CSE 573: Artificial Intelligence Winter 2019

Local Search

Hanna Hajishirzi

With slides from Dan Weld, Dan Klein, Stuart Russell, Luke Zettlemoyer

Search for Optimization

- Assign a utility function to every state
- Goal: find the state with the maximum utility

- Used in machine learning
- Used in neural networks

Goal State vs. Path

- Previously: Search to find best path to goal
 - Systematic exploration of search space.
- Now: a state is solution to problem
 - For some problems path is irrelevant.
 - E.g., 8-queens
- Different algorithms can be used
 - Systematic Search
 - Local Search

Local search algorithms

- State space = set of "complete" configurations
- Find configuration satisfying constraints,
 - e.g., all n-queens on board, no attacks
- In such cases, we can use local search algorithms
- Keep a single "current" state, try to improve it.
- Very memory efficient
 - only remember current state

Local Search and Optimization

Local search

- Keep track of single current state
- Move only to "neighboring" state Defined by operators
- Ignore previous states, path taken
- Advantages:
 - Use very little memory
 - Can often find reasonable solutions in large or infinite (continuous) state spaces.
- "Pure optimization" problems
 - All states have an objective function
 - Goal is to find state with max (or min) objective value
 - Does not quite fit into path-cost/goal-state formulation
 - Local search can do quite well on these problems. 5

Trivial Algorithms

- Random Sampling
 - Generate a state randomly
- Random Walk

Search Methods

- Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
- Heuristic Search Methods
 - Best First / Greedy Search
 - A* Search
- Local Search
 - Hill Climbing
 - Beam Search
 - Gradient descent

Beam Search

Idea

- Best first but only keep k best items on priority queue
- Evaluation
 - Complete?
 - Time Complexity?

k* branch-factor

Space Complexity?

sorting

Local beam search

- Idea: Keeping only one node in memory is an extreme reaction to memory problems.
- Keep track of k states instead of one
 - Initially: k randomly selected states
 - Next: determine all successors of *k* states
 - If any of successors is goal → finished
 - Else select k best from successors and repeat

Local Beam Search (contd)

- Searches that find good states recruit other searches to join them
- Problem: quite often, all k states end up on same local hill
- Idea: Stochastic beam search
 - Choose k successors randomly, biased towards good ones *will be explained soon!
- Observe the close analogy to natural selection!

Search Methods

Uninformed Search Methods

- Depth-First Search
- Breadth-First Search
- Uniform-Cost Search
- Heuristic Search Methods
 - Best First / Greedy Search
 - A* Search

Local Search

- Beam Search
- Hill Climbing
- Gradient descent

Hill Climbing (Greedy Local Search)

Idea

- Always choose best child; no backtracking
- Similar to beam-search (with queue =1)

Hill-climbing (Greedy Local Search)

(minimum)

function HILL-CLIMBING(problem) return a state that is a local maximum
input: problem, a problem
local variables: current, a node.
neighbor, a node.

current ← MAKE-NODE(INITIAL-STATE[problem]) loop do (lowest) neighbor ← a highes≱ valued successor of current if VALUE [neighbor] ≤ VALUE[current] then return STATE[current] current ← neighbor

Hill-climbing search

- "a loop that continuously moves towards increasing value"
 - terminates when a peak is reached
 - Aka greedy local search
- Value can be either
 - Objective function value
 - Heuristic function value (minimized)
- Hill climbing does not look ahead of the immediate neighbors
- Can randomly choose among the set of best successors
 - if multiple have the best value

"Landscape" of search

Hill Climbing gets stuck in local maxima

Example: *n*-Queens

Objective: Put *n* queens on an *n* x *n* board with no two queens on the same row, column, or diagonal

Formulate the problem as an optimization.

Our n-Queens (Local) Search Space

State

- All N queens on the board in some configuration
- But each in a different column

Successor function

Move single queen to another square in same column.

Need Heuristic Function Convert to Optimization Problem

h = number of *pairs* of queens attacking each other *h* = 17 for the above state

18

Hill-climbing search: 8-queens

Result of hill-climbing in this case...

A local minimum with h = 1

Hill Climbing Drawbacks

• Local minima

Plateaus

Diagonal ridges

Hill Climbing Properties

Not Complete

• Worst Case Exponential Time

• Simple, O(1) Space & Often Very Fast!

Hill-climbing on 8-Queens

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it get stuck at a local minimum

- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
 - (for a state space with 8^8 =~17 million states)

Escaping Shoulders: Sideways Move

- If no downhill (uphill) moves, allow sideways moves in hope that algorithm can escape
 - Must limit the number of possible sideways moves to avoid infinite loops
- For 8-queens
 - Allow sideways moves with limit of 100
 - Raises percentage of problems solved from 14 to 94%
 - However....
 - 21 steps for every successful solution
 - 64 for each failure

Escaping Local Optima - Enforced Hill Climbing

- Perform breadth first search from a local optima
 - to find the next state with better h function
- Typically,
 - prolonged periods of exhaustive search
 - bridged by relatively quick periods of hill-climbing
- Middle ground b/w local and systematic search

Hill Climbing: Stochastic Variations

- →When the state-space landscape has local minima, any search that moves only in the greedy direction cannot be complete
- →Random walk, on the other hand, is asymptotically complete
- *Idea:* Combine random walk & greedy hill-climbing
 - At each step do one of the following:
 - Greedy: With prob p move to the neighbor with largest value
 - Random: With prob 1-p move to a random neighbor

Hill-climbing with random restarts 🔀

- If at first you don't succeed, try, try again!
- Different variations
 - For each restart: run until termination vs. run for a fixed time
 - Run a fixed number of restarts or run indefinitely
- Analysis
 - Say each search has probability p of success
- Use this algorithm! E.g., for 8-queens, p = 0.14 with no sideways moves
 - Expected number of restarts?

Restarts	0	2	4	8	16	32	64
Success?	14%	36%	53%	74%	92%	99%	99.994%

Expected number of steps taken?

Hill-Climbing with Both Random Walk & Random Sampling

At each step do one of the three

- Greedy: move to the neighbor with largest value
- Random Walk: move to a random neighbor
- Random Restart: Start over from a new, random state

Application

- In many machine learning algorithms:
 - Sentence generation
 - Generate one token at a time,
 - Keep n-best generated sentences

Optimization of Continuous Functions

- Discretization
 - use hill-climbing
- Gradient descent
 - make a move in the direction of the gradient
 - gradients: closed form or empirical

Is essential in most neural models

Gradient Descent

Assume we have a continuous function: $f(x_1, x_2, ..., x_N)$ and we want minimize over continuous variables X1,X2,...,Xn

- 1. Compute the *gradients* for all *i*: $\partial f(x_1, x_2, ..., x_N) / \partial x_i$
- 2. Take a small step downhill in the direction of the gradient:

 $x_i \leftarrow x_i - \lambda \partial f(x_1, x_2, \dots, x_N) / \partial x_i$

- 3. Repeat.
 - How to select $\boldsymbol{\lambda}$
 - Line search: successively double
 - until f starts to increase again

