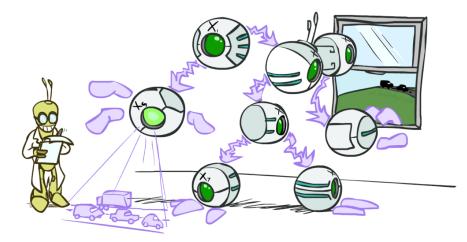
CSE 573: Artificial Intelligence Hanna Hajishirzi

Bayes Net Inference

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer



Bayes' Net Representation

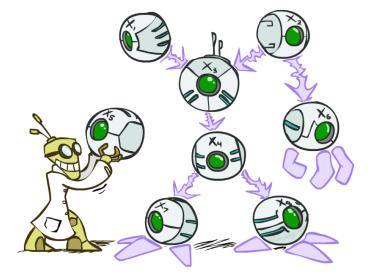
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

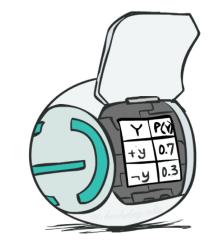
 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

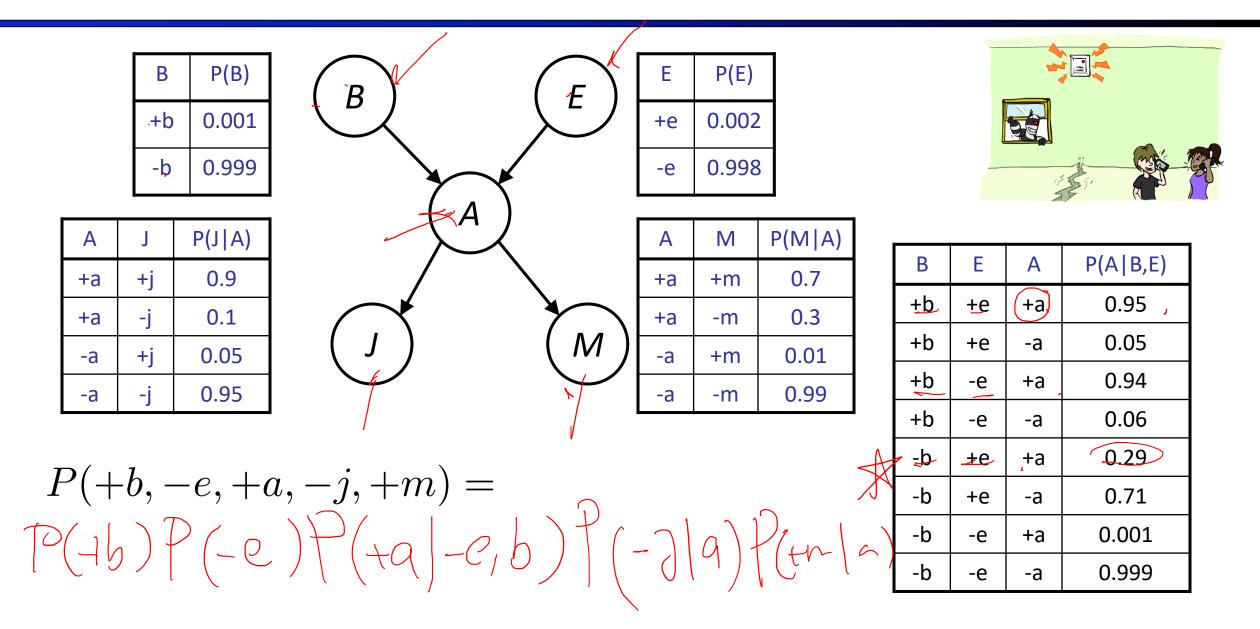
the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

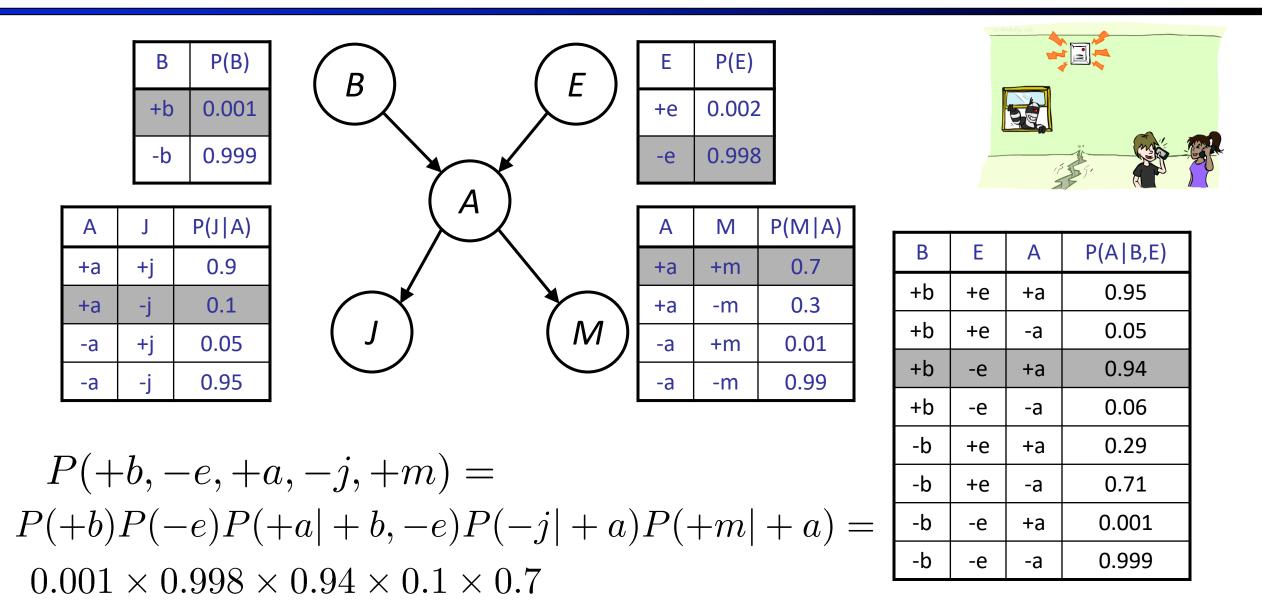




Example: Alarm Network



Example: Alarm Network



Announcements

Remaining lectures:

- Today: Inference in BNs
- Fri: Machine Learning and Neural Net Overview
- Next Wed: More applied
 - Sequential Neural vs. HMMs
 - Application: Language models and Machine Translation
- Next Fri: Poster session
 - Stay tuned: might do it virtual

Inference

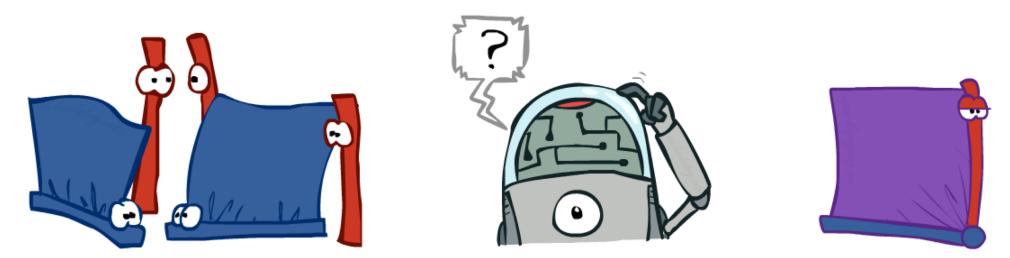
 Inference: calculating some useful quantity from a joint probability distribution

• Examples:

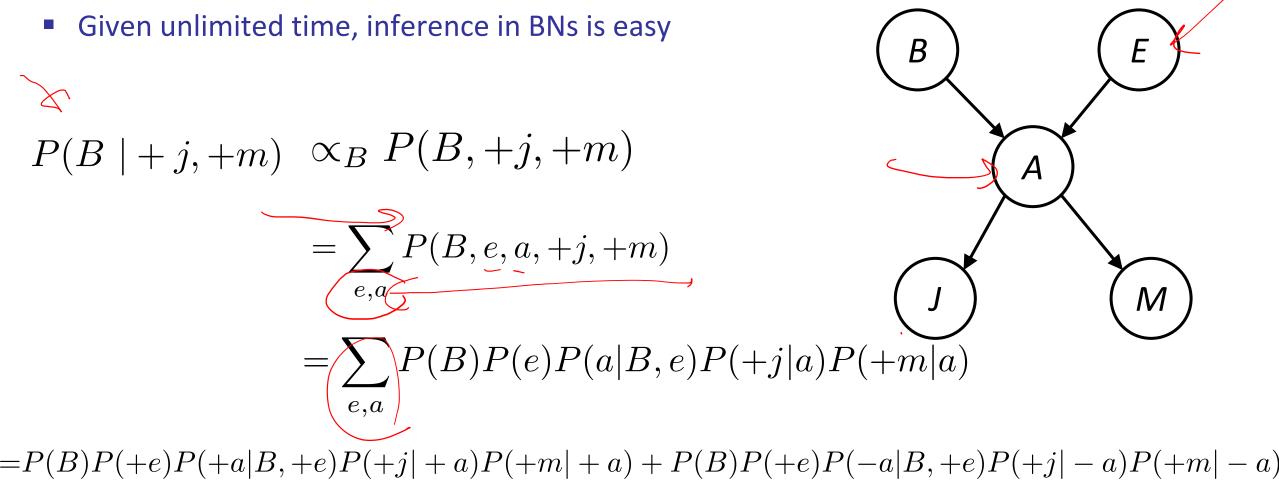
Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Most likely explanation:
 - $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$

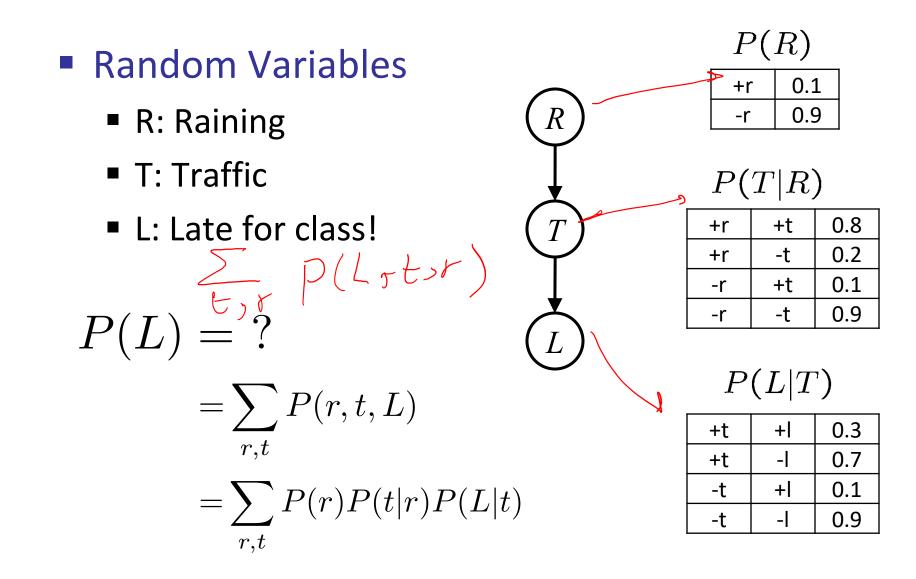


Inference by Enumeration in Bayes' Net



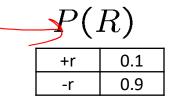
P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|

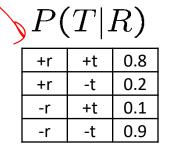
Example: Traffic Domain

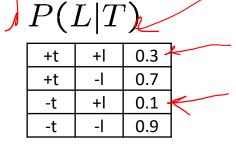


Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)







- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

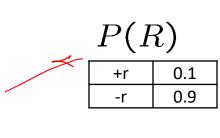
+t

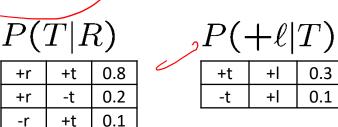
0.9

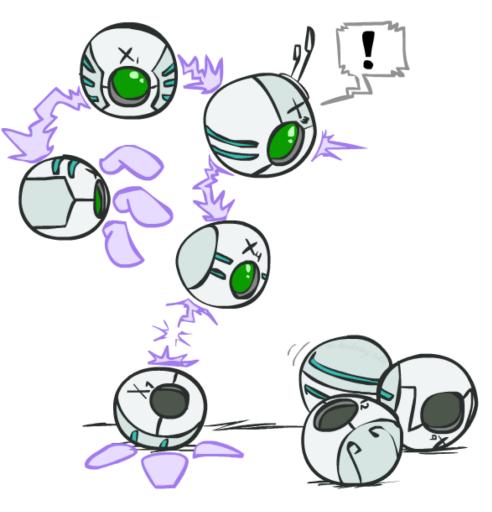
+r

+r

-r







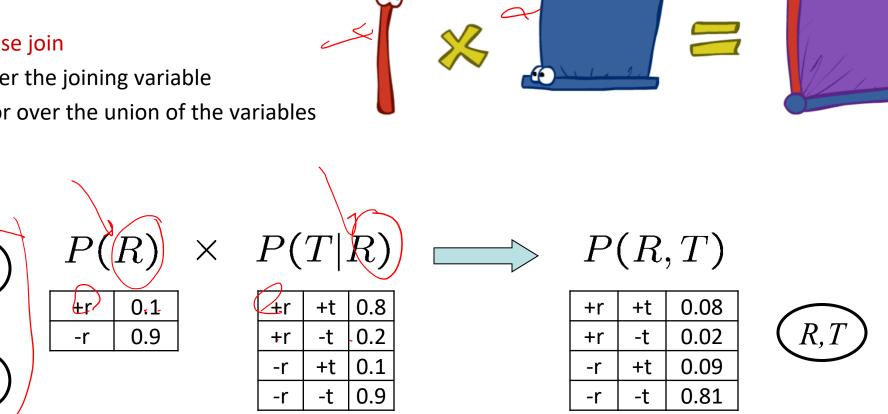
Procedure: Join all factors, then sum out all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- **Combining factors:**
 - Just like a database join
 - Get all factors over the joining variable

R

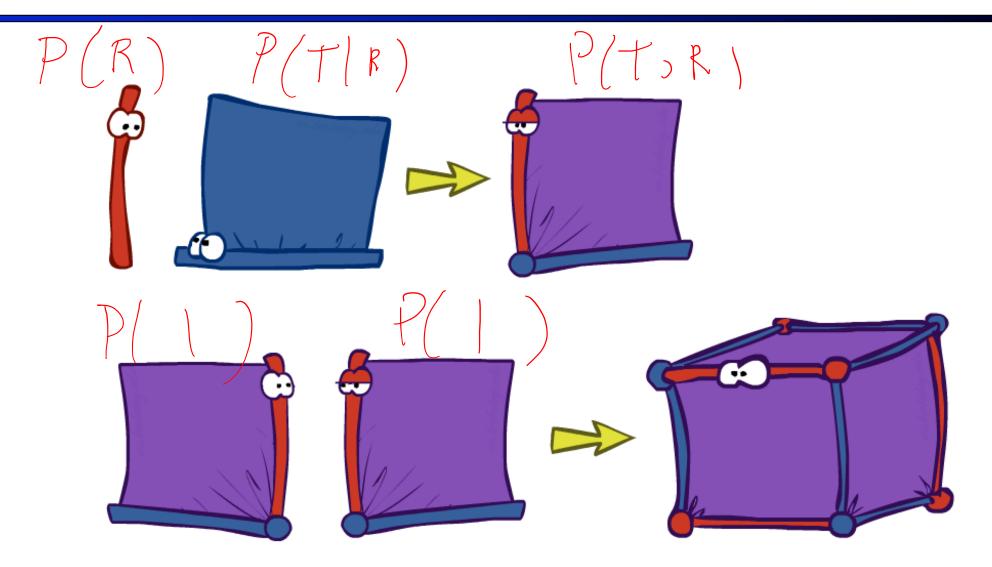
- Build a new factor over the union of the variables involved
- Example: Join on R

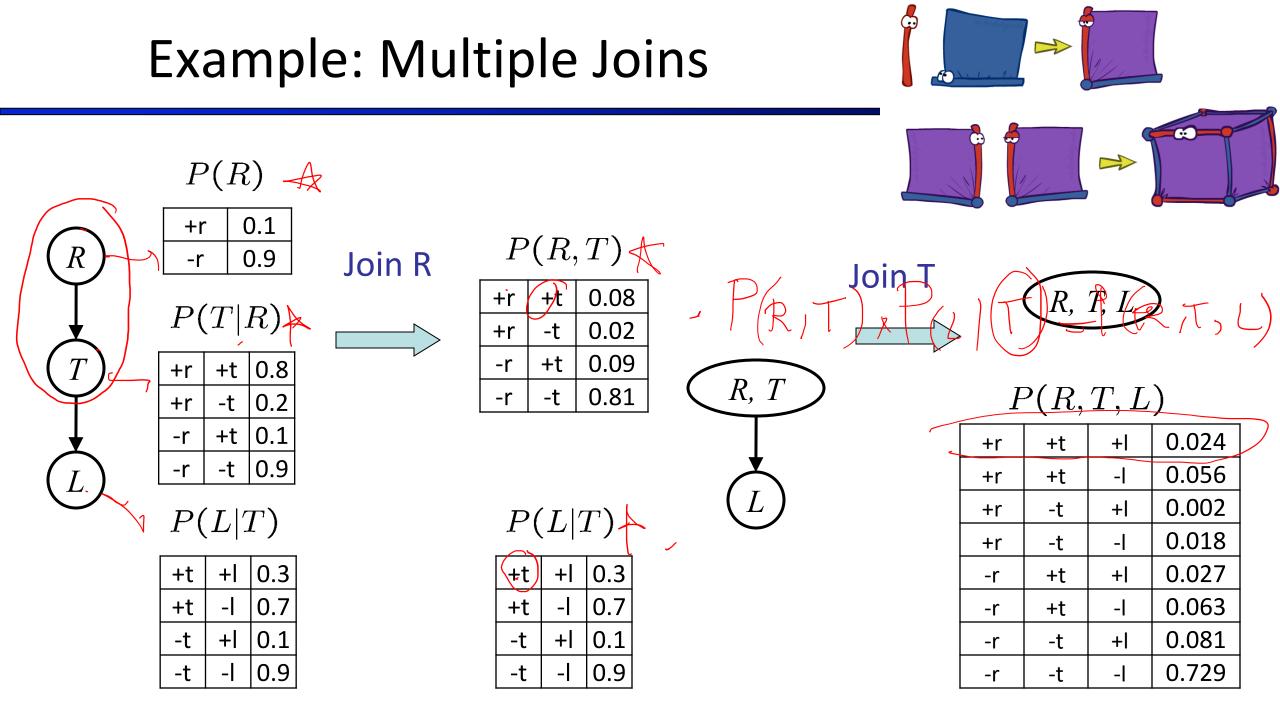


Computation for each entry: pointwise products

 $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

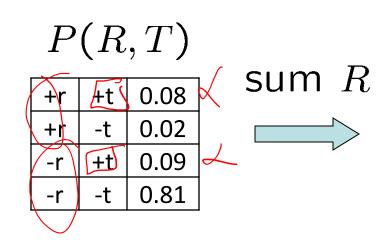
Example: Multiple Joins

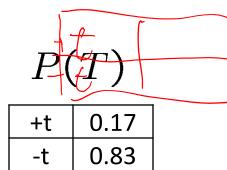


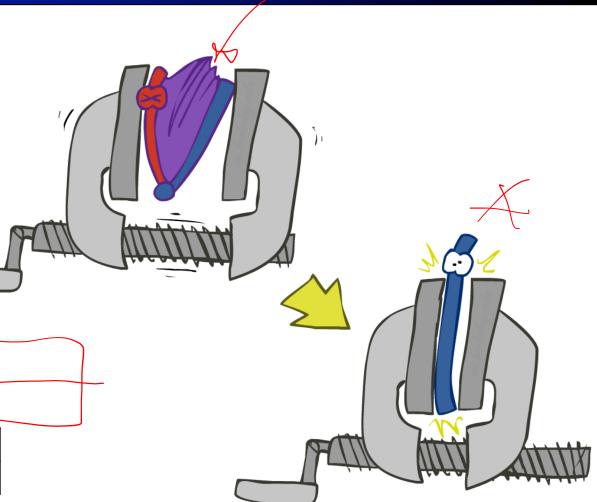


Operation 2: Eliminate

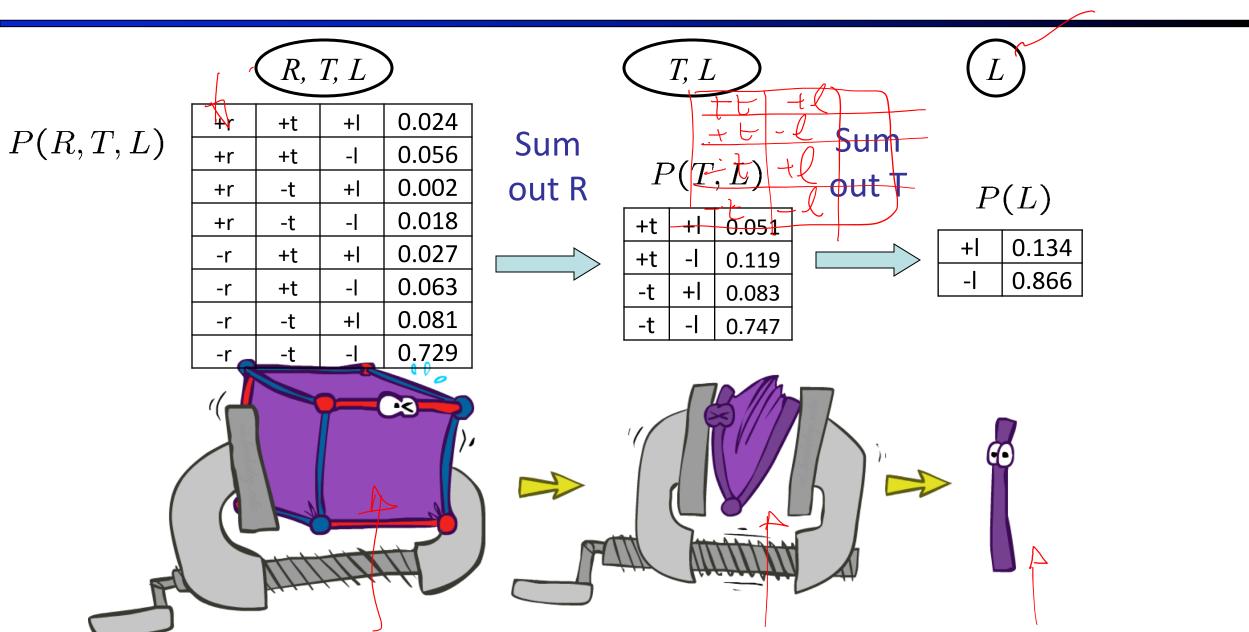
- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:



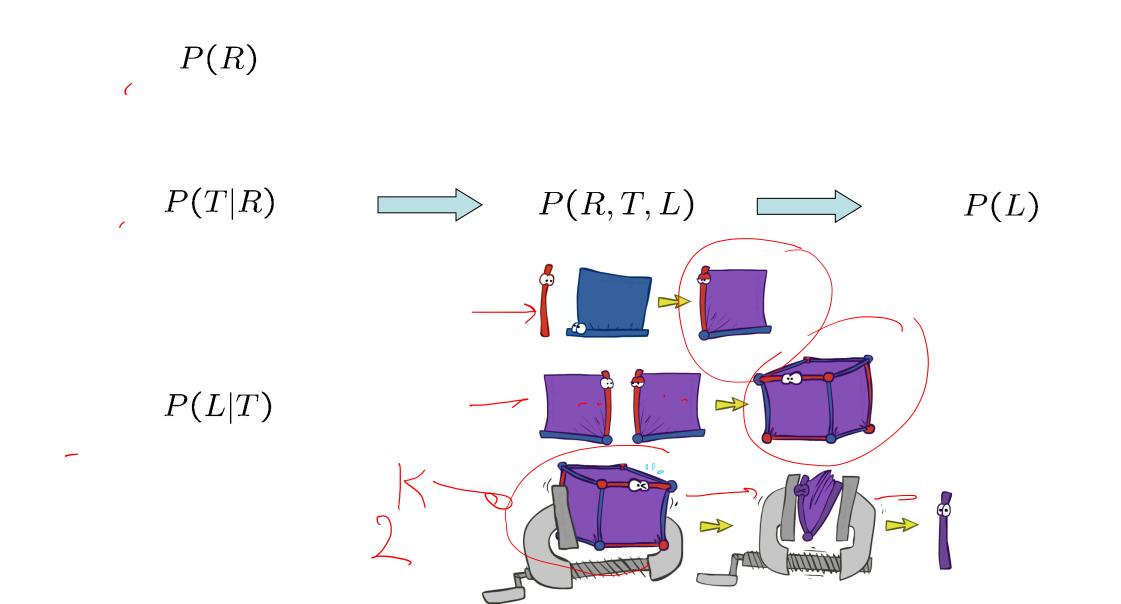




Multiple Elimination

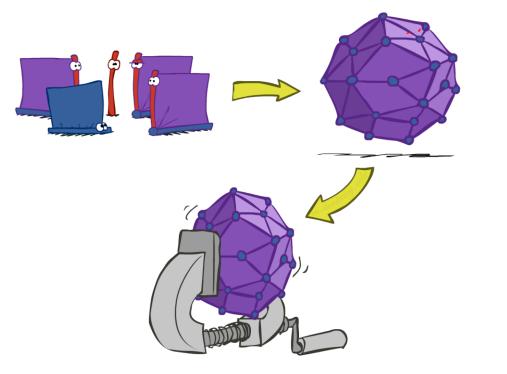


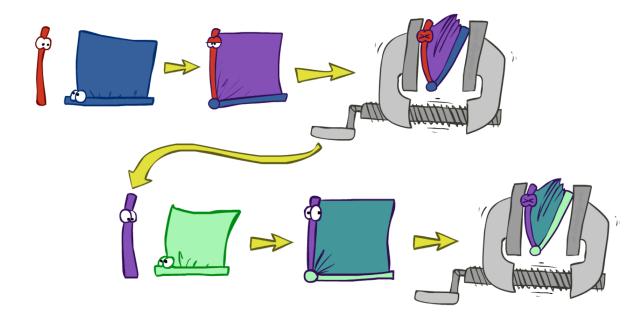
Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



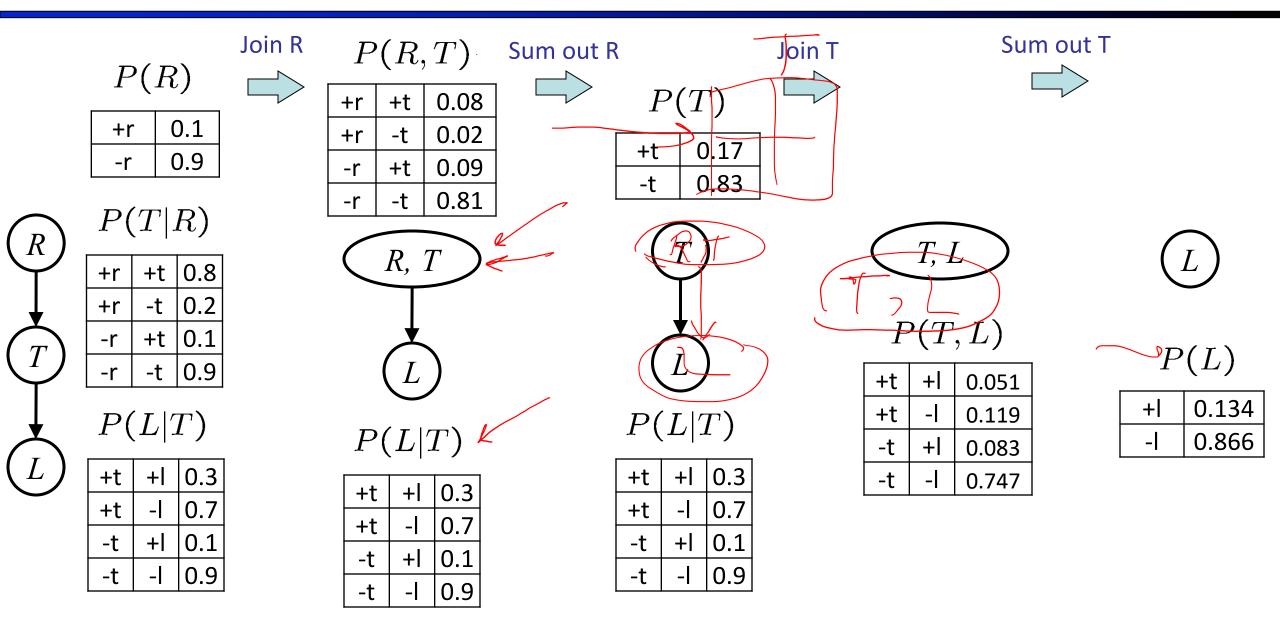
Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

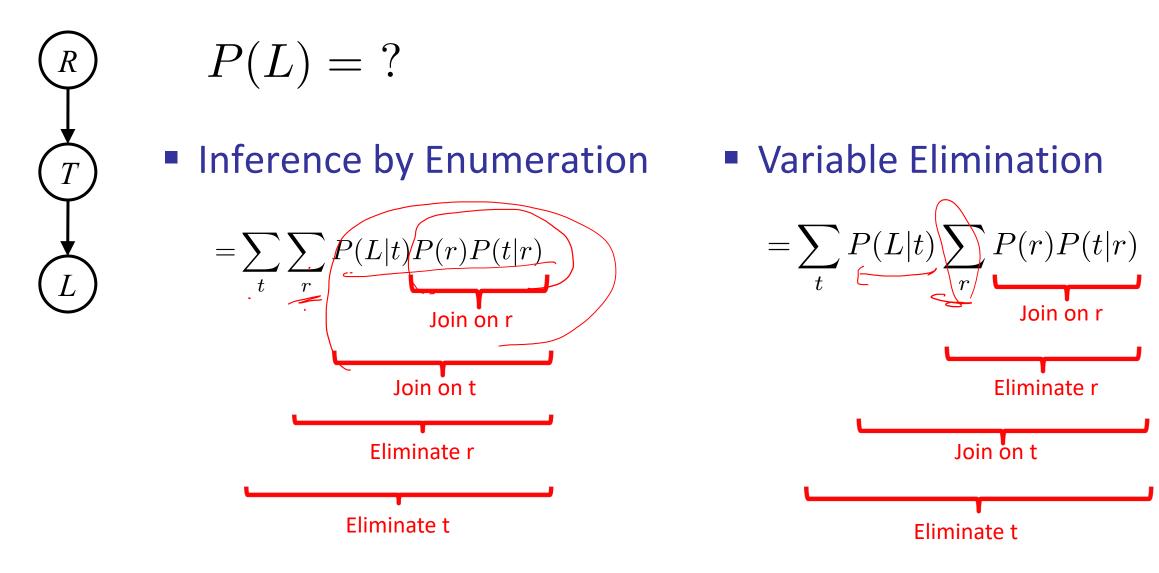




Marginalizing Early! (aka VE)



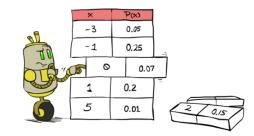
Traffic Domain

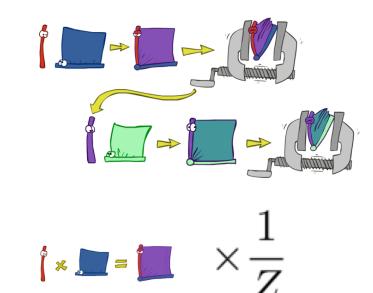


General Variable Elimination

• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

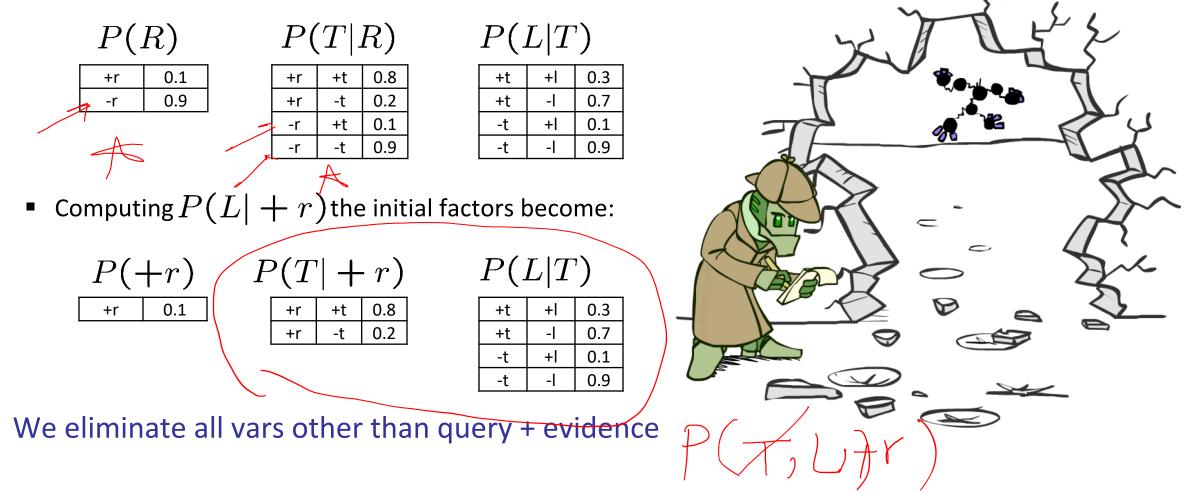
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize





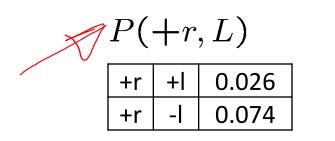
Evidence

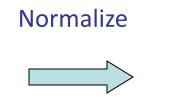
- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

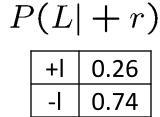


Evidence II

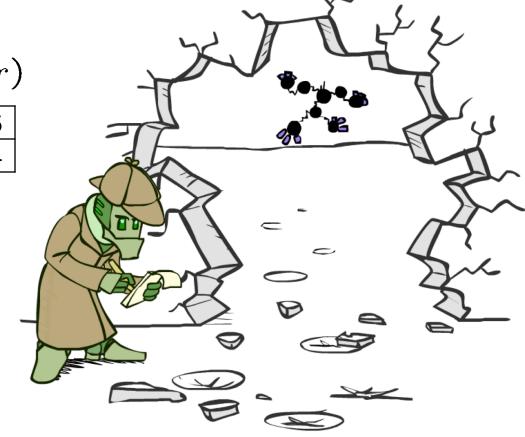
- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:



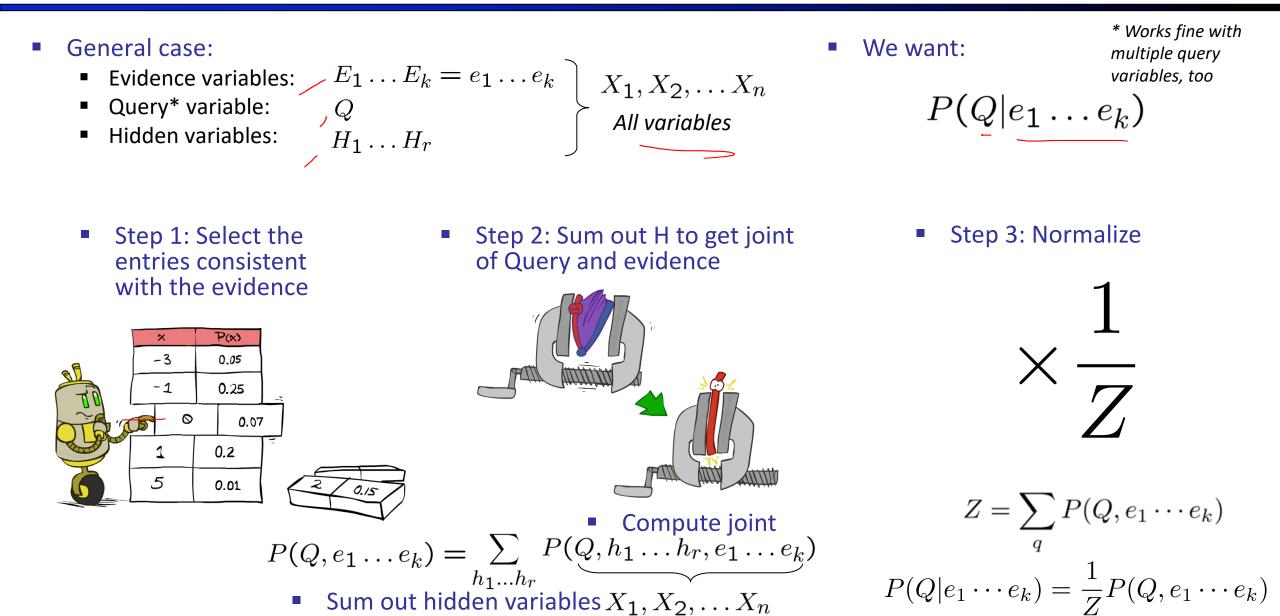




- To get our answer, just normalize this!
- That 's it!



Inference by Enumeration



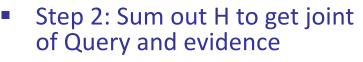
Variable Elimination

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix} X_1, X_2, \dots X_n$ All variables
- We want:

* Works fine with multiple query variables, too

$$P(Q|e_1\ldots e_k)$$

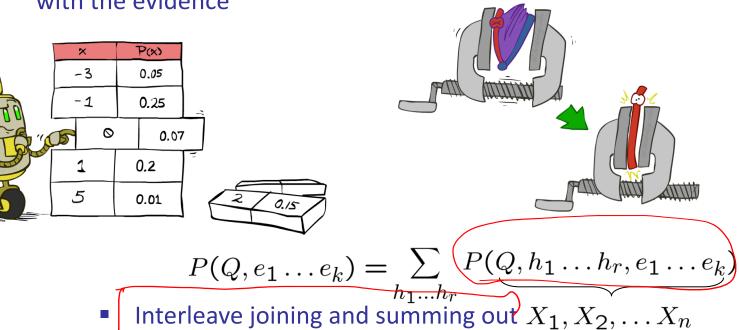
 Step 1: Select the entries consistent with the evidence

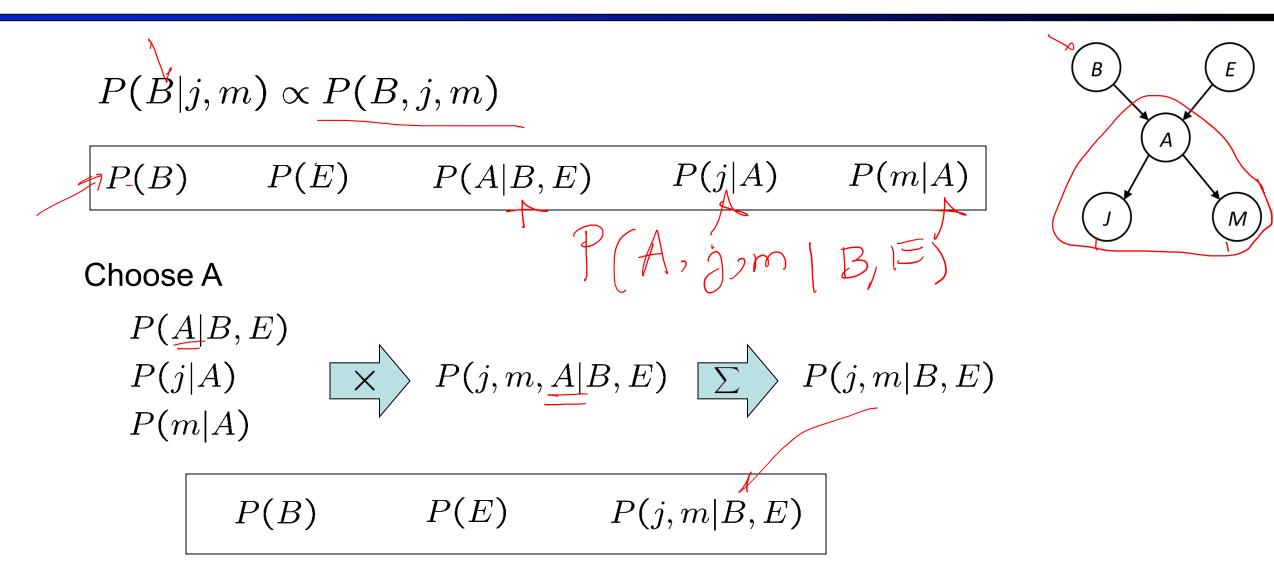


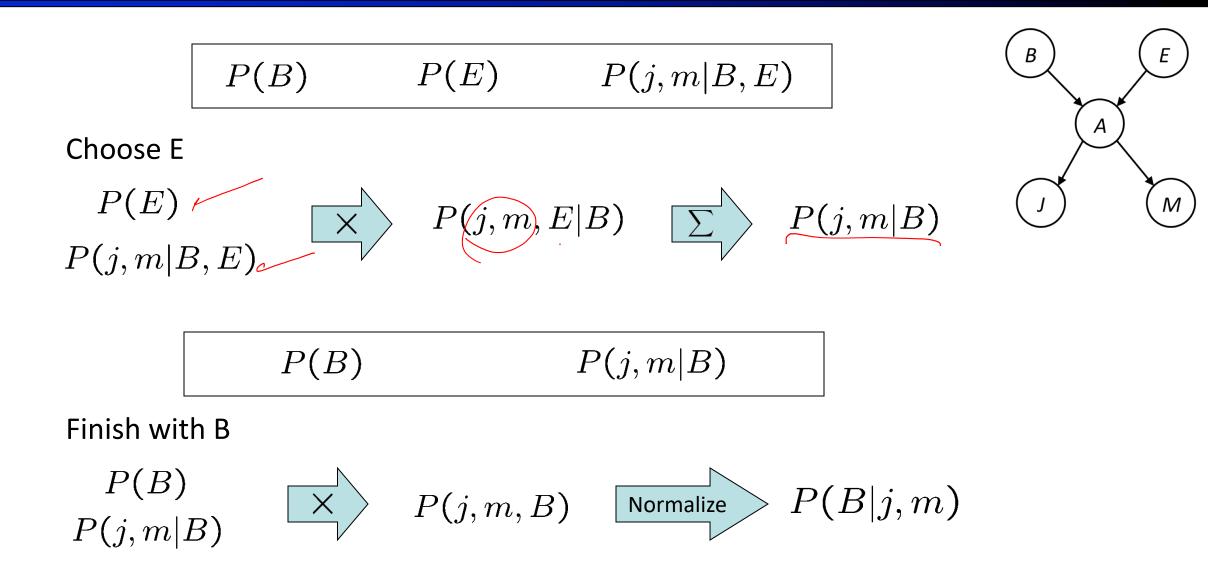
Step 3: Normalize

 $\times \frac{}{Z}$

 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$







$$P(B|j,m) \propto P(B,j,m)$$

$$P(B) P(E) P(A|B,E) P(j|A) P(m|A)$$

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e,a} P(B)P(e)\sum_{e} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)\sum_{e} P(e)f_{1}(j,m|B,e)$$

$$= P(B)\sum_{e} P(e)f_{2}(j,m|B)$$
joining on e, and then summing out gives f₂

Variable Elimination Ordering

For the query $P(X_n | y_1, ..., y_n)$ work through the following two different orderings $P(X_{1,2})$ as done in previous slide: Z, X₁, ..., X_{n-1} and X₁, ..., X_{n-1}, Z. What is the size of the maximum factor generated for each of the orderings? $P(Z) F(X_1 | Z) F(X_2 | Z) P(X_n | Z)$ $P(Z, X_1, X_2, ..., X_n)$ $P(X_{n}|z)$ X_1 P(Yn | &n) × 10 ~ • • • - C(- : P (gAnswer: 2ⁿ versus 2 (assuming binary)

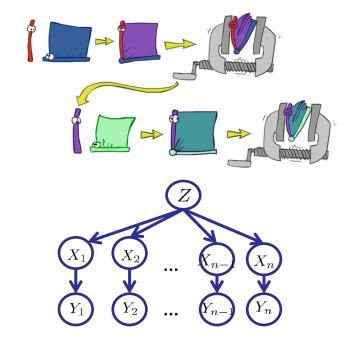
In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

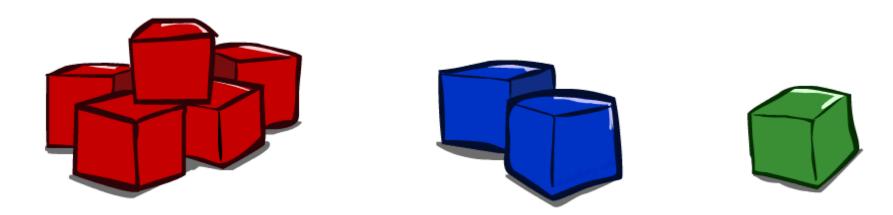
- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Variable Elimination

- Interleave joining and marginalizing
- d^k entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes' net



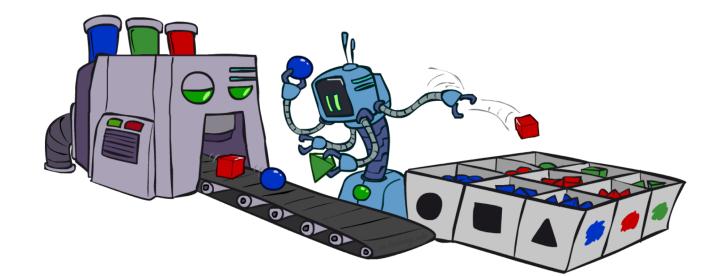
Approximate Inference: Sampling



Sampling

- Sampling is a lot like repeated simulation
 - Predicting the weather, basketball games, ...
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate probability

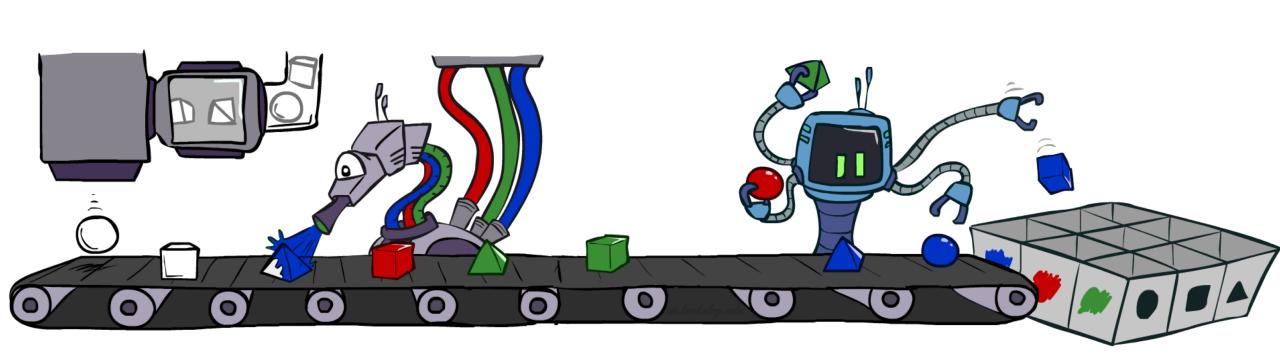
- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer



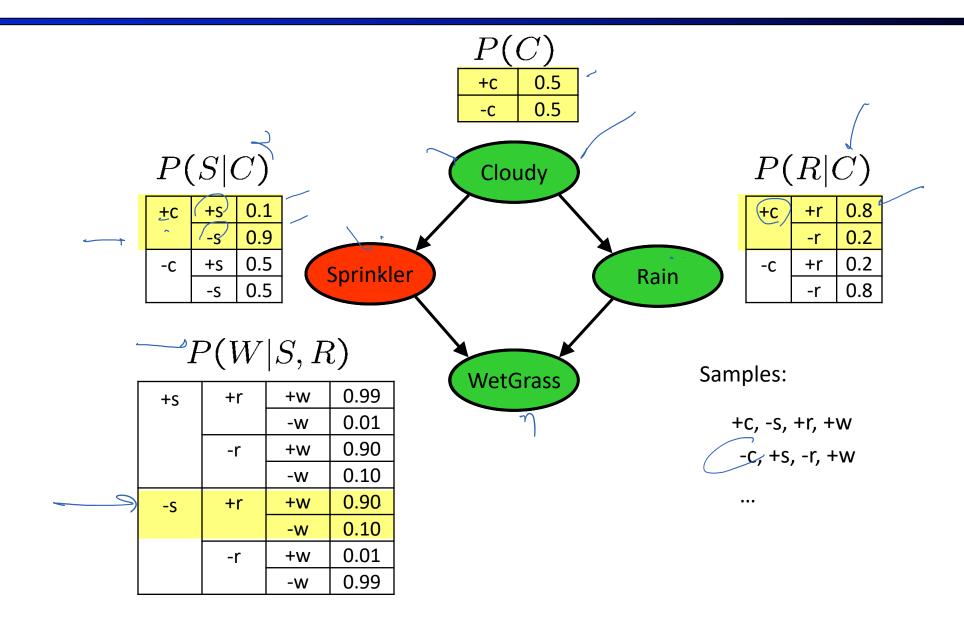
Sampling in Bayes' Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting

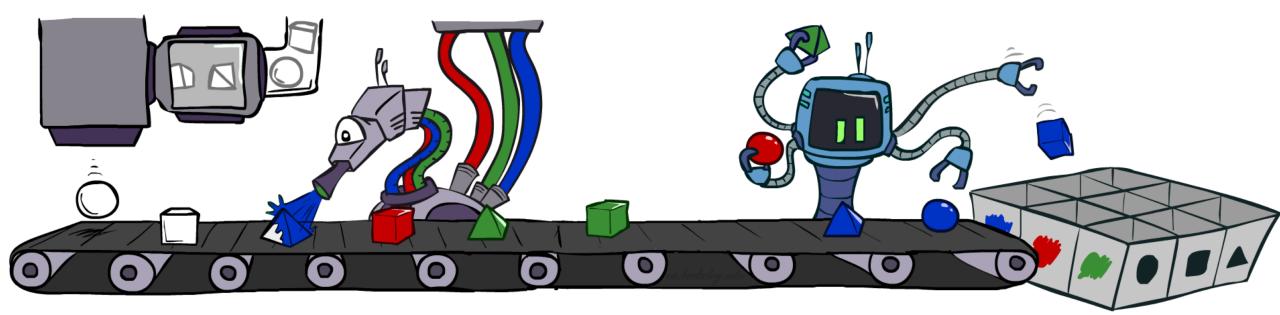
Prior Sampling



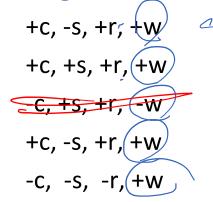
Prior Sampling



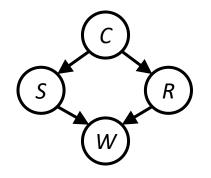
Prior Sampling



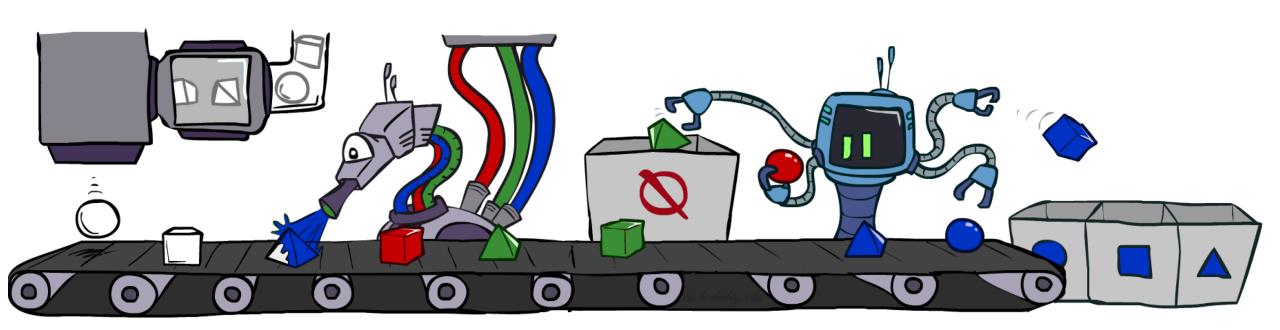
We'll get a bunch of samples from the BN:



- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about P(C | +w)? P(C | +r, +w)? P(C | -r, -w)?
 - Fast: can use fewer samples if less time (what's the drawback?)

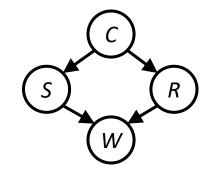


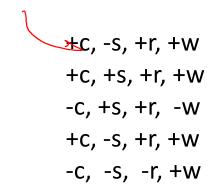
Rejection Sampling



Rejection Sampling

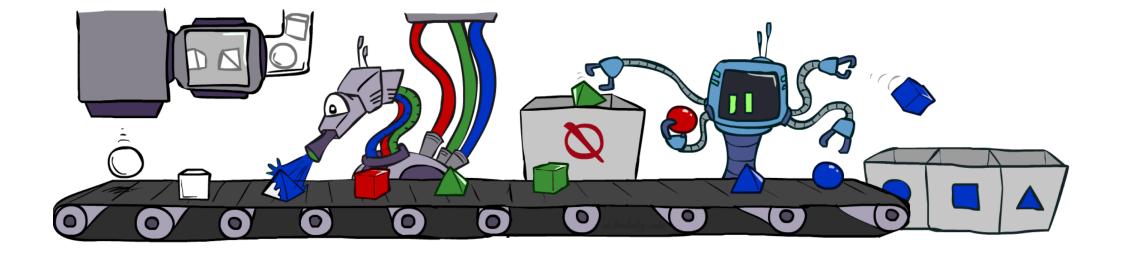
- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go
- Let's say we want P(C | +s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

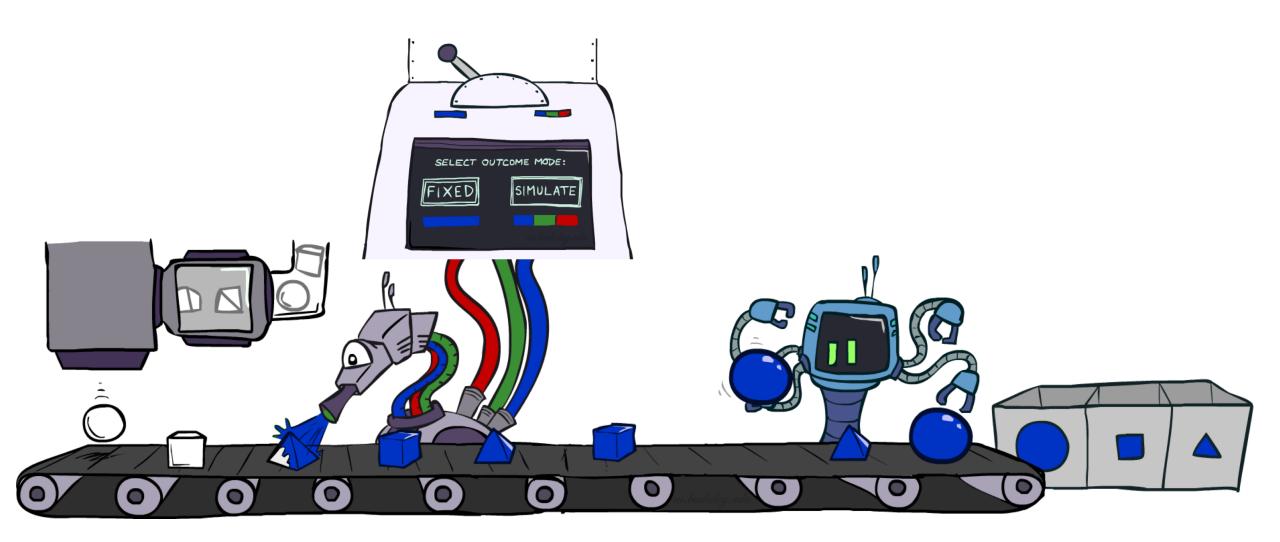




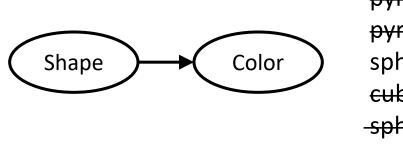
Rejection Sampling

- Input: evidence instantiation
- For i = 1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
 - If x_i not consistent with evidence
 - Reject: return no sample is generated in this cycle
- Return (x₁, x₂, ..., x_n)

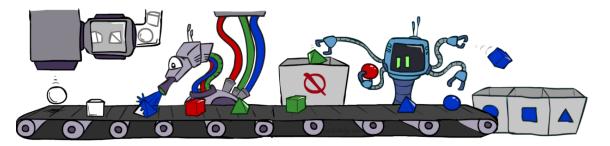




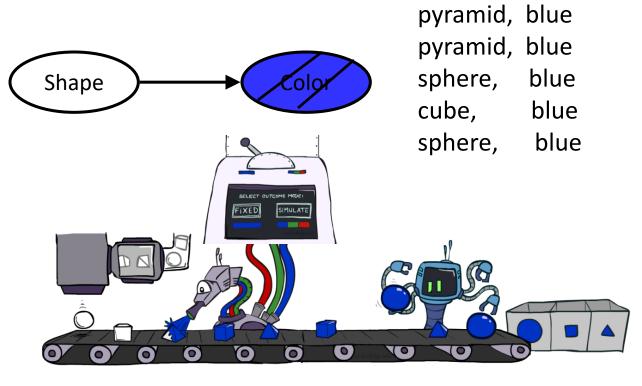
- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | blue)

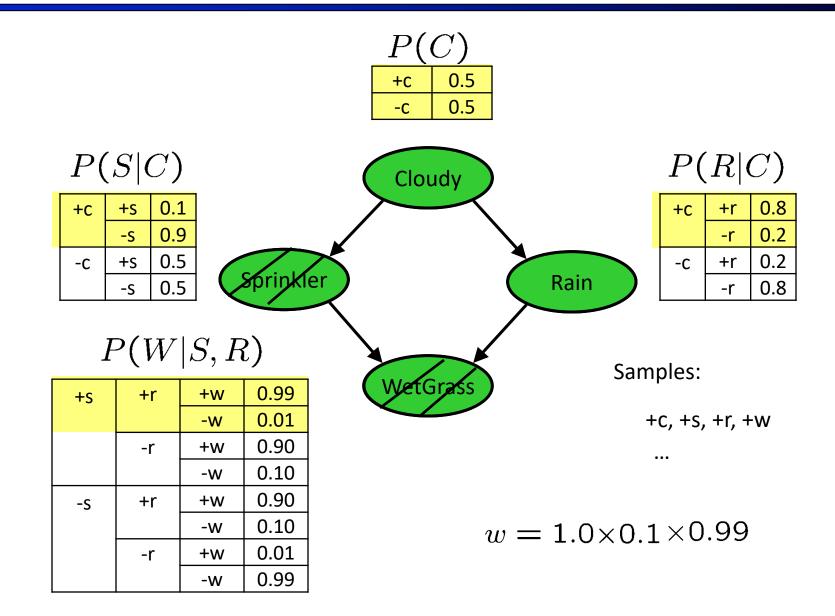


pyramid,	green
pyramid,	-red
sphere,	blue
cube,	-red
sphere,	green



- Idea: fix evidence variables and sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight by probability of evidence given parents





- Input: evidence instantiation
- w = 1.0
- for i = 1, 2, ..., n
 - if X_i is an evidence variable
 - X_i = observation x_i for X_i
 - Set w = w * P(x_i | Parents(X_i))
 - else

FIXED

- Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w

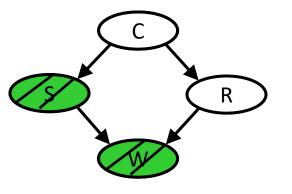
0

Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$



Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(z, e)$$

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W's value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence

