CSE 573:
Intro to Artificial Intelligence

Hanna Hajishirzi

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Today

o Agents that Plan Ahead

o Search Problems

o Uninformed Search Methods
o Depth-First Search
o Breadth-First Search

o Uniform-Cost Search

Agents that Plan

Retlex Agents

o Reflex agents:

o Choose action based on current percept
(and maybe memory)

o May have memory or a model of the
world’s current state

o Do not consider the future consequences of
their actions

o Consider how the world IS

o Can a reflex agent be rational?

Video of Demo Reflex Optimal

SCORE: 0

Video of Demo Reflex Odd

SCORE:

Planning Agents

o Planning agents:
o Ask “what it”

o Decisions based on (hypothesized)
consequences of actions

o Must have a model of how the world
evolves in response to actions

o Must formulate a goal (test)
o Consider how the world WOULD BE

o Optimal vs. complete planning

o Planning vs. replanning

Video of Demo Replanning

SCORE: 0

Video of Demo Mastermind

SCORE:

Search Problems

Search Problems

o A search problem consists of:

neec: [G

o A successor function N" 1.0 u
(with actions, costs) ! —

. -
lIEH’ 1.0

o A start state and a goal test

o A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

Search: it is not just for agents

Route Hardware Planning optimal
Planning verification repair sequences

i ' ’ v ‘Tﬁﬂll
| N
|

-

|| Shared L3 Cache-|

o Search:
Modeling the world

Example: Traveling in Romania

o State space:
o Cities
o Successor function:

o Roads: Go to adjacent city with
118 .. _— cost = distance

o Start state:
o Arad
o Goal test:

Dobreta [L o Is state == Bucharest?

Eforie

FHirsova

o Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

o Problem: Pathing o Problem: Eat-All-Dots
o States: (x,y) location o States: {(x,y), dot booleans}
o Actions: NSEW o Actions: NSEW
o Successor: update location o Successor: update location
only and possibly a dot boolean

o Goal test: is (x,y)=END o Goal test: dots all false

Parsing Natural Language

* Input:

This lecture is about search algorithms.

nsubj
cop
case
DI (NN compound Punctin
—_—— N —— —_— ~

. Operations This lecture is about search algorithms

= Set of states

= Start state

» Goal state (test)

= Output:

State Space Sizes?

o World state;

o Agent positions: 120
o Food count: 30

o Ghost positions: 12
o Agent facing: NSEW

o How many
o World states?
120x(239)x(122)x4
o States for pathing?
120

o States for eat-all-dots?
120x(2309)

State Representation

o Real-world applications:
o Requires approximations and heuristics
o Need to design state representation so that search is feasible

o Only focus on important aspects of the state
o E.g., Use features to represent world states

Sate Passage

o Problem: eat all dots while keeping the ghosts perma-scared

o What does the state space have to specify?

o (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

o State space graph: A mathematical
representation of a search problem

o Nodes are (abstracted) world configurations
o Arcs represent successors (action results)

o The goal test is a set of goal nodes (maybe only
one)

o In a state space graph, each state occurs
only once!

o We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

State Space Graphs

o State space graph: A mathematical
representation of a search problem
o Nodes are (abstracted) world configurations
o Arcs represent successors (action results)

o The goal test is a set of goal nodes (maybe only
one)

o In a state space graph, each state occurs
only once!

Tiny search graph for a tiny
search problem

o We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

Search Trees

! _ This is now / start
“N”, 1.0 “E”, 1.0
/ \
' ! _ Possible futures
T T

o A search tree:
o The start state is the root node
o Children correspond to successors
o Nodes show states, but correspond to PLANS that achieve those states
o For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

a

S
~
d e
T — —
b c e h r
I I — N 1
a a r p q f
AN 1 ' -
p f q C G
' —_~ .
g ¢ G a

State Space Graphs vs. Search Trees

o Nodes in state space graphs are problem states
o Represent an abstracted state of the world
o Have successors, can be goal / non-goal, have multiple predecessors

o Nodes in search trees are plans
o Represent a plan (sequence of actions) which results in the node’s
state
o Have a problem state and one parent, a path length, a depth & a cost

o The same problem state may be achieved by multiple search tree

nodes
Search Nodes

Parent
.. Depth 5

Problem States

Action

Node Depth 6

State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

/S\
. S b % N
é\

/\ / N\

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Eforie

Searching with a Search Tree

o Search:

o Expand out potential plans (tree nodes)

o Maintain a fringe of partial plans under
consideration

o Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

o Important ideas:
o Fringe
o Expansion
o Exploration strategy

o Main question: which fringe nodes to explore?

Example: Tree Search

SDERFG

Example: Tree Search

S
@
(® hoor
P U NG
® © p q f
| | SN
p q qC|3G
a

s2>e

S2p

s=>d—2>b

s>d—2>c

s=>d=>e
s2>d—2>e—2>h

s=>d oo p
s=>2daeo2> e f
s2d2e2>r>f>c
s=2da2em2rafa0

Search Algorithms

o Uninformed Search Methods
o Depth-First Search
o Breadth-First Search
o Uniform-Cost Search

o Heuristic Search Methods
o Best First / Greedy Search
o A”

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

O O O O

O

O

Time complexity?

-

Space complexity? 1 node
b nodes
Cartoon of search tree: b* nodes
o b is the branching factor m tiers <
o m is the maximum depth
o solutions at various depths
b™ nodes

Number of nodes in entire tree?
o1l+b+b%2+....bm=0O(bm)

Depth-First Search (DFS) Properties

o What nodes DFS expand?

o Some left prefix of the tree. 1 node
o Could process the whole tree! b nodes
o If m is finite, takes time O(b™) b2 nodes
: m tiers
o How much space does the fringe take? <
o Only has siblings on path to root, so O(bm)
o Isit complete? b™ nodes

o m could be infinite, so only if we prevent
cycles (more later)

o Isit optimal?

o No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

<

Tiers

O

O

O

O

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

o Processes all nodes above shallowest
solution

o Let depth of shallowest solution be s
o Search takes time O(b®)

How much space does the fringe
take?
o Has roughly the last tier, so O(b®)

Is it complete?

o s must be finite if a solution exists, so yes!

Is it optimal?

o Only if costs are all 1 (more on costs later)

s tiers

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

BFS

Algorithm Complete [Optimal |Time Space
/ Path m
DFS VC\IIhe:king Y N O(b) O(bm)
BFS Y Y* O(b%) O(b%)
g 1 node
b nodes
d tiers <
b2 nodes
_ bd nodes
b™ nodes

C

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

DFES vs BFS

o When will BFS outperform DFS?

o When will DFS outperform BFS?

Iterative Deepening

o Idea: get DFS’s space advantage with
BFS’s time / shallow-solution
advantages

o Run a DFS with depth limit 1. If no
solution...

o Run a DFS with depth limit 2. If no
solution...

o Run a DFS with depth limit 3.

o Isn’t that wastefully redundant?

o Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
[t does not find the least-cost path. We will now cover How?
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

o What nodes does UCS expand?

o Processes all nodes with cost less than cheapest solution!

o If that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/¢

C*/e “tiers” <
o Takes time O(b¢7¢) (exponential in effective depth)

o How much space does the fringe take?
o Has roughly the last tier, so O(b®7¢)

O

o Isit complete?

o Assuming best solution has a finite cost and minimum
arc cost is positive, yes!

o Isit optimal?

o Yes! (Proof next lecture via A*)

Uniform Cost Issues

o Remember: UCS explores increasing
cost contours

o The good: UCS is complete and
optimal!

o The bad:

o Explores options in every “direction”
o No information about goal location

o We'll fix that soon!

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

The One Queue

o All these search algorithms are
the same except for fringe L@ »\1‘— A EAQE_\L@"X . \\vﬂj

strategies

o Conceptually, all fringes are priority
queues (i.e. collections of nodes
with attached priorities)

o Practically, for DFS and BFS, you
can avoid the log(n) overhead from
an actual priority queue, by using
stacks and queues

o Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

WT » el NORTH B v
. - — \ ?5 __/\. . ; Miao_ooﬁ'
MAPQVEST: S |= SN - 2 ARCTIC OCEAN TR m‘;"\- MapPoint
A ") N | ;
\ 8 & i 2 L 1\.
Qe \8 e oo ICELAND End S
Ay)
A

“- ‘."‘.‘ S

Q\é £ -RUSSIA

PN alllgns w0

~ " Helsinki Tver
Relngfors

Riga _ e
‘9._$\rp_¢len350

Vilnius i

-

) i
e’ Biaystok 5, BELARUS,
"“ POLAND -'i‘r"K'w@
P Y i Wroctaw »

km 500 1000
mi 200 400 600

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. no.f'allridmo'ro

Search and Models

o Search operates over
models of the world

o The agent doesn’t
actually try all the
plans out in the real
world!

o Planning is all “in
simulation”

o Your search is only as
good as your models...

To Do:

o Try python practice (PSO0)
o Won’t be graded

o WIill release PS1 soon
o Start ASAP

o Submission: Canvas

o Website:

o Do readings for search algorithms

o Try this search visualization tool
o http:/ / qiao.github.io / PathFinding.js/ visual /

