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Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?
= We (or our agents) need to reason about unknown variables, given evidence
= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)



Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as our
probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to represent
explicitly

* Hard to learn (estimate) anything empirically about more than a few variables
at atime

= Bayes’ nets: a technique for describing complex joint distributions
(models) using simple, local distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

" |Local interactions chain together to give global, indirect interactions



Example Bayes’ Net: Car

alternator fanbelt
broken broke

fuel line starter
hlocked hroke



Net: Insurance

Example Bayes’




Graphical Model Notation

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved)

= Arcs: interactions

®» |ndicate “direct influence” between variables @

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean Toothache @

direct causation (in general, they don’t!)



Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence



Example: Traffic

= Variables:
= R:I[trains
= T:There is traffic

= Model 1: independence = Model 2: rain causes traffic

®
Q @

= Which one is better?



Example: Alarm Network

= Variables
= B: Burglary

= A: Alarm goes off
Burglary
= M: Mary calls
J: John calls

E: Earthquake!



Bayes’ Net Semantics

= Aset of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(X‘ﬂl .. .(ln.)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

T
P(z1,z0,...2n) = [] P(zi|parents(X;))

=1

= Example: @
P(+cavity, 4catch, -toothache) @




Probabilities in BNs

= Why are we guaranteed that setting

T
P(z1,22,...20) = [[ P(wzi|parents(X;))
i=1

results in a proper joint distribution?

n

* Chain rule (valid for all distributions): P(zy,20,...2n) = |[ Plilzy ... ®i—1)
i=1

= Assume conditional independences: P(x;|x1,... . 2i_1) = P(x;|parents(X;))

T
= Consequence:  P(z1,x5,...25) = || £(=i|parents(X;))
i=1

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies



Example: Coin Flips

P(X1) P(X7) P(Xn)

h |05 h |05 o h |05

t |05 t |05 t |05
P(h,h,t,h) = PX1=hPX2=hPX3=1t)P(X4=h)

Only distributions whose variables are absolutely independent can be
represented by a Bayes ’ net with no arcs.



O

P(R)

Example: Traffic

+r

1/4

3/4

+r

P(T|R)

+t

3/4

1/4

+t

1/2

1/2

P(4r, —t) =

P(R = +r)P(T = —t|R = +1)

P(+r)P(—t| + 1)



B P(B)
+b | 0.001
-b | 0.999
A J P(J|A)
+a | 4] 0.9
+a - 0.1
-a +j 0.05
-a -] 0.95
P(+b, —e,+a

Example: Alarm Network

::_j'; —I_m) —

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+a | +m 0.7
+3 -m 0.3
-a +m 0.01
-a -m 0.99

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+tb | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
b | -e | -a 0.999




Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
-b | 0.999 -e | 0.998
A | J | PUIA) o A | M |P(M|A)
va | 4 | 09 e | oo B | E| A | P(AIBE)
+a | -] 0.1 +a | -m 0.3 tb | te | +a 0.95
-3 +] 0.05 a | +m 0.01 +b | +e | -a 0.05
a | 5 | 095 a | -m | 099 | e | e Oes
+tb | -e | -a 0.06
. -b | +e | +a 0.29
| | - N
P( | ba €, T4, —J, _I_m) - b | +e | -a 0.71
P(+b)P(—e)P(+a| + b, —6)P(—j| 4 a,)P(—f—fm,| + @) — | b | -e| +a 0.001
b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Example: Traffic

= Causal direction

P(R)
+r 1/4
-r 3/4 P(T, R)
P(T‘R) +r +t 3/16
+r +t 3/4 i t 1/16
» a -r +t 6/16
-r -t 6/16
-r +t 1/2
-t 1/2




Example: Reverse Traffic

= Reverse causality?

P(T)
+t 9/16
t | 7/16 P(T,R)
P(R‘T) +r +t 3/16
+r -t 1/16
+t +r 1/3
P 2/3 -r +t 6/16
-r -t 6/16
-t +r 1/7
-r 6/7




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)
= E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(x;|lx1, ... 251) = P(xs|parents(X;))



Bayes’ Nets

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
* Inference: given a fixed BN, whatis P(X | e)?

= Representation: given a BN graph, what kinds of distributions can it encode?

"= Modeling: what BN is most appropriate for a given domain?



Bayes’ Net Semantics

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1



Bayes’ Nets

JRepresentation

= Probabilistic Inference

= Conditional Independences

= |earning Bayes’ Nets from Data



Inference

" |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(Q|E1 =e1,... B, = ¢y)

= Most likely explanation:

argmax, P(Q =q|E1 =e7...)



Inference by Enumeration

* Works fine with
" General case: = We want: multiple query
= Evidence variables: Eyp...Ey=e1...€ X1, Xo,...Xn p(Ql varSab/es, too
61 L ] [ ] [ ] Ek

" Query®variable: Q All variables
= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize

entries consistent of Query and evidence
with the evidence 1
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Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B |+ j,4+m) xp P(B,+j,+m) °
—ZP (B,e,a,+j,+m)
= ZP P(a|B,e)P(+j|a)P(+mla)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B,—e)P(+j| — a)P(+m| — a)



Size of a Bayes Net

= How big is a joint distribution over N = Both give you the power to calculate
Boolean variables?
5N P(X1,X2,... Xn)

= BNs: Huge space savings!

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1) = Also faster to answer queries (coming)

= Also easier to elicit local CPTs



