CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Problem Spaces and Search

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

= Feedback:

Logistics

* You can submit feedback through the Allen
School's anonymous feedback tool
https://www.cs.washington.edu/alumni/feedback

= Discussions and questions in class

= Check the sc

= Remember, t
day for the w
project)

nedule
nere are three penalty-free late

nole quarter (except final

2

https://www.cs.washington.edu/alumni/feedback

Outline

= Agents that Plan Ahead
= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

= Heuristic Search Methods

» Best First / Greedy Search
m A*

Review: Agents

JuswWuoJIAUT

An agent:

_ e D\
e Perceives and acts Agent
 Selects actions that maximize Sensors —

its utility function
e Has agoal
Environment:
Actuators _
* |nput and output to the agent Actions
_ /

Search -- the environment IS:

fully observable, single agent, deterministic, static,
discrete

= Reflex agents:

= Choose action based
on current percept (and
maybe memory)

= Do not consider the
future consequences of
their actions

= Act on how the world IS

= Can areflex agent
achieve goals?

L L L
L L
L L L L L L L L

L L L L

Goal Based Agents

» Goal-based agents:

Plan ahead
Ask “what if”

Decisions based on
(hypothesized)
consequences of
actions

Must have a model of
how the world evolves
In response to actions

Act on how the world
WOULD BE

L] L] L]

*

*

L] L] L] L] L] L] L] L]

L] L] L] L]

Search: It Is not just for agents

Hardware verification Planning optimal repair
sequences

| Shared L3 Cache:|-#

,,v_.“t,_' " .

Search thru a
Problem Space / State Space

* Input:
= Set of states
= Successor Function [and costs - default to 1.0]
= Start state
» Goal state [test]

* Output:

 Path: start = a state satisfying goal test
» [May require shortest path]
* [Sometimes just need state passing test]

Example: Simplified Pac-Man

" |nput:
= A state space

= A successor function
g ..

\
= A start state “E”, 1.0

= A goal test

= Output:

Ex: Route Planning: Romania - Bucharest

" |nput:
= Set of states

»= Operators [and costs]
= Start state

» Goal state (test)

= QOutput:

Example: N Queens

" [nput:
= Set of states

» Operators [and costs]
= Start state

» Goal state (test)

= Qutput

| Introduc

-nmuncss Algebralc Simplification

Mapouoi (,u
Featuring a new generation of

advanced élgorithms with unparalleled

ﬁ/;,/ . ,ﬁ
;;} ' ; speed, scope, and sc alability 8 f +]_
W)
W 3315 l E —]

—[E' - H+1 — e®] auf

—[E' =il +1)e e*] u

I 1 ? — 23 a8
—|E - I+§ € —€ u(8)
1 (1)2 —2s 23]
E -1+ 2 € —€ v

" |nput:
= Set of states

= Operators [and costs]
= Start state

» Goal state (test)

= Qutput:

Parsing Natural Language

= Input: This lecture is about search algorithms.
= Set of states .
-‘de“m/ d/ w mc‘a;mp°“”§wp“”°“a
| Operations Th|s Iecture is about search algorlthms .

= Start state

» Goal state (test)

= Qutput:

13

What is In State Space?

= A world state includes every details of the environment

= Asearch state includes only details needed for planning

Problem: Pathing Problem: Eat-all-dots
States: {x,y} locations States: {(x,y), dot booleans}
Actions: NSEW moves Actions: NSEW moves
Successor: update location Successor: update location

Goal: is (x,y) End? and dot boolean

Goal: dots all false?

State Space Sizes?

World states:

Pacman positions:
10x 12 =120

Pacman facing:
up, down, left, right

Food Count: 30
Ghost positions: 12

State Space Sizes?

How many?
World State:

120%(230)%(122)*4

States for Pathing:

120

States for eat-all-dots:

120%(239)

State Representation

= Real-world applications:
» Requires approximations and heuristics

* Need to design state representation so that
search is feasible
= Only focus on important aspects of the state
= E.g., Use features to represent world states

17

State Space Graphs

= State space graph:
= Each node is a state

* The successor function
IS represented by arcs

* Edges may be labeled
with costs

= We can rarely build this

graph in memory (so we
don’t)

~ / N/

o
H
m
-

<N\, Vs

!
B

*H\

W

Search Trees

“N”, 1.0 “E”, 1.0
/

= A search tree:
= Start state at the root node
= Children correspond to successors
= Nodes contain states, correspond to PLANS to those states
» Edges are labeled with actions and costs
* For most problems, we can never actually build the whole tree

Example: Tree Search

State Graph:

What Is the search tree?

State Graphs vs. Search Trees

Each NODE in the
search tree is an entire
PATH in the problem

graph.
S
s
d e
N T /\
We construct both b Cc e h r
on demand — and | N o
we construct as a a h r p q f
little as possible. N | N
p q f q C G
| AN |
q G a

States vs. Nodes

= Nodes in state space graphs are problem states
= Represent an abstracted state of the world
= Have successors, can be goal / non-goal, have multiple predecessors

= Nodes in search trees are plans

= Represent a plan (sequence of actions) which results in the node’s
state

» Have a problem state and one parent, a path length, a depth & a cost
» The same problem state may be achieved by multiple search tree

nodes Search Nodes

Parent
... Depth 5

Problem States

Action

Node Depth 6

Quiz:tbtatetlaraphsti/s.tbearchfirees#

Consider#this#t)statetgraph:# Howsibighis#itsisearchifree#{fromib)?#

Important:#otsibfitepeatedtructureintthettearchitreel#

= Search:
* Expand out possible plans
* Maintain a fringe of unexpanded plans
* Try to expand as few tree nodes as possible

General Tree Search

function T'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end
™~
* |mportant ideas:
m Fringe Detailed pseudocode is
i Expansion in the book!

= Exploration strategy

= Main question: which fringe nodes to explore?

Search Algorithms

" Uninformed Search Methods
= Depth-First Search
" Breadth-First Search
" Uniform-Cost Search

" Heuristic Search Methods
= Best First / Greedy Search
m Ak

Review

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
queue (a stack)

. Depth First Search

Review: Depth First Search

Expansion ordering:

(d,b,a,c,a,e h,p,q,q,rf,c,a,G)

Review: Breadth First Search

Strategy: expand
shallowest node
first

Implementation:
Fringe is a FIFO
queue

Review: Breadth First Search

. (@) ©
Expansion order: (b (c)
(Sidyeipybycyeyhynqyaia W/ze 0
7hlr;p!q!f!plqlfquCJG) pﬁhj 0

i [R
Search /@DN ﬁ @
w @ S —

a h r p q f
@ N | N

N p q f q cC G

| AN |

Search Algorithm Properties

= Complete? Guaranteed to find a solution if one exists?
= Optimal? Guaranteed to find the least cost path?

= Time complexity?

= Space complexity?

Variables:
n Number of states in the problem
b The maximum branching factor B

(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm

Complete

Optimal

Time

Space

DFS Depth First

Search

NO

NoO

Infinite

Infinite

» |nfinite paths make DFS incomplete...

= How can we fix this?

= Check new nodes against path from S

= |nfinite search spaces still a problem
= |f the left subtree has unbounded depth

1 node
b nodes
b2 nodes
m tiers <
b™ nodes
Algorithm Complete |(Optimal |[Time Space
/ Path i "
DES | Qeaking | Y if finite N O(b™) O(bm)

BFS

Algorithm Complete |Optimal |[Time Space
/ Path .
DIe \é:vhe?king Y N O(b) O(bm)
BFS Y Y* O(b%) O(b9)
g 1 node
_ b nodes
dtiers < b? nodes
q bd nodes
b™ nodes

C

Comparisons

= When will BFS outperform DFS?

= When will DFS outperform BFS?

74 s svoeyes oo S . -

74 Search Strategies Demo

lterative Deepening

Iterative deepening uses DFS as a subroutine: b

1. Do a DFS which only searches for paths of

2. If “1” failed, do a DFS which only searches paths

length 1 or less. / \\\
/ S\

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete |Optimal |Time Space
/ Path m
PIES S Y N O(b™) O(bm)
BFS Y Y* O(b9) O(b9)
ID Y Y* O(b%) O(bd)

Search Methods

» Blind Search:
» Depth First Search
= Breadth First Search
= [terative Deepening Search

40

Search Methods

= Blind Search:

Depth First Search
Breadth First Search
Iterative Deepening Search

= Heuristic Search

Best First Search
Uniform Cost Search
Greedy Search

A*

Iterative Deepening A*
Beam Search

Hill Climbing

41

Blind Vs. Heuristic Search

= Cost of actions

= Heuristic guidance

42

Costs on Actions

2 e 2 @
(v} (<) ;

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

Uniform Cost Search

Expand
cheapest

node first: 5 e
2
Fringe is a ° ’

priority
queue

3

2

Uniform Cost Search

" Generalization of breadth-first search
" Priority queue of nodes to be explored
= Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty
Node = head(queue)
If goal?(node) then return node
Add children of node to queue

Uniform Cost Search

Expansion order:

(S,p,d,b,e,a,rfe,G)
,
@ 3
4 5 @17 @11 @ 16
<|@ C?” }2 AN
Cost @6 a @13 @7 p q f
contours /\ | | /\
p q ()8 q C G
| N |
q 11 ©)10 e

N a

Uniform Cost Search

Algorithm Complete |Optimal |Time Space
/ Path N
DIe \é:vhe?king Y N O(b) O(bm)
BFS Y Y* O(b9) O(b9)
UCS Y* Y O(bC™) O(bC™)
C*eg tiers <

Every action costs at least €

Uniform Cost Issues

= Remember: explores
INncreasing cost contours

* The good: UCS Is
complete and optimal!

= The bad:
= Explores options in every

“direction”
= No information about goal
location Goal

Uniform Cost: Pac-Man

= Cost of 1 for each action
= Explores all of the states, but one

Search Heuristics

= Any estimate of how close a state is to a goal
* Designed for a particular search problem

» Examples: Manhattan distance, Euclidean distance

Heuristics

(] Oradea
MNeamt
=l Zarind - 87
75 151
L] lasi
Arad 140
92
e — 5‘_"—'_'1 99 Fagaras
18 80 N = = Vaslui
L rimisoans . Rimnicu Vilcea
1 pitestt N\ 211 1
3 Lugoj ost
70 - 98
10 g5 [J Hirsova
] Mehadia Urziceni
] 86
5 120 138 Bucharest
Dobreta O}~ . 90 =
rajnyva
o Giurgiu Eforie

Straight—line dhs
to Bucharest
Arad
Bucharest
Craiova
Dobreta
Ftorie
Fagaras
Calurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti

Rimnicu Vilceg

Sibiu

Timisoara

Lrziceni
Vaslui
Zerind

)

i nee

366
i

1 Gl
242
161
178
77
151
226
244
241
234
R0
98
193
253
329
80
199
374

———/

H(x)

Best First / Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

Straight—line dhstance
to Bucharest

Cradea

Arad 366

\ Bucharest 0
75 Craiova 160
Dabreta 242

Arad Etorie 161
SR TEL S -

gy s Lol

1 . Vaslul Hirsova 151
80 lasi 226

Lugoj 244

Mehadia 241

Neamt 234

Lugo) Oradea 180

70 Hirsoye Pitesti 98

Mehadia Urziceni Rimnicu Vileea 193

a6 Sibin—— 253

75 190 Bucharest Timisoara 329

Dobreta —_ a0 Urziceni 80

Craiova Etorie Yaslui 199

Giurgiu Lerind 374

Best First / Greedy Search

= Expand the node that seems closest...

Arad

366 193

178 380

253 0

= What can go wrong?

Best First / Greedy Search

= A common case:

» Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS in the worst
case
= Can explore everything

= Can get stuck in loops if no
cycle checking

= Like DFS in completeness
(finite states w/ cycle
checking)

To Do:

= | ook at the course website:

» https://courses.cs.washington.edu/courses/c
se573/19wi/

= Do the readings (Ch 3)

= Start PS1
» START PS1 ASAP

= Try this visualization tool:
= Interactive search visualization

http://qiao.github.io/PathFinding.js/visual/

