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Bayes Net Representation

= Adirected, acyclic graph, one node per random variable @ @
= A conditional probability table (CPT) for each node N .

= A coIIectiop of distributions over X, one for each combination
of parents’ values

P(X|ay...an)

= Bayes’ netsimplicitly encodejoint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together: >

L P DO X
P(x1,22,...xn) = || P(ay|parents(X;))
— s =1




Example: Alarm Network

Al M | PM|A)

+a | +m 0.7

+3a -m 0.3

-a +m 0.01

-a -m 0.99

B | E| A | PA|B,E)
th | +e 0.95 ,
+b | +e | -a 0.05
+b -e | +a 0.94
+b | -e | -a 0.06
L b | 4e | +a | 70290
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999




Example: Alarm Network

B P(B) E P(E)
+b | 0.001 +e | 0.002
-b | 0.999 -e | 0.998
Al J | PUIA) ° Al M |PM|A)
+a | + 0.9 +a | +m 0.7 5 E [ A PIAIB/E)
val | 01 va | -m | 03 tb | te | ta | 095
-3 +] 0.05 a | +m 0.01 +b | +e | -a 0.05
a | 5| 095 a | -m| 099 ol I o O
+b | -e | -a 0.06
. -b | +e | +a 0.29
| | _ —
P( | ba 67 |CL, ]7_|_m) — b | +e | -a 0.71
P(+b)P(~€)P(+a] + b, —e) P(~j| + Q) P(+m]| + a) = [ ] < [ [ oo
b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Announcements

= Remaining lectures:
" Today: Inference in BNs
" Fri: Machine Learning and Neural Net Overview

= Next Wed: More applied
= Sequential Neural vs. HMMs
= Application: Language models and Machine Translation

= Next Fri: Poster session
= Stay tuned: might do it virtual



Inference

" |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

—OP(Q|EL = e1,... B, = ey)
—
= Most likely explanation:

argmax, P(Q =q|E1 =eq...)

N = N




Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e

P(B | +j,4+m) xp P(B,+j,+m) °

— P(B)P(e)P(a|B,e)P(+jla)P —I—m\
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_|_
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B)P(+e)P(—a|B,+e)P(+j| — a)P(+m| — a)
+jl +a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)



Example: Traffic Domain

= Random Variables

= R: Raining

= T: Traffic
= |: Late for class!
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Inference by Enumeration: Procedural Outline

" Track objects calle@

= |nitial factors are local CPTs (or>e per node)

—=P(R)_ \PATIR) P(Lm/ X»N
s 09 +rr +tt §z -t +|| 8; < @Q

= Any known values are selected
= Eg. ifwe kne initial factors are

P

P(R)  P(TIR)  P(+T)
+r 0.1 +r | +t | 0.8 +|
-r 0.9 +r -t | 0.2 -t +| 0.1
-r + [ 0.1
-r -t |1 0.9

" Procedure: Join all factors, then sum out all hidden variables



Operation 1: Join Factors

= First basic operation: joining factors

=  Combining factors:
= Just like a database join = 2@
= Get all factors over the joining variable

» Build a new factor over the union of the variables
involved

= Example:Joinon R

0 >O x P(T| —— P(R,T)

0.8 +r | +t | 0.08
-r +r | -t .02 +r | -t | 0.02
G or | +t 0.1 -r | +t | 0.09
-r | -t |0.9 -r | -t | 0.81

= Computation for each entry: pointwise products V71, ¢ : P(T, t) - P(T) ' P(t|?“)




Example: Multiple Joins

P(RY  P(Tlk) PR

|
N -




Example: Multiple Joins i.».

T8 |

+r | 0.1

Tl . P ity (R
R, T

P(T[R)‘F& |:> +r 0.02

+r | +t (0.8 -r | +t10.09
+r | -t 0.2 -r| -t |0.81 Q P R T L
/

-r | +t]0.1 | +r | +t | + | 0.024
-r| -t ]0.9 @ #r | +t | -1 | 0.056

+r -t + | 0.002
P(L|T) Ij\(L|T) p «r | t | 1 0018
+t |+ (0.3 Gt) +1]0.3 x| o+t | 4+ | 0.027
+t | -1 |0.7 +t | -1 |0.7 -r +t -1 | 0.063
-t | +] [|0.1 -t | +] |0.1 -r -t + | 0.081
-t | -l {0.9 -t | -l {0.9 -r -t -| 0.729




Operation 2: Eliminate

= Second basic operation: marginalization yé

= Take a factor and sum out a variable
» Shrinks a factor to a smaller one

= A projection operation

= Example:

P(R,T) El@%
/A}L At < oos [ SUM £t

+r| -t | O. tt

S Gieos L

-r | -t ]0.81
N




Multiple Elimination

P(L)

+| | 0.134

-l 10.866




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

P(R)

4

P(T|R) P(L)

P(L|T)




Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = Idea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration




P(R)

+r | 0.1

-r | 0.9

P(T|R)

+r | +t |0.8

+r | -t |0.2

-r | +t |0.1

-r | -t 0.9

P(L|T)

+t | +1 |0.3

+t | -1 0.7

-t | +| [0.1

-t | -l {0.9

Join R

—>

Marginalizing Early! (aka VE)

Sumout T

P(R,T) SumoutR ’J)BTHT
+r | +t | 0.08 —> P(T
+r | -t | 0.02 e
«r |+t | 0.09 - g';;
T |t | 081 -
R T )="
P(L|T) / P(L|T)
+t | + [0.3
:: :, 8‘3 +t| 07
" 0'1 -t | +1 |0.1
' -t | -1 |09

0.9

—>

0.051

0.119

0.083

0.747




Traffic Domain

P(L) = ?

" Inference by Enumeration = Variable Elimination

=) P(LI))) P(r)P(t]r)
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General Variable Elimination

Query: P(Q|E’1 = €1,... Ek: = ek)

-

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables .».

(not Q or evidence):

" Pick a hidden variable H
= Join all factors mentioning H i Q ! .

= Eliminate (sum out) H

Join all remaining factors and normalize fa@.% . X —



Evidence

= |f evidence, start with factors that select that evidence

= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t + | 0.3
o 0.9 +r | -t | 0.2 +t | 0.7

’ 4 | +# | 01 -t + | 01

ﬁég 7 -+ | -t |09 -t | -1 |09

= Computing P(L| + Tft?e initial factors become:

P(4+r) / P(T|4+7r)  P(LIT)
+r 0.1 +r | +t | 0.8 +t + | 0.3
+r | -t | 0.2 +t | 0.7

-t + | 0.1

-t -| 0.9

= We eliminate all vars other than query



Evidence ||

= Result will selected joint of query and evidence
= E.g.forP(L | +r), we would end up with:

%P(_I_ra L) Normalize P(L + "'“)

+r | +l | 0.026 :t + | 0.26
+r| -1 | 0.074 -1 1 0.74

= To get our answer, just normalize this!

= That’sit!



Inference by Enumeration

* Works fine with

=  General case: = We want: multiple query
n aviden*ce Va.rislb|es;/ E]_ . Ek =e€1...€L X17 XQ, o Xn P variables, too
- r r :
Hery” variane )@ All variables (Q|€1 s ek)
= Hidden variables: Hy...H, -
% =
= Step 1: Select the =  Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1

Peo
0.05 —
X 7

0.07
02 |
0.01 é———_-@— ‘

- p— . ..
— = Compute joint Z = ZP(Q’el k)
P(Q,e1...ep) = D P(C\Q,hl...hr,el...e/k) q

hi...hy ~ o B i .
= Sum out hidden variables X1, X5, ... X, P(Qler---ex) = ZP(Q,61 €k)



Variable Elimination

* Works fine with

=  General case: = We want: multiple query
" Evidencevariables:  E1...Ep=e1...ex | ¥  x, X, variables, too
= Query* variable: Q : P(Q|€1 ... € )
All variables k

= Hidden variables: Hy...H,

= Step 1: Select the =  Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

Ped
0.05 —
E X 7
0.07
02 | ,
0.01 —W A
-’ Z=ZP(Q,€1~°61€)
P(Q,e1...e;) = > P(Q,h1...hrye1... ¢ 4

_

1
e ' o _ o
'rlnterleavejoining and summing out X, X»,...Xp P(Qley €k) = ZP(Q,61 ek)




Example

P(B\j, m) o< P(B,j, m)
/ﬁP_(B) P(E) P(A|B,E) P(yAIA) P(ml|A)
i /> C]’\‘
Choose A ?(WA’ )2 \ B =)
P(A|B, E)
P(j]A) X > P@G,m AB,E) [ X ) P@,m|B,E)
P(m|A)

P(B)

7
P(E) P(j,m|B, E)




Example

P(B)

P(E) P(j,m|B, E)

Choose E

P(E) —

:x> P(j,m) E|B) jz > P(j,m|B)

P(B) P(j,m|B)

Finish with B

P(B) :'|> . :: > -
P(]’m|B) X P(g,m,B) Normalize P(B’j, m)



Example

P(B|j,m) o« P(B,j,m)

P(B) P(E) P(A|B, E) P(jlA)  P(m|A)

P(B|j,m) x P(B,j,m) marginal can be obtained from joint by summing out
= Z P(B,j,m €.a use Bayes’ net joint distribution expression
- P(B)P(e)P(aB, ¢)P(jla) Plmla)
= P(B)PSG@(QR G)P(ﬂa)P(WHa) joining on a, and then summing out give@
- S PB)PE it miB
_P(B)S PO AGmIB.

joining on e, and then summing out gives f,



Variable Elimination Ordering

= Forthe quer@l YireerY )J/ork through the following two different orderings
P(% Z/)as done in previous slide: Z, X, ..., X, ; and X, ..., X, 1, Z. What is the size of the
"7 imum factor generated for each of the orderlngs?

?W%zﬁ (Xn [
E(Z z/ ) "\)

: 2>” versus 2 (assuming binary)

In general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

* The computational and space complexity of variable elimination is
determined by the largest factor

* The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

" Does there always exist an ordering that only results in small factors?
= No!



Variable Elimination

Interleave joining and marginalizing

d¢ entries computed for a factor over k
variables with domain sizes d

Ordering of elimination of hidden variables
can affect size of factors generated

Worst case: running time exponential in the
size of the Bayes’ net



Approximate Inference: Sampling

w g o




Sampling

= Sampling is a lot like repeated simulation = Why sample?

= Learning: get samples from a distribution

= Predicting the weather, basketball games, ...
you don’t know

= |nference: getting a sample is faster than

= Basicidea
computing the right answer

= Draw N samples from a sampling distribution S

= Compute an approximate probability




Sampling in Bayes’ Nets

= Prior Sampling
= Rejection Sampling

= Likelihood Weighting



Prior Sampling




Prior Sampling

PC)
+C 0.5
-C 0.5

P(5|0)
+C (+¢) ] 0.1 j
/s’ 0.9
-c | +s [ 0.5
-s [ 0.5
' P(W|[S,R)
+5 +r +w | 0.99
-W 0.01
-r +w | 0.90
-W 0.10
+r +w | 0.90
-W 0.10
-r +w | 0.01
-w | 0.99

Samples:

+C, -5, +1, +W

@"‘S, _rl +w



Prior Sampling

" Fori=1,2,..,n

= Sample x, from(P(X. | Parents(X))

= Return (xy, X, ..., xn)\\




We’'ll get a bunch of samples from the BN:

Example

o
+C, -S, +r; @

+C, +S, +r_,@

If we want to know P(W)

We have counts <+w:4, -w:1>

Normalize to get P(W) = <+w:0.8, -w:0.2>

This will get closer to the true distribution with more samples
Can estimate anything else, too

What about P(C | @)? P(C | +r, +w)? P(C | -r, -w)?

Fast: can use fewer samples if less time (what’s the drawback?)




Rejection Sampling




Rejection Sampling

" Let’s say we want P(C)

= No point keeping all samples around
= Just tally counts of C as we go

" |Let’s say we wantiP(C | +s)

= Same thing:
. g tally C outcom.es, but, kﬁc s 41 4w
ignore (reject) samples which don' t
have S=+s

+C, +5, +I, +W
-C, +S, +I, -W

" This is called rejection sampling +C, -5, 41, +W

. . - _C; _SI _rl +WwW
= |tis also consistent for conditional

probabilities (i.e., correct in the limit)



Rejection Sampling

" |nput: evidence instantiation «———
= Fori=1,2,..n

= Sample x; from P(X. | Parents(X.))
\W

——

" If x; not consistent with evidence
= Reject: return —no sample is generated in this cycle

g

= Return (xy, X,, ..., X,,)




Likelihood Weighting




Likelihood Weighting

= Problem with rejection sampling: = |dea: fix evidence variables and sample the
= |f evidence is unlikely, rejects lots of samples rest
= Evidence not exploited as you sample = Problem: sample distribution not consistent!
= Consider P( Shape | blue) = Solution: weight by probability of evidence
given parents
pyramid—green pyramid, blue

pyramid, blue
sphere, blue
cube, blue
sphere, blue

pyramid,—red

sphere, blue

=
</ O )

oo



Likelihood Weighting

P(C
+C 0.5
-C 0.5

P(S|C)
+c | +s [ 0.1
-s [ 0.9
-c | +s [ 0.5
-s [ 0.5
P(W|S, R)

+s +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-S +r +w | 0.90

-W 0.10

-r +w | 0.01

-w | 0.99

P(R|C)

+c | +r

0.8

0.2

0.2

0.8

Samples:

w = 1.0x0.1x0.99

+C, +S, +I, +W




Likelihood Weighting

= |nput: evidence instantiation
= w=1.0
= fori=1,2,..,n
= jf X, is an evidence variable
= X = observation x; for X,
= Setw=w *P(x. | Parents(X.))
= else
= Sample x, from P(X; | Parents(X,))

" return (Xy, Xy, -, X)), W
.




Likelihood Weighting

=  Sampling distribution if z sampled and e fixed evidence

[

Sws(z,e) = || P(z]|Parents(Z;)) <

1=1
= Now, samples have weights o
m

w(z,e) = || P(e;|Parents(E;))
i=1

=  Together, weighted sampling distribution is consistent

[ ™m
Sws(z,€) - w(z,€) = | | P(z;|Parents(z;)) | | P(e;|Parents(e;))

= P(z,e)



Likelihood Weighting

= Likelihood weighting is good
= We have taken evidence into account as we generate the sample
= E.g. here, W’s value will get picked based on the evidence values of S, R
= More of our samples will reflect the state of the world suggested by the evidence




