CSE 573:
Artificial Intelligence

Hanna Hajishirzi
Probability

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer




Our Status in CSE57/3

= We' re done with Search and Planning!

" Probabilistic Reasoning
= Diagnosis
= Speech recognition
= Tracking objects
= Robot mapping
= Genetics
* Error correcting codes
= .. lots more!




Today

= Probability

= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule
= |Inference

" Independence

= You’'ll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Inference in Ghostbusters

= Aghostisinthe grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
= On the ghost: red

= 1 or 2 away: orange

= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)
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[Demo: Ghostbuster — no probability (L12D1) ]



Video of Demo Ghostbuster




Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about

other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge




Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=Isitraining?

= T=Isit hot or cold?

= D =How long will it take to drive to work?
= L =Whereis the ghost?

= We denote random variables with capital letters

= Random variables have domains

= Rin {true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, «)

= Lin possible locations, maybe {(0,0), (0,1), ...} 7



= Associate a probability with each outcome

= Temperature:

Probability Distributions

P(T)
T p
hot 0.5
cold | 0.5

= Weather:
i
£

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W = rain) = 0.1

Ve P(X =x2)>0

and

Y P(X=uz)=1



Joint Distributions

A joint distribution over a set of random variables: X1, X5, ... X
specifies a real number for each assignment (or outcome):

P(X1=z1,Xo=xo,... Xy, = xn)

P(T, W)
P(xq,xo,...2n)
T W P
= Must obey: P(CC]_, o, ... CE’I’L) 2 0 hot sun 0.4
hot | rain 0.1
Z P(w17m27 . x’n) =1 cold | sun 0.2
(21,22,...2n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!
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Probabilistic Models

= A probabilistic model is a joint
distribution over a set of

random Varlables Distribution over TW

T W P
hot sun 0.4

= Probabilistic models:
* (Random) variables with domains

= Assignments are called outcomes hot rain 0.1
= Joint distributions: say whether cold sun 0.2
assignments (outcomes) are likely cold | rain 0.3

= Normalized: sum to 1.0

= |deally: only certain variables
directly interact
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Events

= An eventis a set E of outcomes

P(E)Y= )  P(z1...zn)

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

 ———
P(t) =Y P(t,s)

—
P(s) = Z P(t,s)
t

P(X1=uz1) =) P(X1=uz1,Xp=u1)p)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4
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Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) = > P(z,y)

16



Quiz: Marginal Distributions

P(X)
P(X,Y) X P
— X .S
Y P :
vy | 02 P(z) =) P(xz,y) KA
y 0.3 Y P(Y>
+y 0.4 Y P
—
-y 0.1 +y

P(y) = Y Pz, y) R

17



Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = 20

P(T,W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

— — 2
P(W:S|T=c):P(W ;T = c) —O_
P(T = c¢) 0.5

_——

=PW=s,T=c)+PW=r,T=c)
= 0.24+0.3 =0.5

= 0.4
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Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y)?

= P(-x|+y)?

" Py [+x)?

19



P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

iz: Conditional Probabilities

= P(+x | +y)?

2/.6=1/3

= P(-x | +y) ?

4/.6=2/3

" Py [+x)?

.3/.5=.6
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Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)

hd i T W P
;\ su.n 08 hot sun 0.4
g el 02 hot rain 0.1
~— P(W|T = cold) cold | sun 0.2
- W P cold rain 0.3

sun 0.4

rain 0.6
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Normalization Trick

POW =sT=¢) = LW =s8T=c)

P(T = ¢)
—_ P(W = S,T — C)
P(T7W) _P(W:S’T:C)_I_P(W:T,T:C)
0.2
= =04
T W P 02403 ° POV = o
hot sun 0.4
hot rain 0.1
sun 0.4
cold sun 0.2 | Z
PV =rT= rain ,
cold rain 0.3 P(W =T =c) = ( P(TT’_ . ¢)

= P(W:”",Tzc)
_P(W:S’T:C)_I_P(W:T,T:C)

0.3
p— — 0,6
0.240.3

22



Normalization Trick

P(W=sT=c)
P(T =c¢)
. P(W =s,T =c)
T PW=sT=c)+P(W=rT=c)

P(W=s|T=c¢) =

P(T,W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(c,W) (make it sum to one) P(WI|T = c)
hot sun 0.4 evidence T W P W p
hot rain 0.1 . cold | sun |02 I sun | 0.4
cold sun 0.2 cold | rain 1 0.3 rain | 0.6
cold rain 0.3

P(W=nr,T=c)
P(T =c¢)
. P(W=nrT=c)
C PW=sT=c)+P(W=rT=c)

0.3 —06 23

02403

PW=rT=c)=




Normalization Trick

P(T,W) SELECT the joint
probabilities
T W P matching the
hot sun 0.4 evidence
hot rain 0.1 —
cold sun 0.2
cold rain 0.3

P(c,W)

T

W

cold

sun

0.2

cold

rain

0.3

NORMALIZE the
selection
(make it sum to one)

ﬂ

= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(x1,z2)
>y P(x1,72)

P(zy,22) _

P(x1|zs) =

P(x2)

P(W|T = ¢)
w P
sun 0.4
rain 0.6
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" P(X'| Y=-y) ?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

ﬂ

25



" P(X'| Y=-y) ?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

X Y P
+X -y 103
-X -y 0.1

NORMALIZE the
selection
(make it sum to one)

ﬂ

X P
+X 0.75
-X 0.25

26




= (Dictionary) To bring or restore to a

= Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

ﬂ
Z=05

To Normalize

normal condition

W P
sun 0.4
rain 0.6

N

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

d
Z =50

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold | rain | 49.3




Probabilistic Inference

= Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

= We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= QObserving new evidence causes beliefs to be updated

28



= P(W)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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= P(W)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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= P(W)?

Inference by Enumeration

P(sun)=.3+.1+.1+.15=65

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter cold rain 0.20
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= P(W)?

Inference by Enumeration

P(sun)=.3+.1+.1+.15=.65
P(rain)=1-.65=.35

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

* Works fine with

" General case: = We want: multiple query
" Evidence variables: E]_ . Ek =e€1...€L X17 XQ, o Xn variables, too
= Query* variable: Q , P(Q|€ e )

All variables l---¢k

= Hidden variables: Hy...H,

= Step 1: Select the =  Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

Ped
0.05 —
X 7
0.07
02 |
———
0.01
g Z=Y P(Q,er-er)
P(Q,e1...ep) = D P(C\Q,hl...hr,el...e/k) q

hi...hy 1 33
! Xl,X;,/---Xn P(Q‘el"'ekz):EP(Qael"'ekz)



= P(W | winter)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter)?

P(sun|winter)~.1+.15=.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter)?

P(rain|winter)~.05+.2=.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter)?

P(sun|winter)~.25
P(rain|winter)~.25
P(sun|winter)=.5
P(rain|winter)=.5

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter, hot)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter, hot)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter, hot)?

P(sun|winter,hot)~.1
P(rain|winter,hot)~.05

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
" P(W | winter, hot)? summer | cold rain 0.05
| winter hot sun 0.10
ﬁﬁf:l?]ll\\’lvv'l?]ii';uzi))~105 winter hot rain 0.05
P(sun|winter,hot)=2/3 winter cold sun 0.15
P(rain|winter,hot)=1/3 winter | cold rain | 0.20




Inference by Enumeration

= QObvious problems:
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution
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Announcements

= Final project proposal due Feb 19t

" Poster presentation (40 points, Due: March 13th) We will hold a
poster session - summarizing the project motivation,
methodology, and results

" Project Report (40 points, Due: March 18th): Your write up
should be about 4 pages maximum (not including references) in 4
pages in Camera-ready NIPS format

43


https://nips.cc/Conferences/2018/PaperInformation/StyleFiles

The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(z,y) < ran="7"

S Bl |
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The Product Rule

P(y)P(zly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W P D W
R p wet sun 0.1 wet sun
sun 0.8 ary sun | 09 <:> ary sl
rain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(z1,x2,...xzn) = || P(ailzy ... 2-1)
7
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = Y9 poy

P(y)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation! 48



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P(cffect)

= Example:

= M: meningitis, S: stiff neck

P(+m) = 0.0001 xample
X
P(+s|+m) =08 r ens
P(+s| —m) = 0.01_
P _ P(+s|+m)P(+m) P(+s|+m)P(+m) B 0.8 x 0.0001
(Fm|+5) = P(+5s) ~ P(+s| +m)P(+m) + P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why? 49



Quiz: Bayes’ Rule

. P(D|W)
= GGiven:
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
cain 02 wet rain 0.7
dry rain 0.3

= What is P(W | dry) ?



Quiz: Bayes’ Rule

. P(D|W)
= GGiven:
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
cain 0.2 wet rain 0.7
dry rain 0.3

= Whatis P(W | dry) ?

sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72
rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06
sun|dry)=12/13

P(
P(
P(
P(rain|dry)=1/13



Ghostbusters, Revisited

= Let’s say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let’s say this is uniform

= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R=yellow | G=(1,1)) =0.1

= We can calculate the posterior
distribution P(G|r) over ghost locations
given a reading using Bayes’ rule: 017 | 010

P(g|r) o P(rg)P(g) M 017
52

[Demo: Ghostbuster — with probability (L12D2) ]




Video of Demo Ghostbusters with Probability
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Uncertainty Summary

. . P(x,y)
Plxly) =
Conditional probability (z|y) P(y)
Product rule P(z,y) = P(xz|ly)P(y)
Chain rule P(X1,X2,...Xn) = P(X1)P(X3|X1)P(X3/X1,X2)...

n

= ] P(XiIX1..-... X; 1)

i=1

(»

N\

X, Y independent if and only if: Vz.y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:
Ve,y,z . P(x,ylz) = P(z|z)P(y|z)

X1Y|Z

BN lecture
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