CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Markov Decision Processes

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer
Review and Outline

- **Adversarial Games**
 - Minimax search
 - α-β search
 - Evaluation functions
 - Multi-player, non-0-sum

- **Stochastic Games**
 - Expectimax

- Markov Decision Processes
- Reinforcement Learning
Agents vs. Environment

- An **agent** is an entity that *perceives* and *acts*.

- A **rational agent** selects actions that *maximize its utility function*.

Deterministic vs. **stochastic**

Fully observable vs. partially observable
A maze-like problem
- The agent lives in a grid
- Walls block the agent’s path

Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put

The agent receives rewards each time step
- Small “living” reward each step (can be negative)
- Big rewards come at the end (good or bad)

Goal: maximize sum of rewards
Grid World Actions

Deterministic

Stochastic
An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics

$T(s_{11}, E, ...$
$...$
$T(s_{31}, N, s_{11}) = 0$
$...$
$T(s_{31}, N, s_{32}) = 0.8$
$...$
$T(s_{31}, N, s_{21}) = 0.1$
$T(s_{31}, N, s_{41}) = 0.1$

T is a Big Table!
$11 \times 4 \times 11 = 484$ entries

For now, we give this as input to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$

\[
R(s_{32}, N, s_{33}) = -0.01 \\
... \\
R(s_{32}, N, s_{42}) = -1.01 \\
R(s_{33}, E, s_{43}) = 0.99
\]

Cost of breathing

R is also a Big Table!

For now, we also give this to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$
 - A start state
 - Maybe a terminal state

- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We’ll have a new tool soon
What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent.

- For Markov decision processes, "Markov" means action outcomes depend only on the current state.

\[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0) =
\]

\[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t)
\]

- This is just like search, where the successor function could only depend on the current state (not the history).

Andrey Markov
(1856-1922)
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

- For MDPs, we want an optimal policy π^*: $S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent

- Expectimax didn’t compute entire policies
 - It computed the action for a single state only

Optimal policy when $R(s, a, s') = -0.03$ for all non-terminals s
Optimal Policies

R(s) = -2.0

R(s) = -0.4

R(s) = -0.03

R(s) = -0.01