g(B) B is suboptimal

f(A) < f(B) h =0 at a goal
\§ J

Optimality of A* Tree Search: Blocking

Prootf:
o Imagine B is on the fringe

o Some ancestor n of A is on the
fringe, too (maybe A!)

o Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

2. f(A)isless than {(B)
3. nexpands before

p
o All ancestors of A expand before B _ w
P f(n) < f(A) < f(B)

—

o A expands before B

o A*search is optimal

Properties of A®

Uniform-Cost A~

s
JAAN

b
// \\

UCS vs A* Contours

o Uniform-cost expands equally in

all “directions”
St *Goal

o A* expands mainly toward the

goal, but does hedge its bets to Q
(@

ensure optimality Stari- Goal

Video of Demo Contours (Empty) — A*

video of Demo Contours (I"'acman omall Vlaze)
_ A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

Which algorithm?

SCORE:

Which algorithm?

Video of Demo Empty Water Shallow /Deep
— Guess Algorithm

=2 Pydev - Edipse
File Edit MNavigate Search Project Run Window [Help

T

[i = -0 ~9 - A v v - v - T [Pycer | &7 Team
@ 1search -- plan bay astar I
ol e 2 search -~ plan tiny ucs | o
g 2 G
. @& 3 search demo empty N
@ A smarch -- contours greedy v ucs (greedy
@ Ssearch - camtours greedy vs ucs {ucs)
4_0- 6 search -- comtours greechy vs ucs (astar)
@ [umarch = greedy bad
1?' 8 wearch - greedy good
(- 9 search demo maze
& search .{_‘}w costs
Run As b
F”nlnanhmﬂﬁn:
Qrgantze Favornes
[J Consale X % % dFE - 2- w0

<terminated> 1 5
10Tal <ot 2
Nunber of nocdea expanded: 187

‘

of unigue nodes expanded:

1 EmSrges vViCctorious sScaze: 573
"t 01 'resulta: ['Win'], ‘numMovea': [27], 'scorea’: Tk

11:54 AM

&30

A”: Summary

o A* uses both backward costs and (estimates of) forward
costs

o A* is optimal with admissible (optimistic) heuristics

o Heuristic design is key: often use relaxed problems

=
- " /((

———%——,17__ ——— e,

Creating Heuristics

YOuUu GOT

HEURISTIL
UFGRADE!

Creating Admissible Heuristics

o Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

o Inadmissible heuristics are often useful too

Example: 8 Puzzle

3
2

~7,

VAW RE & 71
5 6 TN 45
8 3 1 s8N 6

e Actions

—

What are the states? — —

How many states? Admissible
What are the actions?

How many successors from the start state?
What should the costs be?

heuristics?

8 Puzzle 1

o Heuristic: Number of tiles misplace
o Why is it admissible?

o h(start) =8

o This is a relaxed-problem heuristic

Start State

2
>
&

Goal State

Average nodes expanded
when the optimal path has...

.4 steps

...3 steps

=12 steps_

D

—

112

6,300

3.6 x 10°

13

39

227

)

Statistics from Andrew Moore

8 Puzzle 11

What if we had an easier 8-puzzle

where any tile could slide any direction

at any time, ignoring other tiles?
Total Manhattan distance

Why is it admissible?

Start State Goal State

h(start)=3+1+2+..=18 HWJJ\L

2
>
&

Average nodes expanded

when the optimal path has...

...4 steps | ...8 steps | ...12 steps

13 39 2277\

12 25

MAN HATTAM

73 QZ

8 Puzzle 111

o How about using the actual cost as a heuristic?
o Would it be admissible?

o Would we save on nodes expanded?
o What's wrong with it? ; A

o With A*: a trade-off between quality of estimate and work per
node

o As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

o Dominance: h, > h_ if exact
@ - ha(n) > he(n)

o Heuristics form a semi-lattice:

o Max of admissible heuristics is admissible

— Th(n) = maz(ha(n), hy(n))

R

—

o Trivial heuristics

o Bottom of lattice is the zero heuristic
(what does this give us?)

<€ETro

o Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

o Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

r""---- BN

f/""----- ----""*»\I' B ~ B \.
C —0—
{ R C® Co C® Cco

/"""--— ‘---""\\I
' Y

Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

d e p
//«\\ |
b C e h r q
| @ == < /@ |
a h T @ f
N | N
v q9 f q ¢ G
| N !
q G 4

O

O

O

O

O

Graph Search

Idea: never expand a state twice

How to implement:

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but...

o Before expanding a node, check to make sure its state has never
been expanded before

o If not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why /why not?

How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

e /\
A (1+4)
' l
—C(2+1) C(3+1)
} }
G (5+0) G (6+0)

Closed Set:S B C A

Consistency of Heuristics

o Main idea: estimated heuristic costs < actual costs

o Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from A to G

o Consistency: heuristic “arc” cost < actual cost for each

arc

h(A) — h(C) < cost(A to C)

o Consequences of consistency:

o The f value along a path never decreases

)/

g(gs(A h(A) < Cost(A to C) + h(C)

h sear Cs% i
e ot lpnat

A* Graph Search

o Sketch: consider what A* does with a
consistent heuristic:

o Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

o Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

o Result: A* graph search is optimal

O

O

O

O

Optimality

Tree search:
o A¥is optimal if heuristic is admissible
o UCS is a special case (h =0)

Graph search:
o A* optimal if heuristic is consistent
o UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible
heuristics tend to be consistent, especially
if from relaxed problems

- Pseudo-Code

function\ TREE-SEARCH(problem, fringe) return a solution, or failure
fringe KE-NODE(INITIAL-STATE|problem]|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

function GRAPH-SEARC
closed <— an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node
i{STATEMl is not in r'lr@’x\hen
“add STATE[node| to closed
for child-node In EXPAND(STATE[node|, problem) do
fringe <— INSERT(child-node, fringe)
end

(problem, fringe) return a solution, or failure

end

A* Applications

o Video games

o Pathing / routing problems
o Resource planning problems '
o Robot motion planning
o Language analysis

o Machine translation

o Speech recognition

O ...

A”™ in Recent Literature

confirm

o Joint A* CCG Parsing and ST

Semantic Role Labeling (EMLN’15) >\
\

ARGO A
He reports refused
Image Title
Arrows
x 7 Food Web Food Web
oyote
Arrowheads

} Mountain fio, Bobcat

>Fn =TSy |

o Diagram 2\/ e
Understanding (ECCV’17) e [\ /SESR | e

Seiondary T
Consuriters
Pine I-..
marten

A [k d
it

I8 e e &

ngmf

whiptail

Blobs
‘ W
i ° . \/ // < - Primary
Red breasted ’ t% Consumers | Tayt
nuthatch Pka o odiroosted | Pacific Edith's [Dovglas's § M & & N
otharch | tree frog check‘e(spol squirrel Mule deer Douglas's 5. “
squirrel | Mule deer

Intraobject Linkage
Section Title
"3 |Plants, Flowers, Producers Producers
“INuts, Seeds, Fruit, and | and
[Rees Decomposers
Decomposers

Tree

. R . From the above food web diagram, what will [ead to an increase in the population
Multiple Choice Question: ; o . .)
of deer? a)increase in lion b) decrease in plants c) decreasein lion d) increase in pika

Search and Models

o Search operates over
models of the world

o The agent doesn’t
actually try all the
plans out in the real
world!

o Planning is all “in
simulation”

o Your search is only as
good as your models...

Search Gone Wrong?

— Ly = -
AR CEAN R i n Microsoft*
e 7% L. MapPoint’

" 4

ICELAND ¥’ ™

WT »
£
o
ey
s

~
=
3

o a

“- ‘."‘.‘ S
£ -RUSSIA
B e]

.,?-\'éﬂe’sin'i.(i Tover
felsingrers
‘ Riga _ ST R
{vaxa | O.Smolenskg
" Vilnius _- R
b ¢!
Bistystok @‘: BELARUS
POLAND :;‘,..--K-w ®
@ Ot | RaINE
s i . T
S Lhigiau g,
FHUNGARY %
ROMAHIA =

o
—_—

km 500 1000
mi 200 400 600

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. no.f'allridmo'ro

