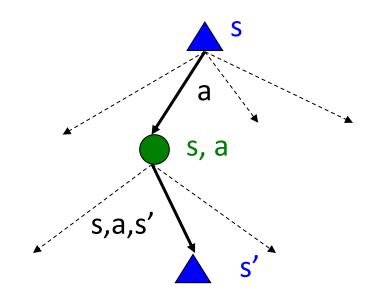
CSE 573: Artificial Intelligence Winter 2019

Hanna Hajishirzi Markov Decision Processes

slides from Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards



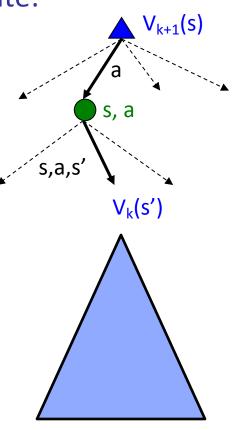
Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

- Value iteration is just a fixed point solution method
 - In though the V_k vectors are also interpretable as time-limited values



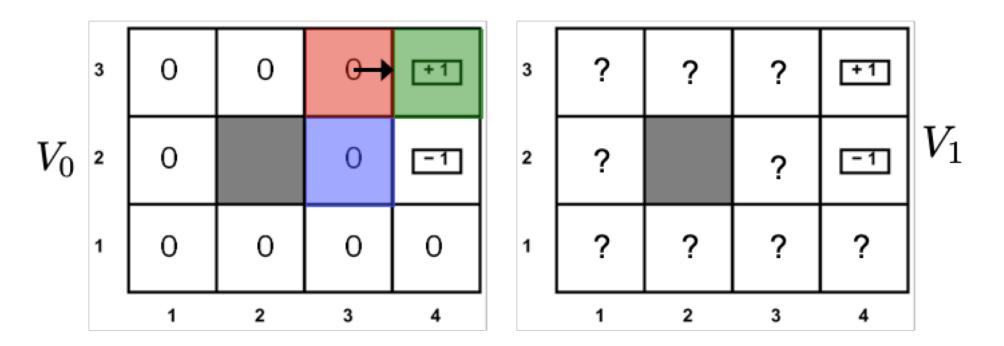
0	0	Gridworl	d Display		
	•	•	•		
	0.00	0.00	0.00	0.00	
			^		
	0.00		0.00	0.00	
		^	^		
	0.00	0.00	0.00	0.00	
	VALUES AFTER O ITERATIONS				

00	0	Gridworl	d Display		
	•	•	0.00 >	1.00	
	• 0.00		∢ 0.00	-1.00	
	• 0.00	• 0.00	• 0.00	0.00	
	VALUES AFTER 1 ITERATIONS				

0 0	0	Gridworl	d Display		
	• 0.00	0.00)	0.72)	1.00	
	• 0.00		• 0.00	-1.00	
	•	• 0.00	•	0.00	
	VALUES AFTER 2 ITERATIONS				

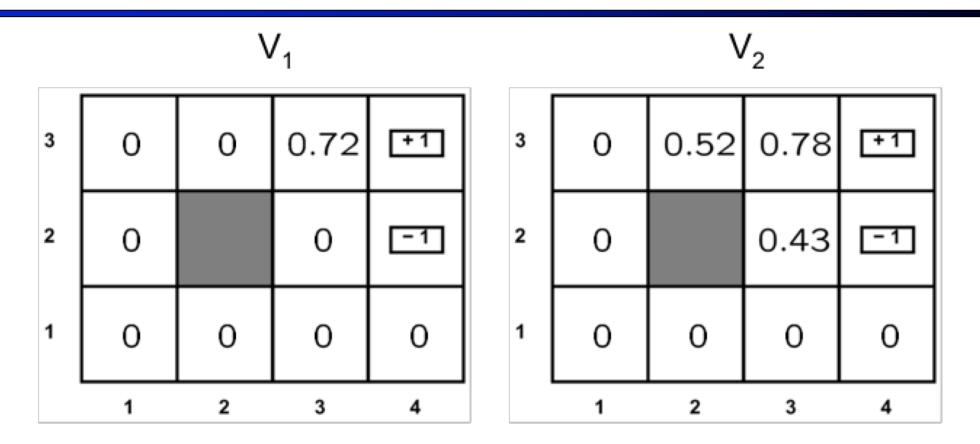
Bellman Updates

Example: y=0.9, living reward=0, noise=0.2



$$V_{i+1}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] = \max_{a} Q_{i+1}(s, a)$$
$$Q_1(\langle 3, 3 \rangle, \text{right}) = \sum_{s'} T(\langle 3, 3 \rangle, \text{right}, s') \left[R(\langle 3, 3 \rangle, \text{right}, s') + \gamma V_i(s') \right]$$
$$= 0.8 * \left[0.0 + 0.9 * 1.0 \right] + 0.1 * \left[0.0 + 0.9 * 0.0 \right] + 0.1 * \left[0.0 + 0.9 * 0.0 \right]$$

Example: Value Iteration



 Information propagates outward from terminal states and eventually all states have correct value estimates

k=3

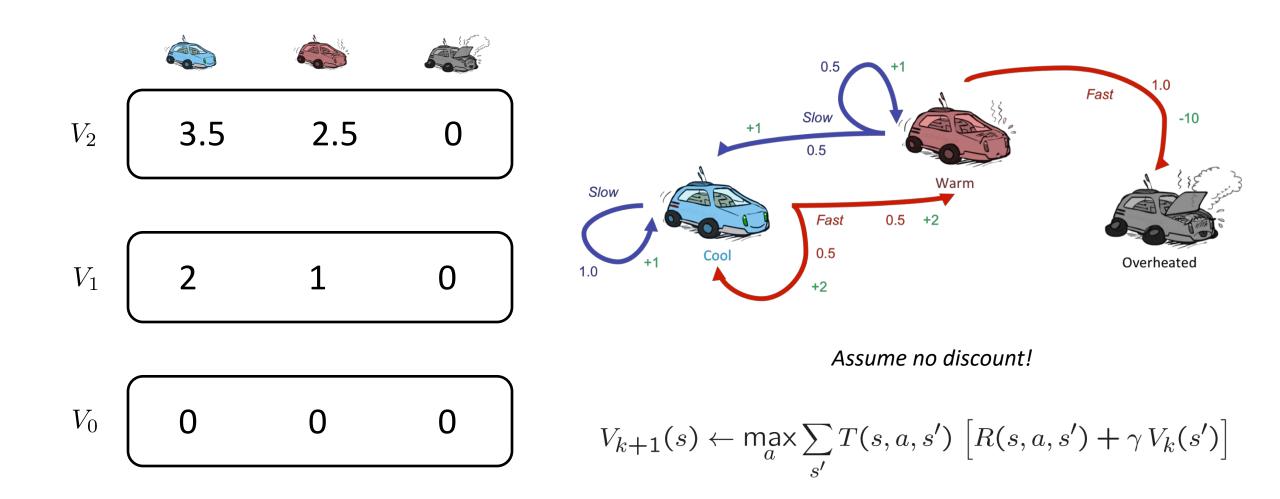
0	O O Gridworld Display				
	0.00)	0.52 ▸	0.78)	1.00	
	▲ 0.00		• 0.43	-1.00	
	• 0.00	• 0.00	• 0.00	0.00	
	VALUES AFTER 3 ITERATIONS				

k=4

0 0	Gridworld Display			
	0.37 ▸	0.66)	0.83)	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUES AFTER 4 ITERATIONS			

0 0	0	Gridworl	d Display	-
	0.64)	0.74 →	0.85)	1.00
	• 0.57		• 0.57	-1.00
	• 0.49	∢ 0.43	▲ 0.48	∢ 0.28
	VALUES AFTER 100 ITERATIONS			

Example: Value Iteration



Value Iteration

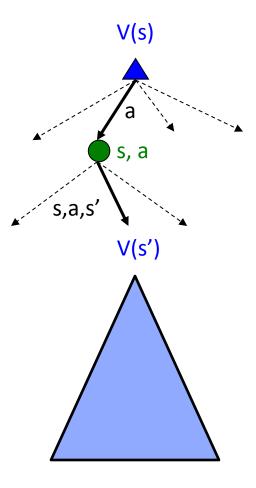
Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Value iteration computes them:

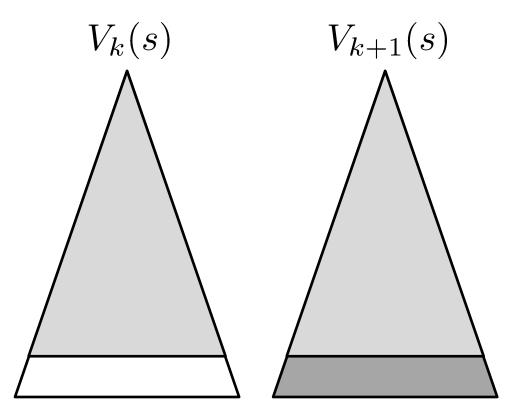
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values



Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max | R | different
 - So as k increases, the values converge

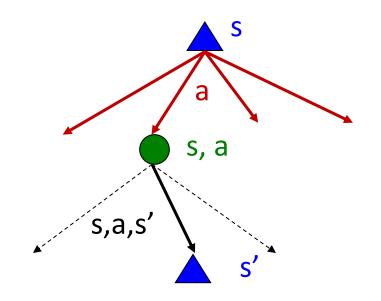


Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values



0	0	Gridworl	d Display		
	•	•	•		
	0.00	0.00	0.00	0.00	
			^		
	0.00		0.00	0.00	
		^	^		
	0.00	0.00	0.00	0.00	
	VALUES AFTER O ITERATIONS				

00	0	Gridworl	d Display		
	•	•	0.00 >	1.00	
	• 0.00		∢ 0.00	-1.00	
	• 0.00	• 0.00	• 0.00	0.00	
	VALUES AFTER 1 ITERATIONS				

0 0	0	Gridworl	d Display		
	• 0.00	0.00)	0.72)	1.00	
	• 0.00		• 0.00	-1.00	
	•	• 0.00	•	0.00	
	VALUES AFTER 2 ITERATIONS				

k=3

0	O O Gridworld Display				
	0.00)	0.52 ▸	0.78)	1.00	
	▲ 0.00		• 0.43	-1.00	
	• 0.00	• 0.00	• 0.00	0.00	
	VALUES AFTER 3 ITERATIONS				

k=4

0 0	Gridworld Display			
	0.37 ▸	0.66)	0.83)	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUES AFTER 4 ITERATIONS			

00	0	Gridworl	d Display		
	0.51 →	0.72 →	0.84)	1.00	
	• 0.27		• 0.55	-1.00	
	• 0.00	0.22 →	▲ 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

00	Gridworld Display				
	0.59)	0.73 ♪	0.85)	1.00	
	• 0.41		• 0.57	-1.00	
	• 0.21	0.31 →	• 0.43	∢ 0.19	
VALUES AFTER 6 ITERATIONS					

00	Gridworld Display					
	0.62)	0.74 →	0.85)	1.00		
	• 0.50		• 0.57	-1.00		
	▲ 0.34	0.36)	• 0.45	∢ 0.24		
	VALUES AFTER 7 ITERATIONS					

00	Cridworld Display					
	0.63)	0.74 →	0.85)	1.00		
	• 0.53		• 0.57	-1.00		
	▲ 0.42	0.39)	• 0.46	∢ 0.26		
	VALUES AFTER 8 ITERATIONS					

000		Gridwork	d Display		
	0.64 →	0.74 ›	0.85 →	1.00	
	• 0.55		• 0.57	-1.00	
	▲ 0.46	0.40 →	• 0.47	∢ 0.27	
VALUES AFTER 9 ITERATIONS					

00	Gridworld Display					
	0.64)	0.74 →	0.85 →	1.00		
	• 0.56		• 0.57	-1.00		
	•		•			
	0.48	◆ 0.41	0.47	◆ 0.27		
	VALUES AFTER 10 ITERATIONS					

00	O O O Gridworld Display					
	0.64)	0.74)	0.85)	1.00		
	▲ 0.56		• 0.57	-1.00		
	▲ 0.48	∢ 0.42	• 0.47	∢ 0.27		
	VALUES AFTER 11 ITERATIONS					

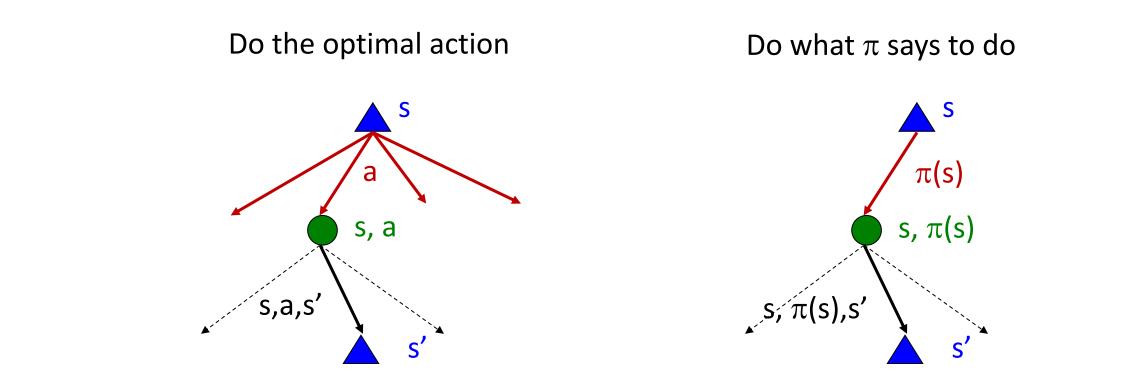
00	Gridworld Display					
	0.64)	0.74)	0.85)	1.00		
	• 0.57		• 0.57	-1.00		
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28		
	VALUES AFTER 12 ITERATIONS					

0 0	Gridworld Display				
	0.64)	0.74 →	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	•	∢ 0.43	▲ 0.48	∢ 0.28	
VALUES AFTER 100 ITERATIONS					

Policy Methods

Relies on policy evaluations

Fixed Policies

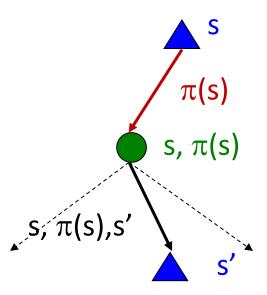


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 ▶	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	* 70.20	-10.00
-10.00	▲ 48.74	-10.00
-10.00	▲ 33.30	-10.00

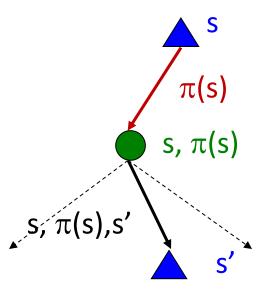
Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

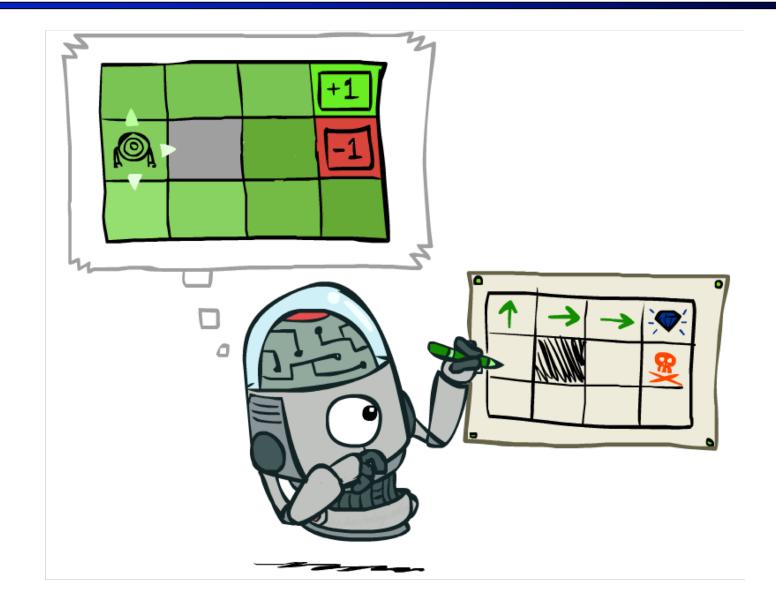
$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)



Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ≯	0.96 ኑ	0.98 ▶	1.00
• 0.94		∢ 0.89	-1.00
0 .92	∢ 0.91	∢ 0.90	0.80

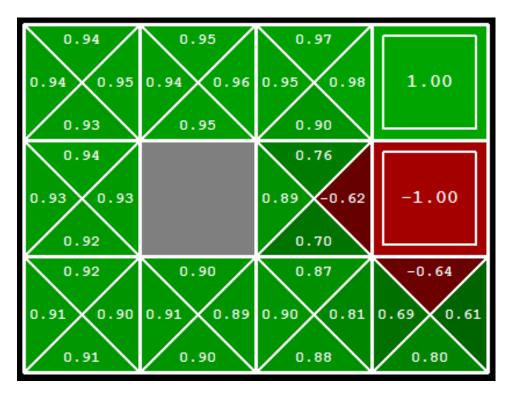
$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



Important lesson: actions are easier to select from q-values than values!

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

So you want to....

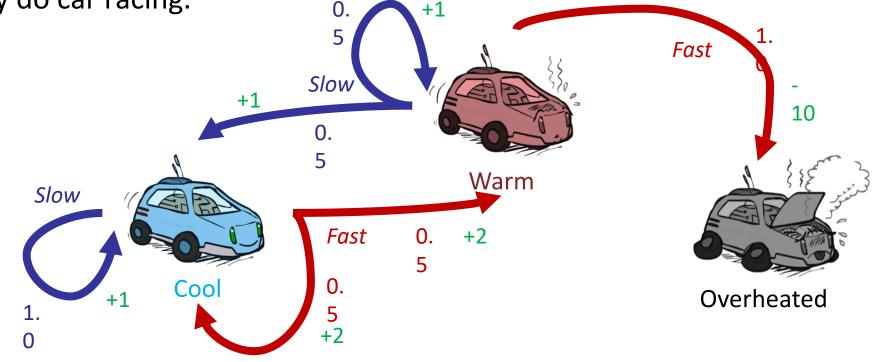
- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

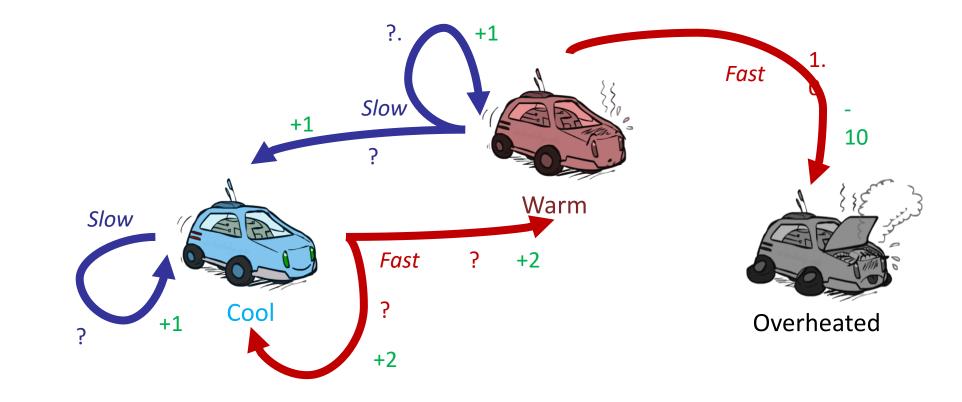
Racing car

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually do car racing.



Online Planning

- Transition probabilities are not known apriori.
- Rewards might not be known apriori



What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initial]

Example: Learning to Walk

Finished

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finished]