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Review and Outline
Outline

§ Adversarial Games

§ Minimax search

§ α-β search

§ Evaluation functions

§ Multi-player, non-0-sum

§ Stochastic Games

§ Expectimax

§ Markov Decision Processes

§ Reinforcement Learning



Agents vs. EnvironmentAgent	vs.	Environment

§ An	agent is	an	entity	
that	perceives and	acts.

§ A	rational agent

selects	actions	that	
maximize	its	utility 

function.		
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Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North 
(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards



Grid World Actions



Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics
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§ A	set	of	actions	a	Î A
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§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

T(s11,	E,	…
…

T(s31,	N,	s11)	=	0
…

T(s31,	N,	s32)	=	0.8
T(s31,	N,	s21)	=	0.1
T(s31,	N,	s41)	=	0.1…

T	is	a	Big	Table!
11 X	4	x	11	=	484	entries

For	now,	we	give	this	as	input	to	the	agent
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Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon



What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the 
future and the past are independent

▪ For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

▪ This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

▪ In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

▪ For MDPs, we want an optimal policy *: S → A
▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes        
expected utility if followed

▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies
▪ It computed the action for a single state only



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01


