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Logistics

▪ PS2 is due today

▪ Quiz next Monday

▪ Topics: Search, Games, MDPs



Reminder

▪ Let’s say you know that your opponent is actually running a depth 2 minimax, using the 
result 80% of the time, and moving randomly otherwise

▪ Question: What tree search should you use?  
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▪ Answer: Expectimax!
▪ To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent

▪ This kind of thing gets very slow very quickly

▪ Even worse if you have to simulate your 
opponent simulating you…

▪ … except for minimax, which has the nice 
property that it all collapses into one game tree



Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players?

▪ Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and

competition dynamically…
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Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

▪ In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

▪ For MDPs, we want an optimal policy *: S → A
▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes        
expected utility if followed

▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies
▪ It computed the action for a single state only



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing



Example: Racing

▪ A robot car wants to travel far, quickly

▪ Three states: Cool, Warm, Overheated

▪ Two actions: Slow, Fast

▪ Going faster gets double reward
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Racing Search Tree



MDP Search Trees

▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a 

q-state



Utilities of Sequences



Utilities of Sequences

▪ What preferences should an agent have over reward sequences?

▪ More or less?

▪ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

▪ How to discount?
▪ Each time we descend a level, we 

multiply in the discount once

▪ Why discount?
▪ Sooner rewards probably do have 

higher utility than later rewards

▪ Also helps our algorithms converge

▪ Example: discount of 0.5
▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

▪ U([1,2,3]) < U([3,2,1])



Stationary Preferences

▪ If we assume stationary preferences:

▪ Then: there are only two ways to define utilities

▪ Additive utility:

▪ Discounted utility:



Quiz: Discounting

▪ Given:

▪ Actions: East, West, and Exit (only available in exit states a, e)

▪ Transitions: deterministic

▪ Quiz 1: For  = 1, what is the optimal policy?

▪ Quiz 2: For  = 0.1, what is the optimal policy?

▪ Quiz 3: For which  are West and East equally good when in state d?



Infinite Utilities?!

▪ Problem: What if the game lasts forever?  Do we get infinite rewards?

▪ Solutions:

▪ Finite horizon: (similar to depth-limited search)
▪ Terminate episodes after a fixed T steps (e.g. life)

▪ Gives nonstationary policies ( depends on time left)

▪ Discounting: use 0 <  < 1

▪ Smaller  means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually 
be reached (like “overheated” for racing)



Recap: Defining MDPs

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0

▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount )

▪ MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards
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Solving MDPs



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s
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Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Values of States (Bellman Equations)

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of value:
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Racing Search Tree



Racing Search Tree



Racing Search Tree

▪ We’re doing way too much 
work with expectimax!

▪ Problem: States are repeated 
▪ Idea: Only compute needed 

quantities once

▪ Problem: Tree goes on forever
▪ Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small

▪ Note: deep parts of the tree 
eventually don’t matter if γ < 1



Time-Limited Values

▪ Key idea: time-limited values

▪ Define Vk(s) to be the optimal value of s if the game ends 
in k more time steps
▪ Equivalently, it’s what a depth-k expectimax would give from s



Computing Time-Limited Values


