
CSE 573: Artificial Intelligence
Winter 2019

Adversarial Search

Hanna Hajishirzi
Based on slides from Dan Klein, Luke Zettlemoyer

Many slides over the course adapted from either Stuart Russell
or Andrew Moore

1

Announcements

! PS2 is due Jan 30
! Final poster session date

! New poll posted
! Best time so far: Thu, March 14 12-2pm.

Outline
! Games

! Review: Minimax search
! α-β search
! Evaluation functions
! Expectimax search
! Complex Games

Game Playing

! Many different kinds of games!

! Want algorithms for calculating a strategy
(policy) which recommends a move in each stateTypes of Games

stratego

Number of Players? 1, 2, …?

Deterministic GamesValue#of#a#State#

Non<Terminal#States:#

8#

2# 0# 2# 6# 4# 6#…# …# Terminal#States:#

Value#of#a#state:#
The#best#achievable#
outcome#(u)lity)#
from#that#state#

! States: S (start at s0)

! Players: P={1...N} (usually take turns)
! Actions: A (may depend on player / state)
! Transition Function: S x A → S

! Terminal Test: S → {t,f}

! Terminal Utilities: S x P → R

! Solution for a player is a policy: S → A

Deterministic Single-Player
! Deterministic, single player,

perfect information:
! Know the rules, action effects,

winning states
! E.g. Freecell, 8-Puzzle, Rubik’s

cube
! … it’s just search!

win loselose

! Slight reinterpretation:
! Each node stores a value: the

best outcome it can reach
! This is the maximal outcome of

its children (the max value)
! Note that we don’t have path

sums as before (utilities at end)
! After search, can pick move that

leads to best node

Adversarial Game TreesMinimax#Values#

+8#<10#<5#<8#

States#Under#Agent’s#Control:#

Terminal#States:#

States#Under#Opponent’s#Control:#

Deterministic Two-Player
! E.g. tic-tac-toe, chess, checkers
! Zero-sum games

! Agents have opposite utilities
! One player maximizes result
! The other minimizes result

8 2 5 6

max

min! Minimax search
! A state-space search tree
! Players alternate
! Choose move to position with

highest minimax value = best
achievable utility against best
play

Tic-tac-toe Game Tree

Minimax Example

 3 12 8 2 4 6 14 5 2

Minimax Search

Minimax Properties

! Time complexity?

! Space complexity?

10 10 9 100

max

min
! O(bm)

! O(bm)

! For chess, b ≈ 35, m ≈ 100
! Exact solution is completely infeasible
! But, do we need to explore the whole tree?

! Optimal?
! Yes, against perfect player. Otherwise?

Can we do better?

 3 12 8 2 4 6 14 5 2

max

min

α-β Pruning Example

[3,3] [-∞,2] [2,2]

[3,3]

 3 12 8 2 14 5 2

max

min

α-β Pruning
! General configuration

! α is the best value that MAX
can get at any choice point
along the current path

! If n becomes worse than α,
MAX will avoid it, so can stop
considering n’s other children

! Define β similarly for MIN:
value of the best (lowest
value) choice along the
current path for MIN

Player

Opponent

Player

Opponent

α

n

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=8
β=3

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=2

α=3
β=+∞

α=3
β=14

α=3
β=5

α=3
β=1

Min-Max Implementation

%17

Min-Max Implementation

def	min-val(state):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c))

return	v

def max-val(state):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c))

return	v

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Alpha-Beta implementation

%18

Alpha-Beta Implementation

def	min-val(state	,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))

return	v

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta implementation

%19

Alpha-Beta Implementation

def	min-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))
if	v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Alpha-Beta Pruning Properties

! This pruning has no effect on final result at the root

! Values of intermediate nodes might be wrong!
! but, they are bounds

! Good child ordering improves effectiveness of pruning

! With “perfect ordering”:
! Time complexity drops to O(bm/2)
! Doubles solvable depth!
! Full search of, e.g. chess, is still hopeless…

Resource Limits
! Cannot search to leaves
! Depth-limited search

! Instead, search a limited depth of tree
! Replace terminal utilities with an eval

function for non-terminal positions
! e.g., α-β reaches about depth 8 –

decent chess program
! Guarantee of optimal play is gone
! Evaluation function matters

! It works better when we have a
greater depth look ahead

? ? ? ?

-1 -2 4 9

4
min min

max
-2 4

Depth Matters

depth 2

Depth Matters

depth 10

Evaluation Functions
! Function which scores non-terminals

! Ideal function: returns the utility of the position
! In practice: typically weighted linear sum of features:

! e.g. f1(s) = (num white queens – num black queens), etc.

Bad Evaluation Function

Why Pacman Starves

! He knows his score will go up by eating the dot now
! He knows his score will go up just as much by eating the

dot later on
! There are no point-scoring opportunities after eating the

dot
! Therefore, waiting seems just as good as eating

Why#Pacman#Starves#

!  A#danger#of#replanning#agents!#
!  He#knows#his#score#will#go#up#by#ea)ng#the#dot#now#(west,#east)#
!  He#knows#his#score#will#go#up#just#as#much#by#ea)ng#the#dot#later#(east,#west)#
!  There#are#no#point<scoring#opportuni)es#aver#ea)ng#the#dot#(within#the#horizon,#two#here)#
!  Therefore,#wai)ng#seems#just#as#good#as#ea)ng:#he#may#go#east,#then#back#west#in#the#next#

round#of#replanning!#

8 8-2

Evaluation for Pacman

What features would be good for Pacman?

Evaluation Function

Evaluation Function

Which algorithm?

α-β, depth 4, simple eval fun

Which algorithm?

α-β, depth 4, better eval fun

Depth Matters

! Evaluation functions are always imperfect
! The deeper in the tree the evaluation

function is buried, the less the quality of
the evaluation function matters

Synergies between alpha-beta and
evaluation function

! Alpha-Beta: amount of pruning depends on expansion
ordering
! Evaluation function can provide guidance to expand most

promising nodes first

! Alpha-beta:
! similar for roles of mini-max swapped
! Value at a min-node will only keep going down
! Once value of min-node lower than better option for max along

path to root, can prune
! Hence, IF evaluation function provides upper-bound on value at

min-node, and upper-bound already lower than better option for
max along path to root THEN can prune

