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Announcements

! PS2 is due Jan 30 
! Final poster session date 

! New poll posted 
! Best time so far: Thu, March 14 12-2pm. 



Outline
! Games 

! Review: Minimax search  
! α-β search 
! Evaluation functions 
! Expectimax search 
! Complex Games



Game Playing

! Many different kinds of games! 

! Want algorithms for calculating a strategy 
(policy) which recommends a move in each stateTypes of Games

stratego

Number of Players?  1, 2, …?



Deterministic GamesValue#of#a#State#

Non<Terminal#States:#

8#

2# 0# 2# 6# 4# 6#…# …# Terminal#States:#

Value#of#a#state:#
The#best#achievable#
outcome#(u)lity)#
from#that#state#

! States: S (start at s0) 

! Players: P={1...N} (usually take turns) 
! Actions: A (may depend on player / state) 
! Transition Function: S x A → S 

! Terminal Test: S → {t,f} 

! Terminal Utilities: S x P → R 

! Solution for a player is a policy: S → A



Deterministic Single-Player
! Deterministic, single player, 

perfect information: 
! Know the rules, action effects, 

winning states 
! E.g. Freecell, 8-Puzzle, Rubik’s 

cube 
! … it’s just search!

win loselose

! Slight reinterpretation: 
! Each node stores a value: the 

best outcome it can reach 
! This is the maximal outcome of 

its children (the max value) 
! Note that we don’t have path 

sums as before (utilities at end) 
! After search, can pick move that 

leads to best node



Adversarial Game TreesMinimax#Values#

+8#<10#<5#<8#

States#Under#Agent’s#Control:#

Terminal#States:#

States#Under#Opponent’s#Control:#



Deterministic Two-Player
! E.g. tic-tac-toe, chess, checkers 
! Zero-sum games 

! Agents have opposite utilities 
! One player maximizes result 
! The other minimizes result

8 2 5 6

max

min! Minimax search 
! A state-space search tree 
! Players alternate 
! Choose move to position with 

highest minimax value = best 
achievable utility against best 
play



Tic-tac-toe Game Tree



Minimax Example

 3 12  8  2  4  6 14  5  2



Minimax Search



Minimax Properties

! Time complexity? 

! Space complexity?

10 10 9 100

max

min
! O(bm) 

! O(bm) 

! For chess, b ≈ 35, m ≈ 100 
! Exact solution is completely infeasible 
! But, do we need to explore the whole tree?

! Optimal? 
! Yes, against perfect player. Otherwise? 



Can we do better?

 3 12  8  2  4  6 14  5  2

max

min



α-β Pruning Example

[3,3] [-∞,2] [2,2]

[3,3]

 3 12  8  2 14  5  2

max

min



α-β Pruning
! General configuration 

! α is the best value that MAX 
can get at any choice point 
along the current path 

! If n becomes worse than α, 
MAX will avoid it, so can stop 
considering n’s other children 

! Define β similarly for MIN:  
value of the best (lowest 
value) choice along the 
current path for MIN

Player

Opponent

Player

Opponent

α

n



Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above 
β is MIN’s best alternative here or above

α=-∞ 
β=+∞

α=-∞ 
β=+∞

α=-∞ 
β=+∞

α=-∞ 
β=3

α=-∞ 
β=3

α=-∞ 
β=3

α=-∞ 
β=3

α=8 
β=3

α=3 
β=+∞

α=3 
β=+∞

α=3 
β=+∞

α=3 
β=+∞

α=3 
β=2

α=3 
β=+∞

α=3 
β=14

α=3 
β=5

α=3 
β=1



Min-Max Implementation
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Min-Max Implementation

def	min-val(state ):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c								))

return	v

def max-val(state									):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c								))

return	v

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Alpha-Beta implementation
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Alpha-Beta Implementation

def	min-val(state	,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))

return	v

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta implementation
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Alpha-Beta Implementation

def	min-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))
if	v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Alpha-Beta Pruning Properties

! This pruning has no effect on final result at the root 

! Values of intermediate nodes might be wrong! 
! but, they are bounds 

! Good child ordering improves effectiveness of pruning 

! With “perfect ordering”: 
! Time complexity drops to O(bm/2) 
! Doubles solvable depth! 
! Full search of, e.g. chess, is still hopeless…



Resource Limits
! Cannot search to leaves 
! Depth-limited search 

! Instead, search a limited depth of tree 
! Replace terminal utilities with an eval 

function for non-terminal positions 
! e.g., α-β reaches about depth 8 – 

decent chess program  
! Guarantee of optimal play is gone 
! Evaluation function matters 

! It works better when we have a 
greater depth look ahead

? ? ? ?

-1 -2 4 9

4
min min

max
-2 4



Depth Matters

depth 2



Depth Matters

depth 10



Evaluation Functions
! Function which scores non-terminals

! Ideal function: returns the utility of the position 
! In practice: typically weighted linear sum of features: 

! e.g. f1(s) = (num white queens – num black queens), etc.



Bad Evaluation Function



Why Pacman Starves

! He knows his score will go up by eating the dot now 
! He knows his score will go up just as much by eating the 

dot later on 
! There are no point-scoring opportunities after eating the 

dot 
! Therefore, waiting seems just as good as eating

Why#Pacman#Starves#

!  A#danger#of#replanning#agents!#
!  He#knows#his#score#will#go#up#by#ea)ng#the#dot#now#(west,#east)#
!  He#knows#his#score#will#go#up#just#as#much#by#ea)ng#the#dot#later#(east,#west)#
!  There#are#no#point<scoring#opportuni)es#aver#ea)ng#the#dot#(within#the#horizon,#two#here)#
!  Therefore,#wai)ng#seems#just#as#good#as#ea)ng:#he#may#go#east,#then#back#west#in#the#next#

round#of#replanning!#

8 8-2



Evaluation for Pacman

What features would be good for Pacman?



Evaluation Function



Evaluation Function



Which algorithm?

α-β, depth 4, simple eval fun



Which algorithm?

α-β, depth 4, better eval fun



Depth Matters

! Evaluation functions are always imperfect 
! The deeper in the tree the evaluation 

function is buried, the less the quality of 
the evaluation function matters



Synergies between alpha-beta and 
evaluation function

! Alpha-Beta: amount of pruning depends on expansion 
ordering 
! Evaluation function can provide guidance to expand most 

promising nodes first  

! Alpha-beta:  
! similar for roles of mini-max swapped 
! Value at a min-node will only keep going down 
! Once value of min-node lower than better option for max along 

path to root, can prune 
! Hence, IF evaluation function provides upper-bound on value at 

min-node, and upper-bound already lower than better option for 
max along path to root THEN can prune


