CSE 573: Artificial Intelligence
Winter 2019

Adversarial Search

Hanna Hajishirzi

Based on slides from Dan Klein, Luke Zettlemoyer

Many slides over the course adapted from either Stuart Russell
or Andrew Moore

Announcements

= PS2 is due Jan 30

* Final poster session date

= New poll posted
» Best time so far: Thu, March 14 12-2pm.

Outline

= Games
= Review: Minimax search
* a-f3 search
= Evaluation functions
» Expectimax search
= Complex Games

Game Playing

= Many different kinds of games!

= \Want algorithms for calculating a strategy
(policy) which recommends a move in each state

deterministic chance

perfect chess, checkers, | backgammon,
information go, othello monopoly

bridge, poker,
stratego scrabble, nuclear
war

imperfect
information

Deterministic Games

o

Value of a state:
The best achievable

outcome (utility) n
from that state y —

AAR

States: S (start at so)

Players: P={1...N} (usually take turns)
Actions: A (may depend on player / state)
Transition Function: S xA — S

Terminal Test: S — {t,f}

Terminal Utilities: Sx P — R

Solution for a player is a policy: S — A

Non-TerminaI States:

= max V(¢)
s’ €children(s)

4%

Terminal States:
V(s) = known

Deterministic Single-Player

Deterministic, single player,
perfect information:
* Know the rules, action effects,
winning states
= E.g. Freecell, 8-Puzzle, Rubik’s
cube
... i's just search!

Slight reinterpretation:
Each node stores a value: the
best outcome it can reach
This is the maximal outcome of
its children (the max value)
Note that we don’t have path
sums as before (utilities at end)
After search, can pick move that

leads to best node

Adversarial Game Trees

States Under Agent’s Control: States Under Opponent’s Control:

V(s) = max V(s V(s') = min V(s)
s’ €successors(s) \ sesuccessors(s’)

Terminal States:
V(s) = known

Deterministic Two-Player

= E.g. tic-tac-toe, chess, checkers

= Zero-sum games

= Agents have opposite utilities max

- AN
* One player maximizes result
* The other minimizes result
* Minimax search min
= A state-space search tree
» Players alternate
8 2

5

» Choose move to position with
highest minimax value = best
achievable utility against best

play

Tic-tac-toe Game Tree

MAX (X)

MIN (0)

MAX (X)

MIN (O)

TERMINAL

Utility

Minimax Example

Minimax Search

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
UV —OCO
for a, sin SUCCESSORS(state) do v+ Max(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V< 00
for a, sin SUCCESSORS(state) do v+ MIN(v, MAX-VALUE(s))
return v

Minimax Properties

= Optimal?
* Yes, against perfect player. Otherwise?

= Time complexity?
n O(bm)

= Space complexity?
= O(bm)

10

= Forchess, b=35 m=100
= Exact solution is completely infeasible
= But, do we need to explore the whole tree?

Can we do better?

o-f3 Pruning Example

o-f3 Pruning

= General configuration

= o IS the best value that MAX
Player

can get at any choice point /
along the current path
Opponent X

If n becomes worse than a,

MAX will avoid it, so can stop

considering n's other children

Define § similarly for MIN: Plaver

value of the best (lowest
value) choice along the
current path for MIN

Opponent

Alpha-Beta Pruning Example

a is MAX'’s best alternative here or above
B is MIN’s best alternative here or above

Min-Max Implementation

N

def max-val(state):
if leaf?(state), return U(state)
initialize v = -0
for each c in children(state):
v = max(v, min-val(c)

return v /

def min-val(state):
if leaf?(state), return U(state)
initialize v = +oo
for each c in children(state):
v = min(v, max-val(c)

kreturn Y,

~

/

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Alpha-Beta implementation

-

a: MAX's best option on path to root
B: MIN’s best option on path to root

~

J

S

def max-val(state, a, B):
if leaf?(state), return U(state)
initialize v = -0
for each c in children(state):
v = max(v, min-val(c, o, B))

\return Vv /

def min-val(state , a, B):
if leaf?(state), return U(state)
initialize v = +oo
for each c in children(state):
v = min(v, max-val(c, a, B))

\return Y,

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-val(state, a, B):
if leaf?(state), return U(state)
initialize v = -0
for each cin children(state):
v = max(v, min-val(c, a, B))
if v>Breturnv
o = max(a, v)

Kreturn \V} J

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

S

def min-val(state, a, B):
if leaf?(state), return U(state)
initialize v = +o0
for each cin children(state):

if v<areturnv

B = min(B, v)

\return V

~

v = min(v, max-val(c, a, B))

5

Alpha-Beta Pruning Properties

= This pruning has no effect on final result at the root

* Values of intermediate nodes might be wrong!
= but, they are bounds

= Good child ordering improves effectiveness of pruning

= With “perfect ordering”:
* Time complexity drops to O(bm2)
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

Resource Limits

Cannot search to leaves

Depth-limited search
» |nstead, search a limited depth of tree

» Replace terminal utilities with an eval -
function for non-terminal positions

= e.g., a-p reaches about depth 8 —

decent chess program
Guarantee of optimal play is gone

Evaluation function matters

= |t works better when we have a
greater depth look ahead

Depth Matters

Depth Matters

depth 10

Evaluation Functions

= Function which scores non-terminals

107 Wey x
I 2 £122
H N

28 | g8=z228
2 2% 19

Black to move White to move

White slightly better Black winning

Eval(s) = w1f1(s) + wafo(s) + ... + wnfn(s)

= |deal function: returns the utility of the position
= |n practice: typically weighted linear sum of features:
= e.g. f1(s) = (num white queens — num black queens), etc.

Bad Evaluation Function

Why Pacman Starves

He knows his score will go up by eating the dot now

He knows his score will go up just as much by eating the
dot later on

There are no point-scoring opportunities after eating the
dot

Therefore, waiting seems just as good as eating

Evaluation for Pacman

What features would be good for Pacman?

Eval(s) = w1 f1(s8) +wafo(s) + ... + wnfn(s)

Evaluation Function

Evaluation Function

Which algorithm?

o-p, depth 4, simple eval fun

Which algorithm?

o-p, depth 4, better eval fun

SCORE: 0

Depth Matters

= Evaluation functions are always imperfect

= The deeper in the tree the evaluation
function is buried, the less the quality of
the evaluation function matters

Synergies between alpha-beta and
evaluation function

= Alpha-Beta: amount of pruning depends on expansion
ordering

= Evaluation function can provide guidance to expand most
promising nodes first

= Alpha-beta:

Similar for roles of mini-max swapped
Value at a min-node will only keep going down

Once value of min-node lower than better option for max along
path to root, can prune

Hence, IF evaluation function provides upper-bound on value at
min-node, and upper-bound already lower than better option for
max along path to root THEN can prune

