CSE 573: Artificial Intelligence Winter 2019

Adversarial Search

Hanna Hajishirzi

Based on slides from Dan Klein, Luke Zettlemoyer

Many slides over the course adapted from either Stuart Russell or Andrew Moore

Announcements

- PS2 is due Jan 30
- Final poster session date
 - New poll posted
 - Best time so far: Thu, March 14 12-2pm.

Outline

Games

- Review: Minimax search
- α-β search
- Evaluation functions
- Expectimax search
- Complex Games

Game Playing

- Many different kinds of games!
- Want algorithms for calculating a strategy (policy) which recommends a move in each state

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon, monopoly
imperfect information	stratego	bridge, poker, scrabble, nuclear war

Deterministic Games

V(s) =known

- States: S (start at s₀)
- Players: P={1...N} (usually take turns)
- Actions: A (may depend on player / state)
- Transition Function: $S \times A \rightarrow S$
- Terminal Test: $S \rightarrow \{t, f\}$
- Terminal Utilities: $S \times P \rightarrow R$
- Solution for a player is a policy: $S \rightarrow A$

Deterministic Single-Player

- Deterministic, single player, perfect information:
 - Know the rules, action effects, winning states
 - E.g. Freecell, 8-Puzzle, Rubik's cube
- … it's just search!
- Slight reinterpretation:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children (the max value)
 - Note that we don't have path sums as before (utilities at end)
- After search, can pick move that leads to best node

Adversarial Game Trees

V(s) =known

Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers
- Zero-sum games
 - Agents have opposite utilities
 - One player maximizes result
 - The other minimizes result

Minimax search

- A state-space search tree
- Players alternate
- Choose move to position with highest minimax value = best achievable utility against best play

Tic-tac-toe Game Tree

Minimax Example

Minimax Search

- function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow -\infty$ for a, s in SUCCESSORS(state) do $v \leftarrow MAX(v, MIN-VALUE(s))$ return v
- function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow \infty$ for a, s in SUCCESSORS(state) do $v \leftarrow MIN(v, MAX-VALUE(s))$ return v

Minimax Properties

- Optimal?
 - Yes, against perfect player. Otherwise?
- Time complexity?
 - O(b^m)
- Space complexity?
 - O(bm)

- For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Can we do better?

α - β Pruning Example

α - β Pruning

General configuration

- α is the best value that MAX can get at any choice point along the current path
- If *n* becomes worse than α,
 MAX will avoid it, so can stop considering *n*'s other children
- Define β similarly for MIN: value of the best (lowest value) choice along the current path for MIN

Alpha-Beta Pruning Example

Min-Max Implementation

def max-val(state): if leaf?(state), return U(state) initialize $v = -\infty$ for each c in children(state): v = max(v, min-val(c))

return v

def min-val(state): if leaf?(state), return U(state) initialize $v = +\infty$ for each c in children(state): v = min(v, max-val(c))

return v

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Alpha-Beta implementation

 α : MAX's best option on path to root β : MIN's best option on path to root

def max-val(state, α , β): if leaf?(state), return U(state) initialize v = - ∞ for each c in children(state): v = max(v, min-val(c, α , β))

def min-val(state , α , β): if leaf?(state), return U(state) initialize v = + ∞ for each c in children(state): v = min(v, max-val(c, α , β))

return v

Alpha-Beta Implementation

α: MAX's best option on path to rootβ: MIN's best option on path to root

```
\begin{array}{l} \mbox{def max-val(state, $\alpha$, $\beta$):} \\ \mbox{if leaf?(state), return U(state)} \\ \mbox{initialize $v = -\infty$} \\ \mbox{for each $c$ in children(state):} \\ \mbox{v = max($v$, min-val($c$, $\alpha$, $\beta$))} \\ \mbox{if $v \ge $\beta$ return $v$} \\ \mbox{a = max($\alpha$, $v$)} \\ \mbox{return $v$} \end{array}
```

```
\begin{array}{l} \mbox{def min-val(state, $\alpha$, $\beta$):} \\ \mbox{if leaf?(state), return U(state)} \\ \mbox{initialize $v = +\infty$} \\ \mbox{for each $c$ in children(state):} \\ \mbox{v = min($v$, max-val($c$, $\alpha$, $\beta$))} \\ \mbox{if $v \leq $\alpha$ return $v$} \\ \mbox{\beta = min($\beta$, $v$)} \\ \mbox{return $v$} \end{array}
```

Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
 - but, they are bounds
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...

Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
 - e.g., α-β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- Evaluation function matters
 - It works better when we have a greater depth look ahead

Depth Matters

depth 2

Depth Matters

depth 10

Evaluation Functions

Function which scores non-terminals

$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:
 - e.g. $f_1(s)$ = (num white queens num black queens), etc.

Bad Evaluation Function

Why Pacman Starves

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on
- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating

Evaluation for Pacman

What features would be good for Pacman?

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

Evaluation Function

Evaluation Function

Which algorithm?

α - β , depth 4, simple eval fun

Which algorithm?

α - β , depth 4, better eval fun

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters

Synergies between alpha-beta and evaluation function

- Alpha-Beta: amount of pruning depends on expansion ordering
 - Evaluation function can provide guidance to expand most promising nodes first
- Alpha-beta:
 - Similar for roles of mini-max swapped
 - Value at a min-node will only keep going down
 - Once value of min-node lower than better option for max along path to root, can prune
 - Hence, IF evaluation function provides upper-bound on value at min-node, and upper-bound already lower than better option for max along path to root THEN can prune