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Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)




Independence




Independence

-

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

va,y : P(zly) = P(x)

= Wewrite: / X [| YV

= |ndependence isasimplifying modeling assumption

Empirical joint distributions: at best “ g dent
What could we assume for {Weather, Traffl oothache}? 4



Example: Independence?

P1(T,W)

T W P
hot supr | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

P>(T,W
T W P
hot sun | 03 F —
hot rain ([ 0.2>
cold sun | 0.3
cold rain | 0.2

P(T)

T P
hot \(15)
cold | 0.5
P(W)

W P
sun O-é
rain /e"tr\’




Example: Independence

= N fair, independent coin flips:

P(X1) P(X5)
H 0.5 H 0.5
T 0.5 T 0.5
-~
S
X p p(Xl:XQJ"'Xn)

2™




Conditional Independence




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it

doesn't depend on whether | have a toothache:
= P(+catch | +toothache, +cavity) = P(+catch | +cavity)
_— — ~

The same independence holds if | don’t have a cavity:
=  P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
=  P(Catch | Toothache, Cavity) = P(Catch | Cavity)

— - —_—

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavnty) «4\/
= P(Toothache, Catch— P(Toothache | Cavity) P(Catch |

= One can be derived from the other ea |Iy



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= Xis conditionally independent of Y given Z XJ_l_Y’Z
if and only if: i\ >
Va,y,z : P(x,y|z) = P(x|z)P(y|z)

or, equivalently, if and only if

Vr,y,z : P(x|zly) = P(x|z)




Conditional Independence

= What about this domain: T U WR@ ,
= Traffic ’H\ \(\

= Umbrella
= Raining

11




= \What about this domain:

Conditional Independence

= Fire
= Smoke
= Alarm




Conditional Independence and the Chain Rule

= Chain rule: P(X1,Xo,...Xn) = P(X1)P(X2|X1)P(X3]X1,X2) ...

= Trivial decomposition:
P(Traffic, @w Umbrella) =

PCR('iaqum ( % EﬁRaln , Traffic)

w_\With as conditiona ndepend nce:

P(Traffic,Rain,Um reIIa
P(Raln)P(Trafflc|Ra|n)P(UmbreIIa|Rain)

= We can represent joint distributions by multiplying these simpler local distributions.
= Bayes’'nets / graphical models help us express conditional independence assumptions 13



Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified —
—




Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car

battery 'y

battery fuel line starter
flat _ blocked broke

-“7 7\

AN

A
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Graphical Model Notation

= Nodes: variables (with domains)

= Can be assigned (observed) or unassigned
(unobserved)

" Arcs: interactions
®» |ndicate “direct influence” between variables

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean
direct causation (in general, they don’t!)

19



Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence

20



Example: Traffic

= Variables:
= R:ltrains
= T: There is traffic

= Model 1: independen

>

Q O

= Why is an agent using model 2 better?

21



= Variables

T: Traffic

R: It rains

L: Low pressure
D: Roof drips

B: Ballgame ﬁ
C: Cavity

©

Example: Traffic Il

22



Example: Alarm Network

= Variables
= B: Burglary

\-—--"
L]
—
——
—

75%

= A: Alarm goes off

= M: Mary calls

= J: John calls

= E: Earthquake!

23




Example: Alarm Network

= Variables
= B: Burglary

\-—-/‘
L]
—
——
—

= A: Alarm goes off

73%

= M: Mary calls

= J: John calls
= E: Earthquake!

Burglary




Bayes’ Net Semantics

26



Bayes’ Net Semantics

= Aset of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(Xl|aqy...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probolbi/il“ies27



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

P(z1,x2,...xzn) = || P(=z;|parents(X;)) Z
i=1 A :
/

= Example:

P(+cavity, +catch, -toothache

ks | B St aesomies] o



Bayes Net Representation

" Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents  values

P(X|ay...an)
= Bayes netsimplicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
1=1




Probabilities in BNs

» Why are we guaranteed that setting f
n
P(z1,x2,...xzn) = || P(=z;|parents(X;))
i=1
results in a proper joint distribution? ! Jefﬂ C)ﬁ (A
n
= Chain rule (valid for all distributions): P(x1,20,...2n) = H P(x;|lxq ... i—1)
i=1
= Assume conditional independences: P(x;|zy, ... 1) = p(mi|par%nts(xi))

n
- Consequence:  P(zy,x2,...xn) = || P(z|parents(X;))

1=1
Wl

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies

TR ®



Example: Coin Flips

P(X1) P(X>2) P(Xn)
h 0.5 h 0.5 L h 0.5
t 0.5 t 0.5 t 0.5

P(h,h,t,h) = P(h)P(h)P(HP(h)

Only distributions whose variables are absolutely independent can be
represented by a Bayes ’ net with no arcs. 31



P(R)

Example: Traffic

+r

1/4

3/4

+r

P(T|R)

+t

3/4

1/4

+t

1/2

1/2

P(+4r,—t) = P(n)P(-t|+r)

Va*1/4



Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a - 0.1
-a +j 0.05
-a - 0.95

A M | P(M]A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

R N=—
E | P(E) we =
+e | 0.002 @ﬂ
e | 0.998 {g w
B | E| A | PA|IB,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29 P(M|A)P(J]A)
b | +e | -3 0.71 P(A[B,E)
-b | -e | +a 0.001
-b -e -d 0.999 33




= Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2

34



Example: Reverse Traffic

= Reverse causality?

P(T)
+t 9/16
-t 7/16

P(R|T)

+t +r 1/3
-t +r 1/7
-r 6/7 35




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)
= E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(z;|lzy, ... xi_1) = P(z;|parents(X;))

36



Bayes Net Representation

= A directed, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents  values

P(X|ay...an)
= Bayes’ netsimplicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

mn
P(z1,22,...2n) = || P(z;|parents(X;))
i=1




