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Logistics

= PS2 is due today

" Quiz next Monday
" Topics: Search, Games, MDPs



Reminder

= Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

= Question: What tree search should you use?

= Answer: Expectimax!

= To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent

0.1 0.9 = This kind of thing gets very slow very quickly

= Even worse if you have to simulate your

/\A /\A opponent simulating you...

= .. except for minimax, which has the nice
property that it all collapses into one game tree



Multi-Agent Utilities

= What if the game is not zero-sum, or has multiple players?

= Generalization of minimax:
= Terminals have utility tuples
= Node values are also utility tuples
= Each player maximizes its own component
= Can give rise to cooperation and
competition dynamically...
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Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S

m AsetofactionsaceA

= A transition function T(s, a, s')

= Probability that a from sleadsto s’, i.e., P(s’| s, a) 2

= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’) 1 START
= A start state
= Maybe a terminal state
1 2 3 4

MDPs are non-deterministic search problems

= One way to solve them is with expectimax search
= We'll have a new tool soon



Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of 3| == | = | — | ]
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A

= A policy  gives an action for each state 1 1 - - —

= An optimal policy is one that maximizes
expected utility if followed 1 2 3 4

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03

: _ : . for all non-terminals s
Expectimax didn’t compute entire policies

= |t computed the action for a single state only



Optimal Policies




Example: Racing




Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-5

Slow

Overheated




Racing Search Tree




MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s’) called a transition
T(s,a,s’) = P(s’'|s,a)

R(s,a,s") '?5\




Utilities of Sequences




Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, 0O, 1] or [1,0, 0]




Discounting

" [t’s reasonable to maximize the sum of rewards
" |t's also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

w{
© @9

1 gl v°

Worth Now Worth Next Step Worth In Two Steps




Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3]) = 1*%1 + 0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])




Stationary Preferences

" |f we assume stationary preferences: <

¥ @

ai,as,...] = |b1,ba,.. ] @l \2
; v

ray, a9, ... > [r,bi,ba, .. ]

" Then: there are only two ways to define utilities
= Additive utility: U([ro,71,72,...]) =m0 +r1+rm+---

= Discounted utility: U([rg,r1,72,...]) =19 +yr1 +7%ro---



Quiz: Discounting

Given: 10 1

a b G d =
= Actions: East, West, and Exit (only available in exit states a, €)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: For y=0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?



Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:
= Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0<y<1

Ulros--.rse]) = S 4tre < Rmax/(1 )
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)



Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
" Transitions P(s’|s,a) (or T(s,a,s’)) )
» Rewards R(s,a,s’) (and discount v) 7 8,3,8

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards



Solving MDPs




Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and sisa
acting optimally state
a” (s,a)isa
" The value (utility) of a g-state (s,a): P g-state
Q" (s,a) = expected utility starting out - N
having taken action a from state s and 58,5 is,a,s.l_ls a
’ ransition

(thereafter) acting optimally

" The optimal policy:
7 (s) = optimal action from state s



Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Snapshot of Demo — Gridworld Q Values
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Values of States (Bellman Equations)

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s {R(S, a,s’) + *yV*(s’)]

V*i(s) = macijT(s, a,s’) {R(S,a, s + ’)/V*(S/)}

S



Racing Search Tree




Racing Search Tree
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Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited L) IR ER EREEEERN

computation, but with increasing
= Note: deep parts of the tree

eventually don’t matterif y<1 THTTREETLLL TR TR LL THITRLLL




Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps

= Equivalently, it’'s what a depth-k expectimax would give from s

TRA




Computing Time-Limited Values
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