CSE 573: Artificial Intelligence

Hanna Hajishirzi Bayes Nets

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)

Independence

Independence

■ Two variables are *independent* if: Y P(x(x)) = H(x) y)

$$\forall x, y : P(x,y) = P(x)P(y)$$

Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $(X \perp\!\!\!\perp\!\!\!\perp Y)$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

Т	W	Р
hot	sup	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

T	Р
hơt	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

Т	W	Р
hot	sun	0.3
hot	rain (0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

N fair, independent coin flips:

$P(X_2)$		
Н	0.5	
Т	0.5	

D/32

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch (Cavity) = P(Toothache (Cavity) P(Catch (Cavity))
 - One can be derived from the other easily

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y | Z$$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z,y) = P(x|z)$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Conditional Independence and the Chain Rule

Chain rule:

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) =$$

- P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)
- With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) \neq | P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

- We can represent joint distributions by multiplying these simpler local distributions.
- Bayes'nets / graphical models help us express conditional independence assumptions 13

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

Why is an agent using model 2 better?

Example: Traffic II

Example: Alarm Network

Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

J: John calls

■ E: Earthquake!

Example: Alarm Network

Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

■ J: John calls

■ E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities₂₇

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

P(+cavity, +catch, -toothache)

The following of the control of the

-CM (28)

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

Chain rule (valid for all distributions):

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^{n} P(x_i | x_1 \dots x_{i-1})$$

$$P(x_i | x_1, \dots x_{i-1}) = P(x_i | parents(X_i))$$

Assume conditional independences:

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

→ Consequence:
$$P(x_1, x_2, ... x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

• •

$$P(X_1)$$

h	0.5
t	0.5

D_1	V	`)
1 1	$\langle \Delta$	2)

h	0.5
t	0.5

$$P(X_n)$$
h 0.5

$$P(h, h, t, h) = P(h)P(h)P(t)P(h)$$

Example: Traffic

$$P(+r, -t) = P(+r)P(-t|+r) = \frac{1}{4} \cdot \frac{1}{4}$$

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	<u>.</u>	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Е	P(E)
+e	0.002
-e	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

P(M|A)P(J|A)P(A|B,E)

Example: Traffic

Causal direction

\boldsymbol{P}	T	٦	Į	?)
1	(Τ	7	1	いり

+r	+t	3/16
+r	†	1/16
-r	+t	6/16
-r	+	6/16

Example: Reverse Traffic

Reverse causality?

P(T,R)

+r	+t	3/16
+r	†	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

