
CSE 573: Artificial Intelligence
Winter 2019

Local Search

With slides from
Dan Weld, Dan Klein, Stuart Russell, Luke Zettlemoyer

Hanna Hajishirzi

Search for Optimization

▪ Assign a utility function to every state

▪ Goal: find the state with the maximum

utility

▪ Used in machine learning

▪ Used in neural networks

2

Goal State vs. Path

• Previously: Search to find best path to goal

▪ Systematic exploration of search space.

▪ Now: a state is solution to problem

▪ For some problems path is irrelevant.

▪ E.g., 8-queens

▪ Different algorithms can be used

▪ Systematic Search

▪ Local Search

3

Local search algorithms

▪ State space = set of "complete" configurations

▪ Find configuration satisfying constraints,

▪ e.g., all n-queens on board, no attacks

▪ In such cases, we can use local search algorithms

▪ Keep a single "current" state, try to improve it.

▪ Very memory efficient

▪ only remember current state

Local Search and Optimization
▪ Local search
▪ Keep track of single current state

▪ Move only to “neighboring” state
Defined by operators

▪ Ignore previous states, path taken

▪ Advantages:
▪ Use very little memory

▪ Can often find reasonable solutions in large or infinite
(continuous) state spaces.

▪ “Pure optimization” problems
▪ All states have an objective function

▪ Goal is to find state with max (or min) objective value

▪ Does not quite fit into path-cost/goal-state formulation

▪ Local search can do quite well on these problems. 5

Trivial Algorithms

▪ Random Sampling

▪ Generate a state randomly

▪ Random Walk

▪ Randomly pick a neighbor of the current state

6

Search Methods

7

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

▪ Heuristic Search Methods

▪ Best First / Greedy Search

▪ A* Search

▪ Local Search

▪ Hill Climbing

▪ Beam Search

▪ Gradient descent

8

No

O(b^d)

O(b + N)

Beam Search

▪ Idea

▪ Best first but only keep k best items on

priority queue

▪ Evaluation

▪ Complete?

▪ Time Complexity?

▪ Space Complexity?

k* branch-factor

sorting

Local beam search
▪ Idea: Keeping only one node in memory is an

extreme reaction to memory problems.

▪ Keep track of k states instead of one

▪ Initially: k randomly selected states

▪ Next: determine all successors of k states

▪ If any of successors is goal → finished

▪ Else select k best from successors and repeat

9

Local Beam Search (contd)

▪ Searches that find good states recruit other searches to join
them

▪ Problem: quite often, all k states end up on same local hill

▪ Idea: Stochastic beam search

▪ Choose k successors randomly, biased towards good ones
*will be explained soon!

▪ Observe the close analogy to natural selection!

10

Search Methods

11

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

▪ Heuristic Search Methods

▪ Best First / Greedy Search

▪ A* Search

▪ Local Search

▪ Beam Search

▪ Hill Climbing

▪ Gradient descent

12

Hill Climbing (Greedy Local Search)

▪ Idea
▪ Always choose best child; no

backtracking

▪ Similar to beam-search (with queue =1)

Hill-climbing (Greedy Local Search)

function HILL-CLIMBING(problem) return a state that is a local maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

current MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor a highest valued successor of current

if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]

current neighbor

13

(minimum)

(lowest)

≥

Hill-climbing search

▪ “a loop that continuously moves towards increasing value”
▪ terminates when a peak is reached

▪ Aka greedy local search

▪ Value can be either
▪ Objective function value

▪ Heuristic function value (minimized)

▪ Hill climbing does not look ahead of the immediate neighbors

▪ Can randomly choose among the set of best successors
▪ if multiple have the best value

14

“Landscape” of search

Hill Climbing gets stuck in local maxima

15

Example: n-Queens

Objective: Put n queens on an n x n board with no
two queens on the same row, column, or diagonal

Formulate the problem as an optimization.

16

Our n-Queens (Local) Search Space

▪ State

▪ All N queens on the board in some configuration

▪ But each in a different column

▪ Successor function

▪ Move single queen to another square in same column.

17

Need Heuristic Function
Convert to Optimization Problem

▪ h = number of pairs of queens attacking each other
▪ h = 17 for the above state 18

Hill-climbing search: 8-queens

A local minimum with h = 1

Result of hill-climbing

in this case…

20

Hill Climbing Drawbacks

• Local minima

• Plateaus

• Diagonal ridges

21

• Not Complete

• Worst Case Exponential Time

• Simple, O(1) Space & Often Very Fast!

Hill Climbing Properties

Hill-climbing on 8-Queens

▪ Randomly generated 8-queens starting states…

▪ 14% the time it solves the problem

▪ 86% of the time it get stuck at a local minimum

▪ However…

▪ Takes only 4 steps on average when it succeeds

▪ And 3 on average when it gets stuck

▪ (for a state space with 8^8 =~17 million states)

22

Escaping Shoulders: Sideways Move

▪ If no downhill (uphill) moves, allow sideways moves
in hope that algorithm can escape

▪ Must limit the number of possible sideways moves to avoid
infinite loops

▪ For 8-queens

▪ Allow sideways moves with limit of 100

▪ Raises percentage of problems solved from 14 to 94%

▪ However….

▪ 21 steps for every successful solution

▪ 64 for each failure

23

Escaping Local Optima - Enforced Hill Climbing

▪ Perform breadth first search from a local optima

▪ to find the next state with better h function

▪ Typically,

▪ prolonged periods of exhaustive search

▪ bridged by relatively quick periods of hill-climbing

▪ Middle ground b/w local and systematic search

25

Hill Climbing: Stochastic Variations

→When the state-space landscape has local minima, any
search that moves only in the greedy direction cannot be
complete

→Random walk, on the other hand, is

asymptotically complete

Idea: Combine random walk & greedy hill-climbing

26

At each step do one of the following:

▪ Greedy: With prob p move to the neighbor with largest value

▪ Random: With prob 1-p move to a random neighbor

Hill-climbing with random restarts

▪ If at first you don’t succeed, try, try again!

▪ Different variations

▪ For each restart: run until termination vs. run for a fixed time

▪ Run a fixed number of restarts or run indefinitely

▪ Analysis

▪ Say each search has probability p of success

▪ E.g., for 8-queens, p = 0.14 with no sideways moves

▪ Expected number of restarts?

▪ Expected number of steps taken?
27

Restarts 0 2 4 8 16 32 64

Success? 14% 36% 53% 74% 92% 99% 99.994%

Hill-Climbing with Both
Random Walk & Random Sampling

At each step do one of the three

– Greedy: move to the neighbor with largest value

– Random Walk: move to a random neighbor

– Random Restart: Start over from a new, random state

28

Application

▪ In many machine learning algorithms:

▪ Sentence generation

▪ Generate one token at a time,

▪ Keep n-best generated sentences

38

Optimization of Continuous Functions

▪ Discretization

▪ use hill-climbing

▪ Gradient descent

▪ make a move in the direction of the gradient

▪ gradients: closed form or empirical

Is essential in most neural models

39

40

Gradient Descent

Assume we have a continuous function: f(x1,x2,…,xN)

and we want minimize over continuous variables X1,X2,..,Xn

1. Compute the gradients for all i: f(x1,x2,…,xN) /xi

2. Take a small step downhill in the direction of the gradient:

xi  xi - λf(x1,x2,…,xN) /xi

3. Repeat.

• How to select λ

– Line search: successively double

– until f starts to increase again
41

http://upload.wikimedia.org/wikipedia/commons/d/db/Gradient_ascent_(contour).png

