
CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi

Problem Spaces and Search

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Logistics

▪ Feedback:

▪ You can submit feedback through the Allen

School’s anonymous feedback tool

https://www.cs.washington.edu/alumni/feedback

▪ Discussions and questions in class

▪ Check the schedule

▪ Remember, there are three penalty-free late

day for the whole quarter (except final

project)
2

https://www.cs.washington.edu/alumni/feedback

Outline

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

▪ Heuristic Search Methods

▪ Best First / Greedy Search

▪ A*

Review: Agents

Search -- the environment is:

fully observable, single agent, deterministic, static,
discrete

Agent

Sensors

?

Actuators

E
n
v
iro
n
m
e
n
t

Percepts

Actions

An agent:

• Perceives and acts

• Selects actions that maximize
its utility function

• Has a goal

Environment:

• Input and output to the agent

Reflex Agents

▪ Reflex agents:

▪ Choose action based
on current percept (and
maybe memory)

▪ Do not consider the
future consequences of
their actions

▪ Act on how the world IS

▪ Can a reflex agent
achieve goals?

Goal Based Agents

▪ Goal-based agents:

▪ Plan ahead

▪ Ask “what if”

▪ Decisions based on
(hypothesized)
consequences of
actions

▪ Must have a model of
how the world evolves
in response to actions

▪ Act on how the world
WOULD BE

Search: it is not just for agents

Hardware verification

Search: It’s not just for Agents

11

Hardware verification
Planning optimal repair

sequences

Search: It’s not just for Agents

11

Hardware verification
Planning optimal repair

sequences

Planning optimal repair

sequences

Search thru a

▪ Set of states

▪ Successor Function [and costs - default to 1.0]

▪ Start state

▪ Goal state [test]

• Path: start  a state satisfying goal test

• [May require shortest path]

• [Sometimes just need state passing test]

• Input:

• Output:

Problem Space / State Space

Example: Simplified Pac-Man

▪ Input:
▪ A state space

▪ A successor function

▪ A start state

▪ A goal test

▪ Output:

“N”, 1.0

“E”, 1.0

Ex: Route Planning: Romania → Bucharest

▪ Input:

▪ Set of states

▪ Operators [and costs]

▪ Start state

▪ Goal state (test)

▪ Output:

Example: N Queens

▪ Input:
▪ Set of states

▪ Operators [and costs]

▪ Start state

▪ Goal state (test)

▪ Output

Q

Q

Q

Q

Algebraic Simplification

▪ Input:

▪ Set of states

▪ Operators [and costs]

▪ Start state

▪ Goal state (test)

▪ Output:

Parsing Natural Language

13

▪ Input:

▪ Set of states

▪ Operations

▪ Start state

▪ Goal state (test)

▪ Output:

This lecture is about search algorithms.

1/3/2019 corenlp.run

http://corenlp.run/ 1/2

art-of-Speech:

This lecture is about search algorithms .

DT NN VBZ IN NN NNS .

1

asic Dependencies:

This lecture is about search algorithms .

DT NN VBZ IN NN NNS .
det punctcompound

case
cop

nsubj

1

nhanced++ Dependencies:

This lecture is about search algorithms .

DT NN VBZ IN NN NNS .
det punctcompound

case
cop

nsubj

1

oreNLP Tools:

Enter a TokensRegex (http:/ /nlp.stanford.edu/software/tokensregex.shtml) expression to run against the above sentence:

Visualisation provided using the brat visualisation/annotation software (http://brat.nlplab.org/).

— Text to annotate —

— Annotations —

dependency parse parts-of-speech

— Language —

Submit

TokensRegex Semgrex Tregex

What is in State Space?

▪ A world state includes every details of the environment

!

!

!

!

!

!

!

!

!

!

▪ A search state includes only details needed for planning

Problem: Pathing Problem: Eat-all-dots

States: {x,y} locations

Actions: NSEW moves

Successor: update location

Goal: is (x,y) End?

States: {(x,y), dot booleans}

Actions: NSEW moves

Successor: update location

and dot boolean

Goal: dots all false?

State Space Sizes?

▪ World states:

▪ Pacman positions:

10 x 12 = 120

▪ Pacman facing:

up, down, left, right

▪ Food Count: 30

▪ Ghost positions: 12

State Space Sizes?

▪ How many?

▪ World State:

▪ States for Pathing:

▪ States for eat-all-dots:

120*(230)*(122)*4

120

120*(230)

State Representation

▪ Real-world applications:

▪ Requires approximations and heuristics

▪ Need to design state representation so that

search is feasible

▪ Only focus on important aspects of the state

▪ E.g., Use features to represent world states

17

State Space Graphs

▪ State space graph:

▪ Each node is a state

▪ The successor function

is represented by arcs

▪ Edges may be labeled

with costs

▪ We can rarely build this

graph in memory (so we
don’t)

Search Trees

▪ A search tree:

▪ Start state at the root node

▪ Children correspond to successors

▪ Nodes contain states, correspond to PLANS to those states

▪ Edges are labeled with actions and costs

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

State Graph:

What is the search tree?

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both

on demand – and

we construct as

little as possible.

Each NODE in the

search tree is an entire

PATH in the problem

graph.

States vs. Nodes

▪ Nodes in state space graphs are problem states

▪ Represent an abstracted state of the world

▪ Have successors, can be goal / non-goal, have multiple predecessors

▪ Nodes in search trees are plans

▪ Represent a plan (sequence of actions) which results in the node’s

state

▪ Have a problem state and one parent, a path length, a depth & a cost

▪ The same problem state may be achieved by multiple search tree

nodes

Depth 5

Depth 6

Parent

Node

Search Nodes
Problem States

Action

Quiz:#State#Graphs#vs.#Search#Trees#

S G

b

a

Consider#this#4Jstate#graph:##

Important:#Lots#of#repeated#structure#in#the#search#tree!#

How#big#is#its#search#tree#(from#S)?#

Building Search Trees

▪ Search:
▪ Expand out possible plans

▪ Maintain a fringe of unexpanded plans

▪ Try to expand as few tree nodes as possible

General Tree Search

▪ Important ideas:
▪ Fringe

▪ Expansion

▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

Detailed pseudocode is

in the book!

Search Algorithms

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

▪ Heuristic Search Methods

▪ Best First / Greedy Search

▪ A*

Review: Depth First Search

S

G

d

b

p
q

c

e

h

a

f

r

Strategy: expand

deepest node first

Implementation:

Fringe is a LIFO

queue (a stack)

Review: Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)

Review: Breadth First Search

S

G

d

b

p
q

c

e

h

a

f

r

Strategy: expand

shallowest node

first

Implementation:

Fringe is a FIFO

queue

Review: Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Expansion order:

(S,d,e,p,b,c,e,h,r,q,a,a

,h,r,p,q,f,p,q,f,q,c,G)

Search Algorithm Properties

▪ Complete? Guaranteed to find a solution if one exists?

▪ Optimal? Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

Variables:

n Number of states in the problem

b The maximum branching factor B

(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

▪ Infinite paths make DFS incomplete…

▪ How can we fix this?

▪ Check new nodes against path from S

▪ Infinite search spaces still a problem

▪ If the left subtree has unbounded depth

Algorithm Complete Optimal Time Space

DFS Depth First

Search
N N O(BLMAX) O(LMAX)

START

GOALa

b

No No Infinite Infinite

DFS

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking Y if finite N O(bm) O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

BFS

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

…
b

1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

Comparisons

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

38

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of

length 1 or less.

2. If “1” failed, do a DFS which only searches paths

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths

of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

ID

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y Y* O(bd) O(bd)

…
b

Search Methods

▪ Blind Search:

▪ Depth First Search

▪ Breadth First Search

▪ Iterative Deepening Search

40

Search Methods

▪ Blind Search:

▪ Depth First Search

▪ Breadth First Search

▪ Iterative Deepening Search

▪ Heuristic Search

▪ Best First Search

▪ Uniform Cost Search

▪ Greedy Search

▪ A*

▪ Iterative Deepening A*

▪ Beam Search

▪ Hill Climbing
41

Blind Vs. Heuristic Search

▪ Cost of actions

▪ Heuristic guidance

42

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Uniform Cost Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Expand

cheapest

node first:

Fringe is a

priority

queue

Uniform Cost Search

▪ Generalization of breadth-first search

▪ Priority queue of nodes to be explored

▪ Cost function f(n) applied to each node

Add initial state to priority queue

While queue not empty

Node = head(queue)

If goal?(node) then return node

Add children of node to queue

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expansion order:

(S,p,d,b,e,a,r,f,e,G) S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
1

15

1

2

Cost

contours

2

Uniform Cost Search

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

UCS

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y* Y O(bC*/) O(bC*/)

…
b

C*/ tiers

Every action costs at least ε

Uniform Cost Issues

▪ Remember: explores
increasing cost contours

▪ The good: UCS is
complete and optimal!

▪ The bad:
▪ Explores options in every

“direction”
▪ No information about goal

location Start Goal

…

c  3

c  2

c  1

Uniform Cost: Pac-Man

▪ Cost of 1 for each action

▪ Explores all of the states, but one

Search Heuristics

▪ Any estimate of how close a state is to a goal

▪ Designed for a particular search problem

10

5

11.2

▪ Examples: Manhattan distance, Euclidean distance

Heuristics

H(x)

Best First / Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

Best First / Greedy Search

▪ Expand the node that seems closest…

▪ What can go wrong?

253

178

Best First / Greedy Search

▪ A common case:
▪ Best-first takes you straight

to the (wrong) goal

▪ Worst-case: like a badly-
guided DFS in the worst
case
▪ Can explore everything

▪ Can get stuck in loops if no
cycle checking

▪ Like DFS in completeness
(finite states w/ cycle
checking)

…
b

…
b

To Do:

▪ Look at the course website:

▪ https://courses.cs.washington.edu/courses/c

se573/19wi/

▪ Do the readings (Ch 3)

▪ Start PS1

▪ START PS1 ASAP

▪ Try this visualization tool:

▪ interactive search visualization

http://qiao.github.io/PathFinding.js/visual/

