CSE 573: Artificial Intelligence
Winter 2019

Hidden Markov Models

Hanna Hajishirzi

Many slides adapted from Pieter Abbeel, Dan Klein, Dan
Weld,Stuart Russell, Andrew Moore & Luke Zettlemoyer



Today

= HMMs

= Particle filters
= Demos!

= Applications:
= Robot localization / mapping

= Bayes Nets



Recap: Reasoning Over Time

= Markov models
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rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8




Inference: Base Cases
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P(Xqle1) P(X>)
P(zile1) = P(x1,e1)/P(e1) P(xp) =) P(x1,22)
o Plag,e) =" P(a1)Pazlz1)

= P(z1)P(e1|z1)



Passage of Time

= Assume we have current belief P(X | evidence to date) @ @
—>
B(Xt) — P(thel:t)

= Then, after one time step passes:

P(Xt—l—l‘elzt) — ZP(XtJrlaxt‘el:t)

Lt

—ZP Xt_|_1‘513t,€1 t) ($t|€1:t) " Orcompactly:

(X P(X'
= ZP Xﬁ—l’wt) (th|€1:t) ++1) Z ) B(:)

= Basicidea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes



Observation

= Assume we have current belief P(X | previous evidence):
B'(Xi41) = P(Xey1len:t)
= Then, after evidence comes in: ‘
P(Xt+1’€1:t+1) — P(Xt—|—176t—|—1’€1:t)/P(€t—|—1‘€1:t)
XX P(Xt+17€t+1‘61:t)
= P(est1ler:s, Xey1)P(Xiq1ler)
= P(es11|Xey1)P(Xiq1ler)

= Basicidea: beliefs “reweighted”
" Or, compactly: by likelihood of evidence
B(Xi11) xx,,, Plers1]|Xi41)B (Xig1) = Unlike passage of time, we have
to renormalize



Filtering

Elapse time: compute P( X, | e, )
P(%ﬁ’@l:t—l) — Z P(CUt—1|€1:t—1) ' P($t|$t—1) n
. o

Observe: compute P( X, | e,,)
P(xiler.y) o< P(xlers—1) - Pleg|zy) n

Belief: <P(rain), P(sun)>

@ e P(X4) <0.5, 0.5> Prior on X,

P(X, | E1 = umbrella <0.82,0.18> Observe

)
e e P(Xs | By = umbrella)  <0.63,0.37> Elapse time
)

P(Xy | Ey = umb, E5 = umb)  <0.88,0.12>  Observe



Example: Weather HMM

B(+r) = 0.5
B(-r) =0.5

B’(+r) = 0.5 B’(+r) = 0.627
B’(-r) =0.5 B’(-r) =0.373
B(+r) = 0.818 B(+r) = 0.883
B(-r) =0.182 B(-r) =0.117
Rain, Rain,

Umbrella, Umbrella,

Ri | Rut | P(RytIR}) R, U, | P(U,R)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8




Approximate Inference

= Sometimes |X]| is too big for exact inference
» |X|] may be too big to even store B(X)
= E.g. when X is continuous
= |X]? may be too big to do updates

= Solution: approximate inference by sampling
= How robot localization works in practice



What is Sampling?

Goal: Approximate the original distribution:

Approximate with Gaussian distribution

Draw samples from a distribution close
enough to the original distribution
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Approximate Solution:
Perfect Sampling

Robot path till time n

N\

1 JMimel Time r}‘ \ Assume we can sample

Particle 1 Xo n [ Q Q from the original distribution

> P(Xgn | Yon)

1

Particle N XCI)\:In[ Q

1

P(x. Y= Number of samples that match
( O:n | yO.n) N with query

Converges to the exact value

for | N
or large .



Particle Filtering

Filtering: approximate solution

Sometimes | X]| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
In memory: list of particles, not states

Particle is just new name for sample

0.0 0.1 0.0
0.0 0.0 0.2
0.0 0.2 0.5
@
®e
o0 ...




Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)
= Generally, N << |X]|

= P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

= For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next

Particles:

e - )
position from the transition model o) o 2o\
(3,3)
/ / (3,2) ® @
r' = sample(P(X"'|x)) (33 ®
(1,2
L : : ) : (3,3)
= This is like prior sampling — samples’ frequencies (3,3)
reflect the transition probabilities (2,3)
= Here, most samples move clockwise, but some move in
another direction or stay in place Pa(rticl)es:
3,2
(2,3) ® | |o
(3,2) ® | o Io
: : (3,1)
* This captures the passage of time (33) *.
@)
= |f enough samples, close to exact values before and 85; ®
after (consistent) gi; ®

(2,2)




Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Downweight samples based on the evidence

w(x) = P(e|x)
B(X) x P(e|X)B'(X)

As before, the probabilities don’t sum to one,
since all have been downweighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:

—_
N W
N

—_~ e~ o~~~ —~ —~ — —
‘N‘UJ‘N‘I—\‘UJ‘UJ‘UJ‘UJ‘
NN W WNWENW
—_— — — — — — — — — —

Particles:

NUNPWWWWNT
Ehubhbwebw
ssss=s252c¢<

o i

oMk LMD




Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

» This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=4
(3,3) w=4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
® ® 0 ) ) ° €]
@ @ O3]
@ ® ® % ® | ¢%
@ e :
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)

(2,3) (2,2) (2,2) w=.4 (3,2)



Particle Filtering Summary

= Represent current belief P(X | evidence to date)
as set of n samples (actual assignments X=Xx)

= For each new observation e:
1. Sample transition, once for each current particle x

v’ = sample(P(X'|x))

2. For each new sample x’, compute importance weights
for the new evidence e:

w(z") = P(elz)

3. Finally, normalize by resampling the importance
weights to create N new particles
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HMM Examples &
Applications



P4: Ghostbusters

Noisy distance prob
Plot: Pacman's grandfather, Grandpac, True distance = 8

learned to hunt ghosts for sport.

15
He was blinded by his power, but could

hear the ghosts’ banging and clanging.

13

11

Transition Model: All ghosts move
randomly, but are sometimes biased

Emission Model: Pacman knows a 1
“noisy” distance to each ghost



Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles




Which Algorithm?

Exact filter, uniform initial beliefs




Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles




Robot Localization

= |n robot localization:
= We know the map, but not the robot’s position
= QObservations may be vectors of range finder readings

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique




Particle Filter Localization (Sonar)
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[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

Mﬁﬂ‘ﬁ,._—_———“

)
i

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi]



