CSE 573: Artificial Intelligence

Hanna Hajishirzi
Bayes Nets

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer
Probabilistic Models

- Models describe how (a portion of) the world works

- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - “All models are wrong; but some are useful.”
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
Independence
Two variables are independent if:

\[\forall x, y : P(x, y) = P(x)P(y) \]

- This says that their joint distribution factors into a product two simpler distributions

- Another form:

\[\forall x, y : P(x|y) = P(x) \]

- We write: \(X \perp\!\!\!\perp Y \)

- Independence is a simplifying modeling assumption

- Empirical joint distributions: at best “close” to independent

- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
Example: Independence?

\[P_1(T, W) \]
\[
\begin{array}{c|cc}
T & W & P \\
\hline
\text{hot} & \text{sun} & 0.4 \\
\text{hot} & \text{rain} & 0.1 \\
\text{cold} & \text{sun} & 0.2 \\
\text{cold} & \text{rain} & 0.3 \\
\end{array}
\]

\[P_2(T, W) \]
\[
\begin{array}{c|cc}
T & W & P \\
\hline
\text{hot} & \text{sun} & 0.3 \\
\text{hot} & \text{rain} & 0.2 \\
\text{cold} & \text{sun} & 0.3 \\
\text{cold} & \text{rain} & 0.2 \\
\end{array}
\]

\[P(T) \]
\[
\begin{array}{c|c}
T & P \\
\hline
\text{hot} & 0.5 \\
\text{cold} & 0.5 \\
\end{array}
\]

\[P(W) \]
\[
\begin{array}{c|c}
W & P \\
\hline
\text{sun} & 0.6 \\
\text{rain} & 0.4 \\
\end{array}
\]
Example: Independence

- N fair, independent coin flips:

\[
P(X_1)
\begin{array}{|c|c|}
\hline
H & 0.5 \\
T & 0.5 \\
\hline
\end{array}
\]

\[
P(X_2)
\begin{array}{|c|c|}
\hline
H & 0.5 \\
T & 0.5 \\
\hline
\end{array}
\]

\[
P(X_n)
\begin{array}{|c|c|}
\hline
H & 0.5 \\
T & 0.5 \\
\hline
\end{array}
\]

\[
2^n
\]

\[
P(X_1, X_2, \ldots X_n)
\]

\[
2^n
\]
Conditional Independence
Conditional Independence

- $P(\text{Toothache, Cavity, Catch})$

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - $P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity})$

- The same independence holds if I don't have a cavity:
 - $P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity})$

- Catch is conditionally independent of Toothache given Cavity:
 - $P(\text{Catch} \mid \text{Toothache, Cavity}) = P(\text{Catch} \mid \text{Cavity})$

- Equivalent statements:
 - $P(\text{Toothache} \mid \text{Catch, Cavity}) = P(\text{Toothache} \mid \text{Cavity})$
 - $P(\text{Toothache, Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity})$
 - One can be derived from the other easily
Conditional Independence

- Unconditional (absolute) independence very rare (why?)

- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.

- X is conditionally independent of Y given Z

 if and only if:

\[
\forall x, y, z : P(x, y | z) = P(x | z)P(y | z)
\]

 or, equivalently, if and only if

\[
\forall x, y, z : P(x | z, y) = P(x | z)
\]
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm
Conditional Independence and the Chain Rule

- **Chain rule:**
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \ldots \]

- **Trivial decomposition:**
 \[P(\text{Traffic, Rain, Umbrella}) = \underbrace{P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain, Traffic})}_{\text{Trivial Decomposition}} \]

- **With assumption of conditional independence:**
 \[P(\text{Traffic, Rain, Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}) \]

- We can represent joint distributions by multiplying these simpler local distributions.
- Bayes’ nets / graphical models help us express conditional independence assumptions.
Bayes’Nets: Big Picture
Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called **graphical models**
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min, we’ll be vague about how these interactions are specified
Example Bayes’ Net: Insurance
Example Bayes’ Net: Car
Graphical Model Notation

- **Nodes:** variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- **Arches:** interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

- **For now:** imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence
Example: Traffic

- **Variables:**
 - R: It rains
 - T: There is traffic

- **Model 1: independence**

- **Model 2: rain causes traffic**

- Why is an agent using model 2 better?
Example: Traffic II

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Diagram:
- Burglary
- Earthquake
- Alarm
- John calls
- Mary calls
Bayes’ Net Semantics
A Bayes net = Topology (graph) + Local Conditional Probabilities
Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

- Example:

 \[P(+\text{cavity}, +\text{catch}, -\text{toothache}) \]

 \[= P(-\text{toothache}|+\text{cavity})P(+\text{catch}|+\text{cavity})P(+\text{cavity}) \]
Bayes’ Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
Why are we guaranteed that setting

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

results in a proper joint distribution?

Chain rule (valid for all distributions):

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|x_1 \ldots x_{i-1}) \]

Assume conditional independences:

\[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

Consequence:

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

Not every BN can represent every joint distribution

- The topology enforces certain conditional independencies
Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.

Example: Coin Flips

\[
\begin{array}{c|c}
X_1 & h & 0.5 \\
 & t & 0.5 \\
\end{array} \\
\begin{array}{c|c}
P(X_1) & h & 0.5 \\
 & t & 0.5 \\
\end{array}
\ldots
\begin{array}{c|c}
X_n & h & 0.5 \\
 & t & 0.5 \\
\end{array} \\
\begin{array}{c|c}
P(X_n) & h & 0.5 \\
 & t & 0.5 \\
\end{array}
\]

\[
P(h, h, t, h) = P(h)P(h)P(t)P(h)
\]
Example: Traffic

\[
P(R) = \begin{cases}
+ r & 1/4 \\
- r & 3/4
\end{cases}
\]

\[
P(T|R) = \begin{array}{cc}
+ r & + t & 3/4 \\
+ r & - t & 1/4 \\
- r & + t & 1/2 \\
- r & - t & 1/2
\end{array}
\]

\[P(+r, -t) = P(+r)P(-t|+r) = \frac{1}{4} \times \frac{1}{4}\]
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|----|----|-------|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05 |
| -a | -j | 0.95 |

| A | M | P(M|A) |
|----|----|-------|
| +a | +m | 0.7 |
| +a | -m | 0.3 |
| -a | +m | 0.01 |
| -a | -m | 0.99 |

| B | E | A | P(A|B,E) |
|----|----|----|---------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |

\[
P(M|A)P(J|A) \quad P(A|B,E)
\]

33
Example: Traffic

- Causal direction

\[
P(R)
\begin{array}{c|c}
+r & 1/4 \\
-r & 3/4 \\
\end{array}
\]

\[
P(T \mid R)
\begin{array}{c|c|c}
+r & +t & 3/4 \\
+r & -t & 1/4 \\
-r & +t & 1/2 \\
-r & -t & 1/2 \\
\end{array}
\]

\[
P(T, R)
\begin{array}{c|c|c}
+r & +t & 3/16 \\
+r & -t & 1/16 \\
-r & +t & 6/16 \\
-r & -t & 6/16 \\
\end{array}
\]
Example: Reverse Traffic

- Reverse causality?

$P(T)$

<table>
<thead>
<tr>
<th>T</th>
<th>$P(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+t$</td>
<td>$\frac{9}{16}$</td>
</tr>
<tr>
<td>$-t$</td>
<td>$\frac{7}{16}$</td>
</tr>
</tbody>
</table>

$P(R | T)$

| R | $P(R | T)$ |
|----------|-----------|
| $+t$ | $+r$ | $\frac{1}{3}$ |
| $-r$ | $-r$ | $\frac{2}{3}$ |
| $-t$ | $+r$ | $\frac{1}{7}$ |
| $-r$ | $-t$ | $\frac{6}{7}$ |

$P(T, R)$

<table>
<thead>
<tr>
<th>R</th>
<th>$P(T, R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+r$</td>
<td>$+t$</td>
</tr>
<tr>
<td>$+r$</td>
<td>$-t$</td>
</tr>
<tr>
<td>$-r$</td>
<td>$+t$</td>
</tr>
<tr>
<td>$-r$</td>
<td>$-t$</td>
</tr>
</tbody>
</table>
Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables Traffic and Drips
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence
 \[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]
Bayes’ Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values

 $$P(X|a_1 \ldots a_n)$$

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

 $$P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))$$