
CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Markov Decision Processes

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Recap: Defining MDPs

§ Markov decision processes:
§ Set of states S
§ Start state s0

§ Set of actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence

§ Value iteration is just a fixed point solution method
§ … though the Vk vectors are also interpretable as time-limited values

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

Bellman Updates

Example: Value Iteration

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Value Iteration

§ Bellman equations characterize the optimal values:

§ Value iteration computes them:

§ Value iteration is just a fixed point solution method
§ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’
V(s’)

Convergence*

§ How do we know the Vk vectors are going to converge?

§ Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

§ Case 2: If the discount is less than 1
§ Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge

Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “max” at each state rarely changes

§ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Methods

§ Relies on policy evaluations

Fixed Policies

§ Expectimax trees max over all actions to compute the optimal values

§ If we fixed some policy p(s), then the tree would be simpler – only one action per state
§ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s, p(s),s’
s’

Do the optimal action Do what p says to do

Utilities for a Fixed Policy

§ Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

§ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

§ Recursive relation (one-step look-ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),s’
s’

Example: Policy Evaluation
Always Go Right Always Go Forward

Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),s’
s’

Policy Extraction

Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

§ Let’s imagine we have the optimal q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!

Policy Iteration

§ Alternative approach for optimal values:
§ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
§ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is policy iteration
§ It’s still optimal!
§ Can converge (much) faster under some conditions

Policy Iteration

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:

Comparison

§ Both value iteration and policy iteration compute the same thing (all optimal values)

§ In value iteration:
§ Every iteration updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over actions implicitly recomputes it

§ In policy iteration:
§ We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
§ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
§ The new policy will be better (or we’re done)

§ Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

§ So you want to….
§ Compute optimal values: use value iteration or policy iteration
§ Compute values for a particular policy: use policy evaluation
§ Turn your values into a policy: use policy extraction (one-step lookahead)

§ These all look the same!
§ They basically are – they are all variations of Bellman updates
§ They all use one-step lookahead expectimax fragments
§ They differ only in whether we plug in a fixed policy or max over actions

Racing car

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.
5

0.
5

0.
5

0.
5

1.
0

1.
0

+1

+1

+1

+2

+2

-
10

§ Solving MDPs is offline planning
§ You determine all quantities through computation
§ You need to know the details of the MDP
§ You do not actually do car racing.

Online Planning

§ Transition probabilities are not known apriori.
§ Rewards might not be known apriori

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

?

?.

?

?

?

1.
0

+1

+1

+1

+2

+2

-
10

What Just Happened?

§ That wasn’t planning, it was learning!
§ Specifically, reinforcement learning

§ There was an MDP, but you couldn’t solve it with just computation

§ You needed to actually act to figure it out

§ Important ideas in reinforcement learning that came up
§ Exploration: you have to try unknown actions to get information

§ Exploitation: eventually, you have to use what you know

§ Regret: even if you learn intelligently, you make mistakes

§ Sampling: because of chance, you have to try things repeatedly

§ Difficulty: learning can be much harder than solving a known MDP

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

