CSE 573: Artificial Intelligence Winter 2019

Hidden Markov Models

Hanna Hajishirzi

Many slides adapted from Pieter Abbeel, Dan Klein, Dan Weld, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Today

HMMs

- Particle filters
- Demos!
- Applications:
 - Robot localization / mapping
- Bayes Nets

Recap: Reasoning Over Time

- Markov models $(x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow \cdots \rightarrow x_4)$ $P(X_1) \qquad P(X|X_{-1})$
- Hidden Markov models

P(E|X)

Х	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Inference: Base Cases

 $= P(x_1)P(e_1|x_1)$

$$P(X_2)$$
$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$

• Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

• Then, after evidence comes in:

$$\frac{P(X_{t+1}|e_{1:t+1})}{\propto_{X_{t+1}}} = \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})} \\ \propto_{X_{t+1}} \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(X_{t+1}, e_{t+1}|e_{1:t})}$$

 $= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$

 $= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$

• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Filtering

Elapse time: compute P(X_t | e_{1:t-1}) $P(x_t | e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) \cdot P(x_t | x_{t-1})$ Observe: compute P(X_t | e_{1:t}) $P(x_t | e_{1:t}) \propto P(x_t | e_{1:t-1}) \cdot P(e_t | x_t)$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

Example: Weather HMM

R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	Ut	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Approximate Inference

- Sometimes |X| is too big for exact inference
 - |X| may be too big to even store B(X)
 - E.g. when X is continuous
 - |X|² may be too big to do updates
- Solution: approximate inference by sampling
- How robot localization works in practice

What is Sampling?

- Goal: Approximate the original distribution:
- Approximate with Gaussian distribution

 Draw samples from a distribution close enough to the original distribution

Approximate Solution: Perfect Sampling

Converges to the exact value for large N

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles: (3,3) (2,3) (3,2) (3,2) (3,2) (3,2) (1,2) (3,3) (3,3) (2,3)

Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

(3,3)(2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2)(2,3)(3,2)

(3,1)

(3,3)(3,2)

(1,3)

(2,3) (3,2)(2,2)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Downweight samples based on the evidence

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particle Filtering: Resample

Particles:

(3,3) (3,2) (1,3)(2,3)(3,2) (3,2)

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

(3,2) w=.9	
(2,3) w=.2	
(3,2) w=.9	
(3,1) w=.4	
(3,3) w=.4	
(3,2) w=.9	
(1,3) w=.1	
(2,3) w=.2	
(3,2) w=.9	
(2,2) w=.4	
(New) Particles:	
(3,2)	
(2,2)	
(3,2)	
(2,3)	
(3,3)	
(3,2)	
(1,3)	
(2,3)	
(2.2)	

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

			Elapse			Weight		Resample			
•	•						•			•	
			v		•	۷					•
Partic	les:			Particles:			Particles:		(New)	Partic	les:
(3,3	3)			(3,2)			(3,2) w=.9		(3,2	.)	
(2,3	3)			(2,3)			(2,3) w=.2		(2,2)	
(3,3	3)		(3,2)		(3,2) w=.9			(3,2)			
(3,2	2)		(3,1)		(3,1) w=.4			(2,3)			
(3,3) (3,3)				(3,3) w=.4		(3,3)					
(3,2	(3,2) (3,2)			(3,2) w=.9 (3,2)							
(1,2	(1,2) (1,3)			(1,3) w=.1			(1,3)				
(3,3	3)			(2,3)			(2,3) w=.2		(2,3)	
(3,3	3)			(3,2)			(3,2) w=.9		(3,2	2)	
(2,3	(2,3) (2,2)			(2,2) w=.4			(3,2)				

Particle Filtering Summary

- Represent current belief P(X | evidence to date) as set of *n* samples (actual assignments X=x)
- For each new observation e:
 - 1. Sample transition, once for each current particle x

 $x' = \operatorname{sample}(P(X'|x))$

2. For each new sample x', compute importance weights for the new evidence e:

$$w(x') = P(e|x')$$

3. Finally, normalize by resampling the importance weights to create N new particles

HMM Examples & Applications

P4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- Transition Model: All ghosts move randomly, but are sometimes biased

 Emission Model: Pacman knows a "noisy" distance to each ghost **Noisy distance prob** True distance = 8

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Exact filter, uniform initial beliefs

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

