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Probabilistic Models

▪ Models describe how (a portion of) the world works

▪ Models are always simplifications
▪ May not account for every variable
▪ May not account for all interactions between variables
▪ “All models are wrong; but some are useful.”

– George E. P. Box

▪ What do we do with probabilistic models?
▪ We (or our agents) need to reason about unknown variables, given evidence
▪ Example: explanation (diagnostic reasoning)
▪ Example: prediction (causal reasoning)



Bayes’ Nets: Big Picture

▪ Two problems with using full joint distribution tables as our 
probabilistic models:
▪ Unless there are only a few variables, the joint is WAY too big to represent 

explicitly
▪ Hard to learn (estimate) anything empirically about more than a few variables 

at a time

▪ Bayes’ nets: a technique for describing complex joint distributions 
(models) using simple, local distributions (conditional probabilities)
▪ More properly called graphical models
▪ We describe how variables locally interact
▪ Local interactions chain together to give global, indirect interactions



Example Bayes’ Net: Car



Example Bayes’ Net: Insurance



Graphical Model Notation

▪ Nodes: variables (with domains)
▪ Can be assigned (observed) or unassigned 

(unobserved)

▪ Arcs: interactions
▪ Indicate “direct influence” between variables
▪ Formally: encode conditional independence 

(more later)

▪ For now: imagine that arrows mean 
direct causation (in general, they don’t!)



Example: Coin Flips

▪ N independent coin flips

▪ No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

▪ Variables:
▪ R: It rains

▪ T: There is traffic

▪ Model 1: independence

▪ Which one is better? 

R

T

R

T

▪ Model 2: rain causes traffic



Example: Alarm Network

▪ Variables
▪ B: Burglary

▪ A: Alarm goes off

▪ M: Mary calls

▪ J: John calls

▪ E: Earthquake!

Burglary Earthqk

Alarm

John 
calls

Mary 
calls



Bayes’ Net Semantics

▪ A set of nodes, one per variable X

▪ A directed, acyclic graph

▪ A conditional distribution for each node

▪ A collection of distributions over X, one for each 
combination of parents’ values

▪ CPT: conditional probability table

▪ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

▪ Bayes’ nets implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

▪ Example:



Probabilities in BNs

▪ Why are we guaranteed that setting

results in a proper joint distribution?  

▪ Chain rule (valid for all distributions): 

▪ Assume conditional independences: 

→ Consequence:

▪ Not every BN can represent every joint distribution

▪ The topology enforces certain conditional independencies



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

𝑃 𝑋1 = ℎ 𝑃 𝑋2 = ℎ 𝑃 𝑋3 = 𝑡 𝑃(𝑋4 = ℎ)



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

𝑃 +𝑟 𝑃(−𝑡| + 𝑟)

𝑃 𝑅 = +𝑟 𝑃(𝑇 = −𝑡|𝑅 = +𝑟)



Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ
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Example: Traffic

▪ Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example: Reverse Traffic

▪ Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Causality?

▪ When Bayes’ nets reflect the true causal patterns:

▪ Often simpler (nodes have fewer parents)
▪ Often easier to think about
▪ Often easier to elicit from experts

▪ BNs need not actually be causal

▪ Sometimes no causal net exists over the domain 
(especially if variables are missing)

▪ E.g. consider the variables Traffic and Drips
▪ End up with arrows that reflect correlation, not causation

▪ What do the arrows really mean?

▪ Topology may happen to encode causal structure
▪ Topology really encodes conditional independence



Bayes’ Nets

▪ A Bayes’ net is an

efficient encoding

of a probabilistic

model of a domain

▪ Questions we can ask:

▪ Inference: given a fixed BN, what is P(X | e)?

▪ Representation: given a BN graph, what kinds of distributions can it encode?

▪ Modeling: what BN is most appropriate for a given domain?



Bayes’ Net Semantics

▪ A directed, acyclic graph, one node per random variable

▪ A conditional probability table (CPT) for each node

▪ A collection of distributions over X, one for each combination 
of parents’ values

▪ Bayes’ nets implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Bayes’ Nets

▪ Representation

▪ Probabilistic Inference

▪ Conditional Independences

▪ Learning Bayes’ Nets from Data



▪ Examples:

▪ Posterior probability

▪ Most likely explanation:

Inference

▪ Inference: calculating some 
useful quantity from a joint 
probability distribution



Inference by Enumeration

▪ General case:
▪ Evidence variables: 
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Inference by Enumeration in Bayes’ Net

▪ Given unlimited time, inference in BNs is easy

▪ Reminder of inference by enumeration by example:
B E

A

MJ



Size of a Bayes’ Net

▪ How big is a joint distribution over N 
Boolean variables?

2N

▪ How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

▪ Both give you the power to calculate

▪ BNs: Huge space savings!

▪ Also easier to elicit local CPTs

▪ Also faster to answer queries (coming)


