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Bayes� Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents� values

§ Bayes� nets implicitly encode joint distributions
§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Example: Alarm Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)
+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)
+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ
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Announcements

§ Remaining lectures:
§ Today: Inference in BNs
§ Fri: Machine Learning and Neural Net Overview
§ Next Wed: More applied

§ Sequential Neural vs. HMMs
§ Application: Language models and Machine Translation

§ Next Fri: Poster session
§ Stay tuned: might do it virtual

5



§ Examples:
§ Posterior probability

§ Most likely explanation:

Inference

§ Inference: calculating some 
useful quantity from a joint 
probability distribution



Inference by Enumeration in Bayes’ Net
§ Given unlimited time, inference in BNs is easy

B E

A

MJ

P (B |+ j,+m) /B P (B,+j,+m)

=
X

e,a

P (B, e, a,+j,+m)

=
X

e,a

P (B)P (e)P (a|B, e)P (+j|a)P (+m|a)

=P (B)P (+e)P (+a|B,+e)P (+j|+ a)P (+m|+ a) + P (B)P (+e)P (�a|B,+e)P (+j|� a)P (+m|� a)

P (B)P (�e)P (+a|B,�e)P (+j|+ a)P (+m|+ a) + P (B)P (�e)P (�a|B,�e)P (+j|� a)P (+m|� a)



Example: Traffic Domain

§ Random Variables
§ R: Raining
§ T: Traffic
§ L: Late for class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)



Inference by Enumeration: Procedural Outline

§ Track objects called factors
§ Initial factors are local CPTs (one per node)

§ Any known values are selected
§ E.g. if we know                  , the initial factors are

§ Procedure: Join all factors, then sum out all hidden variables

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



Operation 1: Join Factors

§ First basic operation: joining factors
§ Combining factors:

§ Just like a database join
§ Get all factors over the joining variable
§ Build a new factor over the union of the variables 

involved

§ Example: Join on R

§ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Example: Multiple Joins



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join T



Operation 2: Eliminate

§ Second basic operation: marginalization

§ Take a factor and sum out a variable
§ Shrinks a factor to a smaller one

§ A projection operation

§ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L
+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866



Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



Inference by Enumeration vs. Variable Elimination
§ Why is inference by enumeration so slow?

§ You join up the whole joint distribution before 
you sum out the hidden variables

§ Idea: interleave joining and marginalizing!
§ Called �Variable Elimination�
§ Still NP-hard, but usually much faster than 

inference by enumeration



Marginalizing Early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T



Traffic Domain

§ Inference by EnumerationT

L

R P (L) = ?

§ Variable Elimination

=
X

t

P (L|t)
X

r

P (r)P (t|r)

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

=
X

t

X

r

P (L|t)P (r)P (t|r)

Eliminate t



General Variable Elimination
§ Query:

§ Start with initial factors:
§ Local CPTs (but instantiated by evidence)

§ While there are still hidden variables 
(not Q or evidence):
§ Pick a hidden variable H
§ Join all factors mentioning H
§ Eliminate (sum out) H

§ Join all remaining factors and normalize



Evidence

§ If evidence, start with factors that select that evidence
§ No evidence uses these initial factors:

§ Computing                        , the initial factors become:

§ We eliminate all vars other than query + evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Evidence II

§ Result will be a selected joint of query and evidence
§ E.g. for P(L | +r), we would end up with:

§ To get our answer, just normalize this!

§ That ’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



Inference by Enumeration
§ General case:

§ Evidence variables: 
§ Query* variable:
§ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z
§ Compute joint

§ Sum out hidden variables



Variable Elimination
§ General case:

§ Evidence variables: 
§ Query* variable:
§ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z

§ Interleave joining and summing out



Example

Choose A



Example

Choose E

Finish with B

Normalize



Example

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

joining on a, and then summing out gives f1

joining on e, and then summing out gives f2

P (B|j,m) / P (B, j,m)

=
X

e,a

P (B, j,m, e, a)

=
X

e,a

P (B)P (e)P (a|B, e)P (j|a)P (m|a)

=
X

e

P (B)P (e)
X

a

P (a|B, e)P (j|a)P (m|a)

= P (B)f2(j,m|B)

= P (B)
X

e

P (e)f1(j,m|B, e)

=
X

e

P (B)P (e)f1(j,m|B, e)



Variable Elimination Ordering

§ For the query P(Xn|y1,…,yn) work through the following two different orderings 
as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  What is the size of the 
maximum factor generated for each of the orderings?

§ Answer: 2n versus 2 (assuming binary)

§ In general: the ordering can greatly affect efficiency.  

…

…



VE: Computational and Space Complexity

§ The computational and space complexity of variable elimination is 
determined by the largest factor

§ The elimination ordering can greatly affect the size of the largest factor.  
§ E.g., previous slide’s example 2n vs. 2

§ Does there always exist an ordering that only results in small factors?
§ No!



Variable Elimination

§ Interleave joining and marginalizing

§ dk entries computed for a factor over k 
variables with domain sizes d

§ Ordering of elimination of hidden variables 
can affect size of factors generated

§ Worst case: running time exponential in the 
size of the Bayes’ net

…

…



Approximate Inference: Sampling



Sampling
§ Sampling is a lot like repeated simulation

§ Predicting the weather, basketball games, …

§ Basic idea
§ Draw N samples from a sampling distribution S

§ Compute an approximate probability

§ Why sample?
§ Learning: get samples from a distribution 

you don’t know
§ Inference: getting a sample is faster than 

computing the right answer 



Sampling in Bayes’ Nets

§ Prior Sampling

§ Rejection Sampling

§ Likelihood Weighting



Prior Sampling



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w
…



Prior Sampling

§ For i = 1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

§ Return (x1, x2, …, xn)



Example

§ We’ll get a bunch of samples from the BN:
+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

§ If we want to know P(W)
§ We have counts <+w:4, -w:1>

§ Normalize to get P(W) = <+w:0.8, -w:0.2>

§ This will get closer to the true distribution with more samples

§ Can estimate anything else, too

§ What about P(C | +w)?   P(C | +r, +w)?  P(C | -r, -w)?

§ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Rejection Sampling



+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

§ Let’s say we want P(C)
§ No point keeping all samples around

§ Just tally counts of C as we go

§ Let’s say we want P(C | +s)
§ Same thing: tally C outcomes, but 

ignore (reject) samples which don�t 
have S=+s

§ This is called rejection sampling

§ It is also consistent for conditional 
probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
§ Input: evidence instantiation
§ For i = 1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

§ If xi not consistent with evidence
§ Reject: return – no sample is generated in this cycle

§ Return (x1, x2, …, xn)



Likelihood Weighting



§ Idea: fix evidence variables and sample the 
rest
§ Problem: sample distribution not consistent!
§ Solution: weight by probability of evidence 

given parents

Likelihood Weighting

§ Problem with rejection sampling:
§ If evidence is unlikely, rejects lots of samples
§ Evidence not exploited as you sample
§ Consider P( Shape | blue )

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
§ Input: evidence instantiation
§ w = 1.0
§ for i = 1, 2, …, n

§ if Xi is an evidence variable
§ Xi = observation xi for Xi

§ Set w = w * P(xi | Parents(Xi))
§ else

§ Sample xi from P(Xi | Parents(Xi))

§ return (x1, x2, …, xn), w



Likelihood Weighting

§ Sampling distribution if z sampled and e fixed evidence

§ Now, samples have weights

§ Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting

§ Likelihood weighting is good
§ We have taken evidence into account as we generate the sample
§ E.g. here, W’s value will get picked based on the evidence values of S, R
§ More of our samples will reflect the state of the world suggested by the evidence

S R

W

C


