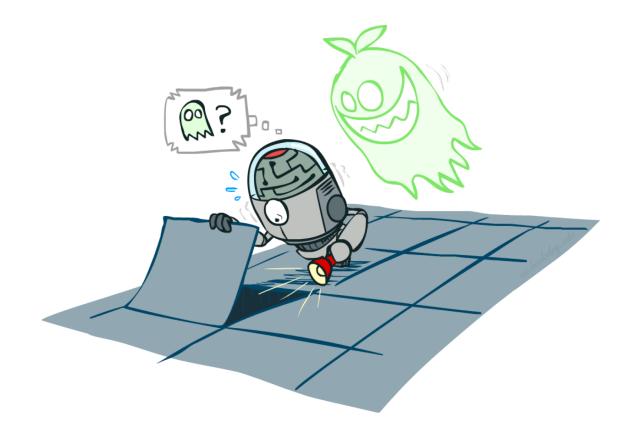
CSE 573: Artificial Intelligence

Hanna Hajishirzi Probability

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Our Status in CSE573

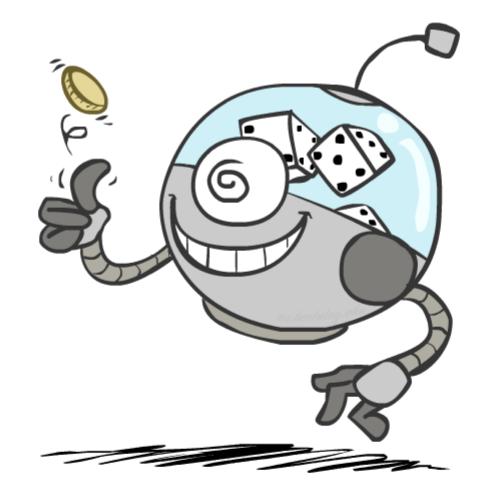
- We're done with Search and Planning!
- Probabilistic Reasoning
 - Diagnosis
 - Speech recognition
 - Tracking objects
 - Robot mapping
 - Genetics
 - Error correcting codes
 - ... lots more!



Today

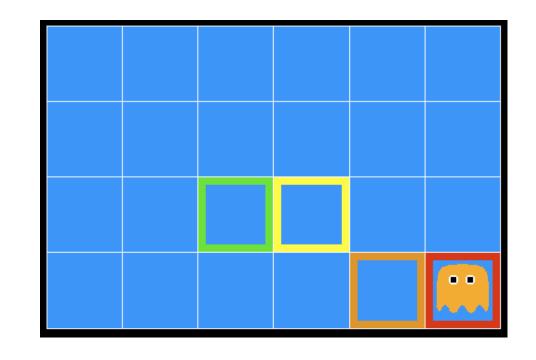
Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!



Inference in Ghostbusters

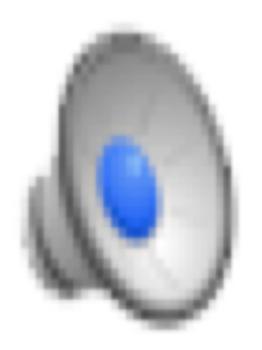
- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green



Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Video of Demo Ghostbuster

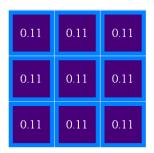


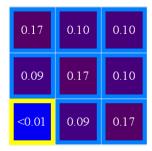
Uncertainty

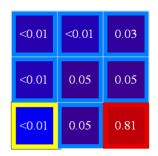
General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables

 Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

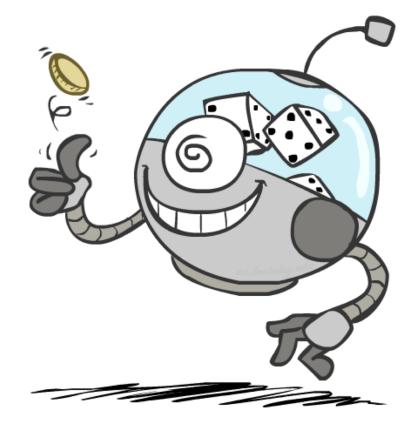






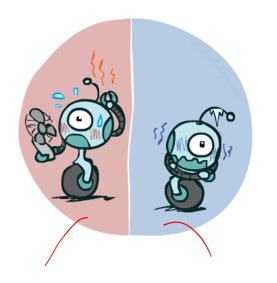
Random Variables

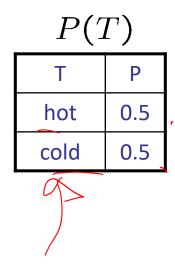
- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - The How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

- Associate a probability with each outcome
 - Temperature:





Weather:

P(W)		
W	Р	
sun	0.6	
rain	0.1	<u></u>
fog	0.3	ر ا
meteor	0.0	/

Probability Distributions

Unobserved random variables have distributions

P(T)		
Т	Р	
hot	0.5	
cold	0.5	
X		

P(W)		
W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

Must have: $\forall x \ P(X=x) \ge 0$ and $\sum P(X=x) = 1$

$$\sum_{x} P(X = x) = 1$$

Shorthand notation:

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$
...

OK if all domain entries are unique

Joint Distributions

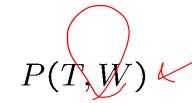
• A *joint distribution* over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$P(x_1, x_2, \dots x_n)$$

• Must obey:
$$P(x_1, x_2, \dots x_n) \geq 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$



Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

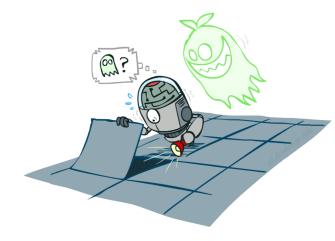
 A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- *Normalized:* sum to 1.0
- Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3



Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

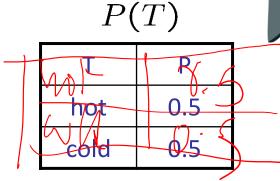
\boldsymbol{p}	T	7	\mathbf{W}	1
1	(<u>1</u>	,	VV	J

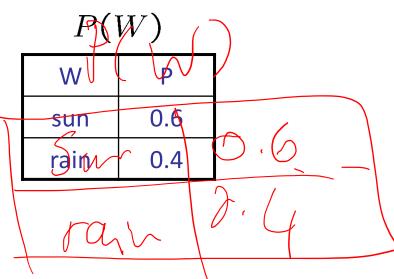
Т	W	Р
hot	sun	0.4 🚜
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

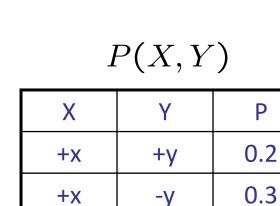
$$P(s) = \sum_{t} P(t, s)$$

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$





Quiz: Marginal Distributions



-X

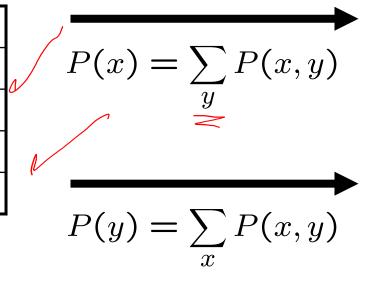
-X

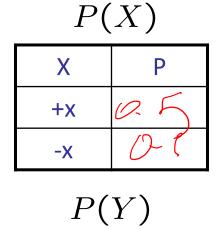
+٧

-y

0.4

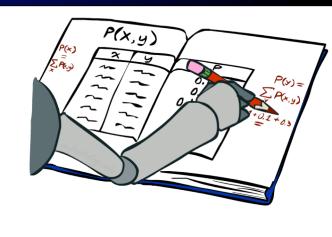
0.1





+y

-y



Quiz: Marginal Distributions

P(X,Y)

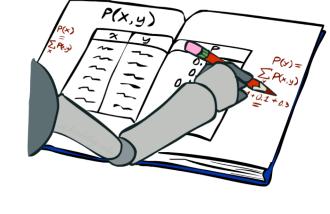
X	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-у	0.1

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

P(X)

X	Р
+x	.5
-X	.5



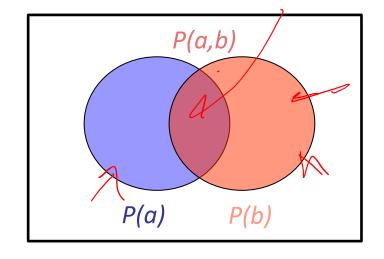
P(Y)

Υ	Р
+y	.6
-у	.4

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$



P	T	7	\overline{W})
_	– /	•	* *	

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

■ P(+x | +y)?

X	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	- y	0.1

$$\frac{P(-\gamma/+\chi)}{P(4\chi)}$$

Quiz: Conditional Probabilities

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-у	0.1

■ P(+x | +y)?

■ P(-x | +y)?

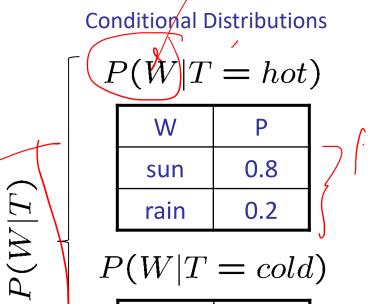
.4/.6=2/3

■ P(-y | +x)?

.3/.5=.6

Conditional Distributions

Conditional distributions are probability distributions over some variables given fixed values of others



W	Р
sun	0.4
rain	0.6

P(W|T=cold)

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

W	P
sun	0.4
rain	0.6

Normalization Trick

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2 🗸
cold	rain	0.3 4

SELECT the joint probabilities matching the evidence

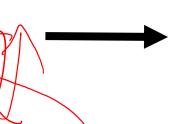
nt ·

P(c, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection

(make it sum to one)



$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

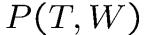
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

P(W|T=c)

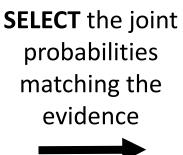
W	Р
sun	0.4
rain	0.6

Normalization Trick

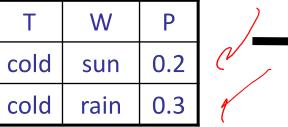


Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

probabilities evidence



NORMALIZE the selection P(c, W)(make it sum to one)



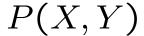
W	Р
sun	0.4
rain	0.6

Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

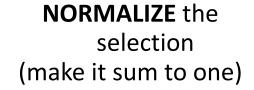
Quiz: Normalization Trick

■ P(X | Y=-y)?



X	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-y	0.1

SELECT the joint probabilities matching the evidence



Quiz: Normalization Trick

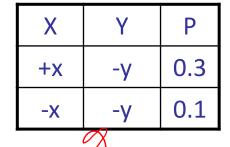
■ P(X | Y=-y) ?



X	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-y	0.1

SELECT the joint

probabilities matching the evidence



NORMALIZE the

selection (make it sum to one)

X	Р	
+X	0.75	
-X	0.25	

To Normalize

(Dictionary) To bring or restore to a normal condition

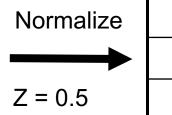
All entries sum to ONE

Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

Example 1

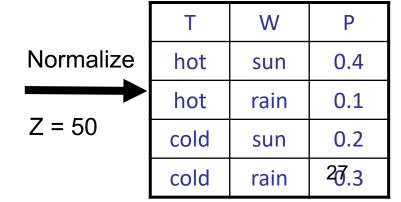
W	Р	
sun	0.2	
rain	0.3	



W	Р	
sun	0.4	
rain	0.6	

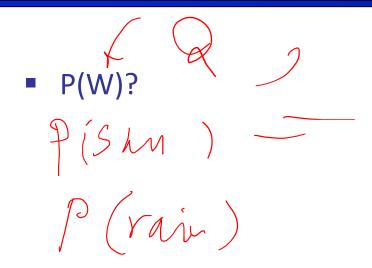
Example 2

Т	W	Р
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15



Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent s beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated



S	T	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W)?

Т	W	Р
hot	sun	0.30
hot	rain	0.05
cold	sun	0.10
cold	rain	0.05
hot	sun	0.10
hot	rain	0.05
cold	sun	0.15
cold	rain	0.20
	hot hot cold cold hot hot cold	hot sun hot rain cold sun cold rain hot sun hot sun cold sun

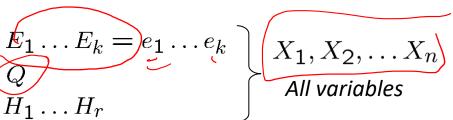
P(W)?

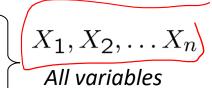
S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

- General case:
 - **Evidence variables:**
 - Query* variable:
 - Hidden variables:





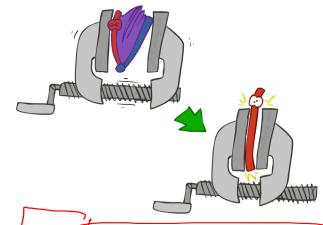
We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

- Step 1: Select the entries consistent with the evidence
- -3 0.05 0.25 0.07 0.2 0.01

Step 2: Sum out H to get joint of Query and evidence



$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

■ P(W | winter)?

See C Vidu

3		VV	Г
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun (0.10
winter	hot	rain	0.05
winter	cold	sun (0.15
winter	cold	rain	0.20

P(W | winter)?

P(rain|winter)~.05+.2=.25

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain (0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter)?

P(sun|winter)~.25 P(rain|winter)~.25 P(sun|winter)=.5 P(rain|winter)=.5

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

Sun 6.) Va; 0.65

S	Т	W	Р	
summer	hot	sun	0.30	
summer	hot	rain	0.05	
summer	cold	sun	0.10	
summer	cold	rain	0.05	
winter	hot	sun	0.10	
winter	hot	rain	0.05	
winter	cold	sun	0.15	
winter	cold	rain	0.20	

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05 P(sun|winter,hot)=2/3 P(rain|winter,hot)=1/3

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

Announcements

- Final project proposal due Feb 19th
- Poster presentation (40 points, Due: March 13th) We will hold a poster session - summarizing the project motivation, methodology, and results
- Project Report (40 points, Due: March 18th): Your write up should be about 4 pages maximum (not including references) in 4 pages in Camera-ready NIPS format

Mid Quarter Review

- Instruction:
 - Clarity, slides, and organization
 - Numerical examples, Opening lectures with reviews
 - Asking questions: Give more time -> Sure
- Learning activities (programming assignments and homeworks)
 - Variety of assignments, clear and bug free
 - Sometimes vague! Timing?
- Answering questions in lectures and piazza
- Office hours: ? Chairs: ?
- Provide references for CSE terminology

General case:

- Evidence variables:
- Query* variable:
- Hidden variables:
- $E_1 \dots E_k = e_1 \dots e_k$ Q $H_1 \dots H_r$

• we war

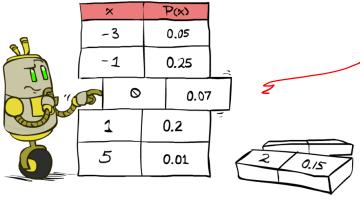
All variables

We want: $p(Q|e_1 e_2)$ multiple query

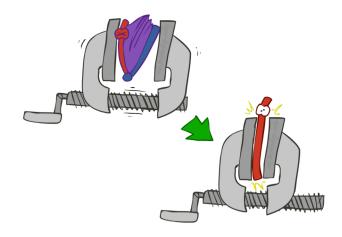
variables, too

* Works fine with

 Step 1: Select the entries consistent with the evidence



 Step 2: Sum out H to get joint of Query and evidence



$$P(Q, e_1 \dots e_k) = \underbrace{\sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)}_{X_1, X_2, \dots X_n}$$

Step 3: Normalize

$$X = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$



R	Р	
sun	0.8	
rain	0.2	

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

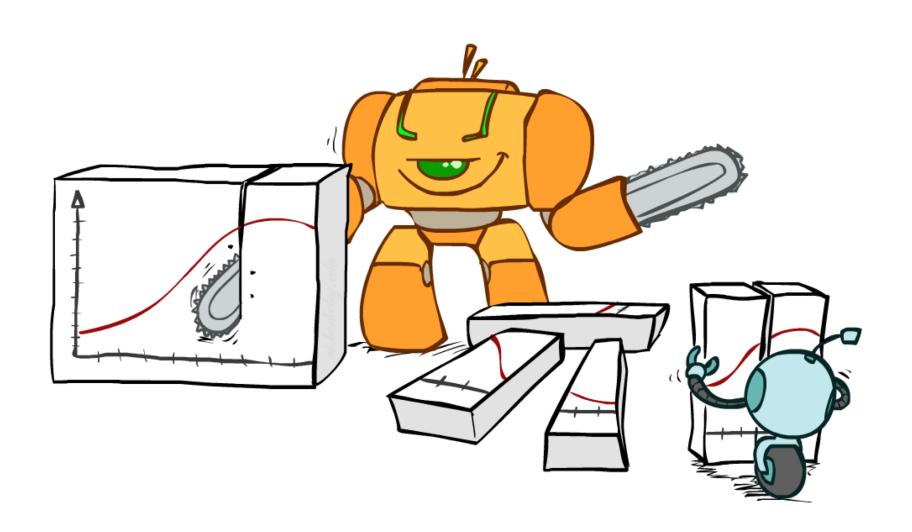
The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_{i} P(x_i|x_1 \dots x_{i-1})$$

Bayes Rule



Bayes' Rule

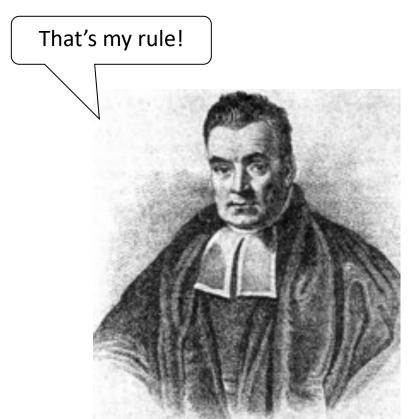
Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)



In the running for most important AI equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \underbrace{\frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$

$$P(+s|+m) = 0.8$$

$$P(+s|-m) = 0.01$$

$$P(+s|+m)P(+m)$$

$$P(+s|+m)P(+m) = 0.8 \times 0.0001$$

$$P(+s|+m)P(+m) + P(+s|-m)P(-m) = 0.8 \times 0.0001 + 0.01 \times 0.999$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

Given:

P(.	D	W)
•		1	_

P(VV)		
R	Р	
sun	0.8	
rain	0.2	

D(W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry)?

Quiz: Bayes' Rule

Given:

P(W)		
R	Р	
sun	0.8	
rain	0.2	

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry)?

$$P(\text{sun}|\text{dry}) \sim P(\text{dry}|\text{sun})P(\text{sun}) = .9*.8 = .72$$

$$P(\text{rain}|\text{dry}) \sim P(\text{dry}|\text{rain})P(\text{rain}) = .3*.2 = .06$$

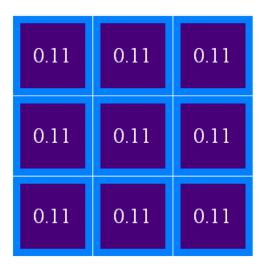
$$P(\text{sun}|\text{dry}) = 12/13$$

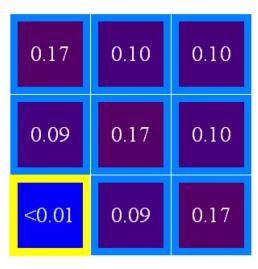
$$P(\text{rain}|\text{dry}) = 1/13$$

Ghostbusters, Revisited

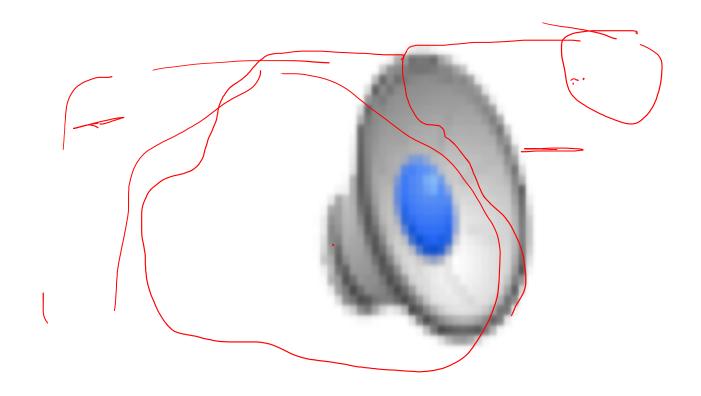
- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

$$P(g|r) \propto P(r|g)P(g)$$





Video of Demo Ghostbusters with Probability



Uncertainty Summary

• Conditional probability
$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

- Chain rule $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ = $\prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$
- **X,** Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if: $X \perp \!\!\! \perp Y \mid Z$ $\forall x, y, z : P(x, y \mid z) = P(x \mid z) P(y \mid z)$

BN lecture