Local Search

Hanna Hajishirzi

With slides from Dan Weld, Dan Klein, Stuart Russell, Luke Zettlemoyer
Search for Optimization

▪ Assign a utility function to every state
▪ Goal: find the state with the maximum utility

▪ Used in machine learning
▪ Used in neural networks
Goal State vs. Path

- Previously: Search to find best path to goal
 - Systematic exploration of search space.

- Now: a state is solution to problem
 - For some problems path is irrelevant.
 - E.g., 8-queens

- Different algorithms can be used
 - Systematic Search
 - Local Search
Local search algorithms

- State space = set of "complete" configurations
- Find configuration satisfying constraints,
 - e.g., all n-queens on board, no attacks
- In such cases, we can use local search algorithms
- Keep a single "current" state, try to improve it.
- Very memory efficient
 - only remember current state
Local Search and Optimization

- **Local search**
 - Keep track of single current state
 - Move only to “neighboring” state
 Defined by operators
 - Ignore previous states, path taken

- **Advantages:**
 - Use very little memory
 - Can often find reasonable solutions in large or infinite (continuous) state spaces.

- **“Pure optimization” problems**
 - All states have an objective function
 - Goal is to find state with max (or min) objective value
 - Does not quite fit into path-cost/goal-state formulation
 - Local search can do quite well on these problems.
Trivial Algorithms

- **Random Sampling**
 - Generate a state randomly

- **Random Walk**
 - Randomly pick a neighbor of the current state
Search Methods

- **Uninformed Search Methods**
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search

- **Heuristic Search Methods**
 - Best First / Greedy Search
 - A* Search

- **Local Search**
 - Hill Climbing
 - Beam Search
 - Gradient descent
Beam Search

- **Idea**
 - Best first but only keep k best items on priority queue

- **Evaluation**
 - Complete?

- Time Complexity? \(k^* \) branch-factor

- Space Complexity? sorting
Local beam search

- Idea: Keeping only one node in memory is an extreme reaction to memory problems.

- Keep track of k states instead of one
 - Initially: k randomly selected states
 - Next: determine all successors of k states
 - If any of successors is goal \rightarrow finished
 - Else select k best from successors and repeat
Local Beam Search (contd)

- Searches that find good states recruit other searches to join them

- Problem: quite often, all *k states end up on same local hill*

- Idea: Stochastic beam search
 - Choose *k successors randomly, biased towards good ones*
 will be explained soon!

- Observe the close analogy to natural selection!
Search Methods

- Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search

- Heuristic Search Methods
 - Best First / Greedy Search
 - A* Search

- Local Search
 - Beam Search
 - Hill Climbing
 - Gradient descent
Hill Climbing (Greedy Local Search)

- **Idea**
 - Always choose best child; no backtracking
 - Similar to beam-search (with queue =1)
Hill-climbing (Greedy Local Search)

function HILL-CLIMBING(problem) **return** a state that is a local maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

\[
\text{current } \leftarrow \text{MAKE-NODE(INITIAL-STATE[problem])}
\]

loop do (lowest)

\[
\text{neighbor } \leftarrow \text{a highest-valued successor of current}
\]

if VALUE[neighbor] \(\leq \) VALUE[current] **then** **return** STATE[current]

\[
\text{current } \leftarrow \text{neighbor}
\]
Hill-climbing search

- “a loop that continuously moves towards increasing value”
 - terminates when a peak is reached
 - Aka greedy local search

- Value can be either
 - Objective function value
 - Heuristic function value (minimized)

- Hill climbing does not look ahead of the immediate neighbors
- Can randomly choose among the set of best successors
 - if multiple have the best value
“Landscape” of search

Hill Climbing gets stuck in local maxima
Example: n-Queens

Objective: Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.

Formulate the problem as an optimization.
Our n-Queens (Local) Search Space

- **State**
 - All N queens on the board in some configuration
 - But each in a different column

- **Successor function**
 - Move single queen to another square in same column.
Need Heuristic Function
Convert to Optimization Problem

- $h =$ number of *pairs* of queens attacking each other
- $h = 17$ for the above state
Hill-climbing search: 8-queens

Result of hill-climbing in this case...

Bummer

A local minimum with $h = 1$
Hill Climbing Drawbacks

• Local minima

• Plateaus

• Diagonal ridges
Hill Climbing Properties

- Not Complete

- Worst Case Exponential Time

- Simple, $O(1)$ Space & Often Very Fast!
Hill-climbing on 8-Queens

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it gets stuck at a local minimum

- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
 - (for a state space with $8^8 \approx 17$ million states)
Escaping Shoulders: Sideways Move

- If no downhill (uphill) moves, allow sideways moves in hope that algorithm can escape
 - Must limit the number of possible sideways moves to avoid infinite loops

- For 8-queens
 - Allow sideways moves with limit of 100
 - Raises percentage of problems solved from 14 to 94%

- However....
 - 21 steps for every successful solution
 - 64 for each failure
Escaping Local Optima - Enforced Hill Climbing

- Perform breadth first search from a local optima
 - to find the next state with better h function

- Typically,
 - prolonged periods of exhaustive search
 - bridged by relatively quick periods of hill-climbing

- Middle ground b/w local and systematic search
Hill Climbing: Stochastic Variations

➔ When the state-space landscape has local minima, any search that moves only in the greedy direction cannot be complete.

➔ Random walk, on the other hand, is asymptotically complete.

Idea: Combine random walk & greedy hill-climbing

At each step do one of the following:

- Greedy: With prob p move to the neighbor with largest value
- Random: With prob $1-p$ move to a random neighbor
Hill-climbing with random restarts

- If at first you don’t succeed, try, try again!
- Different variations
 - For each restart: run until termination vs. run for a fixed time
 - Run a fixed number of restarts or run indefinitely
- Analysis
 - Say each search has probability \(p \) of success
 - E.g., for 8-queens, \(p = 0.14 \) with no sideways moves

- Expected number of restarts?

<table>
<thead>
<tr>
<th>Restarts</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success?</td>
<td>14%</td>
<td>36%</td>
<td>53%</td>
<td>74%</td>
<td>92%</td>
<td>99%</td>
<td>99.994%</td>
</tr>
</tbody>
</table>

- Expected number of steps taken?
Hill-Climbing with Both Random Walk & Random Sampling

At each step do one of the three

– **Greedy**: move to the neighbor with largest value
– **Random Walk**: move to a random neighbor
– **Random Restart**: Start over from a new, random state
Application

- In many machine learning algorithms:
 - Sentence generation
 - Generate one token at a time,
 - Keep n-best generated sentences
Optimization of Continuous Functions

- Discretization
 - use hill-climbing

- Gradient descent
 - make a move in the direction of the gradient
 - gradients: closed form or empirical

Is essential in most neural models
\[f(x,y) = e^{-(x^2+y^2)} + 2e^{-(x-1.7)^2+(y-1.7)^2} \]
Gradient Descent

Assume we have a continuous function: $f(x_1, x_2, \ldots, x_N)$ and we want minimize over continuous variables X_1, X_2, \ldots, X_n

1. Compute the gradients for all i: $\frac{\partial f(x_1, x_2, \ldots, x_N)}{\partial x_i}$

2. Take a small step downhill in the direction of the gradient:

$$x_i \leftarrow x_i - \lambda \frac{\partial f(x_1, x_2, \ldots, x_N)}{\partial x_i}$$

3. Repeat.

 - How to select λ
 - Line search: successively double
 - until f starts to increase again