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Markov Models (Markov Chains)

........ »@

= A Markov model defines
= 3 joint probability distribution:

P(Xl,Xg,Xg,X4) = P(Xl)P(XQ]Xl)P(XngQ)P(X4]X3)
= More generally:
P(X1,Xo,...,X7) = P(X1)P(X2|X1)P(X3|X2) ... P(Xp|X7_1)
N
P(X1,...,Xn) = P(X1) | | P(X¢| Xi-1)
t=2

= One common inference problem:
= Compute marginals P(X)) for all time steps ¢



Example Markov Chain: Weather

= |nitial distribution: 1.0 sun 0.3 0-9
0.7
0.1

= What is the probability distribution after one step?

P(Xy =sun) = +
P(X, = sun|Xy = rain)P(X1 = rain)

+ 0.3-0.0=0.9



Mini-Forward Algorithm

= Question: What’s P(X) on some day t?

OO OOy

P(xq1) = known

P(SL’t) — Z P(xi_q,x4)

Tt—1



Example Run of Mini-Forward Algorithm

" From initial observation of sun

(o0, (o1) (ore) {otos)==>{3%s)

P(Xy) P(X,) P(X5) P(Xy) P(X,)
= From initial observation of rain
(30) (07) {o5s) (s )=b{ o050 )
P(Xy) P(X,) P(X5) P(Xy) P(X..)
= From yet another initial distribution P(X,):

L) = (o2

P(X1) P(X.)



Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!




Stationary Distributions

" For most chains: = Stationary distribution:
= |Influence of the initial distribution " The distribution we end up with is called
gets less and less over time. the stationary distribution P,_of the
* The distribution we end up in is chain
independent of the initial distribution " |t satisfies

Poo(X) = Poy1(X) = ZP(X‘x)POO(x)



Example: Stationary Distributions

= Question: What’s P(X) at time t = infinity?

O-O-O@

Py (sun) = P(sun|sun)Py(sun) + P(sun|rain) Py (rain)

Py (rain) = P(rain|sun)Ps (sun) + P(rain|rain) Py (rain)

Py (sun) = 0.9P (sun) + 0.3P5(rain) X, | X | P(XIX.,)

Py (rain) = 0.1 Py (sun) + 0.7Px (rain) sun | sun| 0.9

( n) — 3P (Tam) su-n rain 0.1

Py (rain) = 1/3 Py (sun) ol | > 03
rain 0.7

:,> Py (sun) = 3/4 rain
Also: P (sun) + P (rain) = 1 Py (rain) = 1/4




Hidden Markov Models

= Markov chains not so useful for most agents
= Need observations to update your beliefs

= Hidden Markov models (HMMs)

= Underlying Markov chain over states X
= You observe outputs (effects) at each time step

OOE
® O e




Example: Weather HMM

P(X; | X¢-1)

Rain, 4

Rain,

Umbrella, , Umbrella, Umbrella,,,

P(E; | Xy)

= An HMM is defined by:

= |nitial distribution:
" Transitions:
" Fmissions:

P(X1)
P(X: | X; 1)
P(E; | Xy)

Rain,,,

o (7

Rii | Ry | P(R{R,) R, U, | P(U,R)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +u 0.2
-r -r 0.7 -r -u 0.8




Example: Ghostbusters HMM

P(X;) = uniform

P(X|X") = usually move clockwise, but
sometimes move in a random direction or
stay in place

P(R;;|X) = same sensor model as before:
red means close, green means far away.

Q=)0 (0)----»

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

P(X,)

165-p1/2

1/6

0

0

0

P(X| X =<1,2>)




Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state
?_’?_’?_’ o

= Quiz: does this mean that evidence variables are guaranteed to be independent?

= [No, they tend to correlated by the hidden state]



Real HMM Examples

= Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:

= QObservations are words (tens of thousands)
= States are translation options

= Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the distribution
B.(X) = P.(X, | ey, ..., &) (the belief state) over time

We start with B,(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer

N
Prob 0 1

t=0

Sensor model: can read in which directions there is a wall,
never more than 1 mistake

Motion model: may not execute action with small prob.




Example: Robot Localization

N
Prob 0 1

t=1

Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake




Example: Robot Localization

Prob 0 1

t=2



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1

t=4



Example: Robot Localization

Prob 0 1

t=5



Inference: Base Cases

7

OnO

P(Xqle1) P(X>)
P(zile1) = P(x1,e1)/P(e1) P(xp) =) P(x1,22)
o Plag,e) =" P(a1)Pazlz1)

= P(z1)P(e1|z1)



Passage of Time

= Assume we have current belief P(X | evidence to date) @ @
—>
B(Xt) — P(thel:t)

= Then, after one time step passes:

P(Xt—l—l‘elzt) — ZP(XtJrlaxt‘el:t)

Lt

—ZP Xt_|_1‘513t,€1 t) ($t|€1:t) " Orcompactly:

(X P(X'
= ZP Xﬁ—l’wt) (th|€1:t) ++1) Z ) B(:)

= Basicidea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes



Example: Passage of Time

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

ﬂﬂ

m

. . 0.05

<0 . 01

B'(x"N =Y P(X'|z)B(z)

Transition model: ghosts usually go clockwise



Observation

= Assume we have current belief P(X | previous evidence):
B'(Xi41) = P(Xey1len:t)
= Then, after evidence comes in: ‘
P(Xt+1’€1:t+1) — P(Xt—|—176t—|—1’€1:t)/P(€t—|—1‘€1:t)
XX P(Xt+17€t+1‘61:t)
= P(est1ler:s, Xey1)P(Xiq1ler)
= P(es11|Xey1)P(Xiq1ler)

= Basicidea: beliefs “reweighted”
" Or, compactly: by likelihood of evidence
B(Xi11) xx,,, Plers1]|Xi41)B (Xig1) = Unlike passage of time, we have
to renormalize



Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

uu
<0.01 <0.01/(<0.01|<0.01 <0.01|<0.01}|<0.01f|<0.01[<0.01{<0.01

Before observation After observation

B(X) «x P(e|X)B'(X)



Example: Weather HMM

B(+r) = 0.5
B(-r) =0.5

B’(+r) = 0.5 B’(+r) = 0.627
B’(-r) =0.5 B’(-r) =0.373
B(+r) = 0.818 B(+r) = 0.883
B(-r) =0.182 B(-r) =0.117
Rain, Rain,

Umbrella, Umbrella,

Ri | Rut | P(RytIR}) R, U, | P(U,R)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8




The Forward Algorithm

= \We are given evidence at each time and want to know

Bi(X) = P(X¢le1:t)

= We can derive the following updates

P(mt|€1:t) XX P(iUtael:t)

We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end...

= > P(z4_1,2t,€1:1)

Ti—1

= > P(zy_1,e1:4-1)P(zt|zi—1) P(et|zt)

Lt—1

= P(etlxt) Y P(atlwp—1)P(xi—1,€1:4—1)

Ti—1




Online Belief Updates

= Every time step, we start with current P(X | evidence)
= We update for time:

P(x¢ler:4—1) = Z P(xi_1le1:4—1) - P(xy|eg—q) @_’@

Lt—1

= We update for evidence: @

P(x¢ler+) xx P(xiler+—1) - Plet|xt)

= The forward algorithm does both at once (and doesn’t normalize)



Example Pac-man




Summary: Filtering

Filtering is the inference process of finding a distribution over X; given e, through e;:

P( XT | e1:t )

We first compute P( X, | e, ):
P 1€ P(z1le1) < P(xy) - P(ey|xq)

Foreachtfrom 2to T, we have P( X, | €11 )

Elapse time: compute P( X, | e,...,)

P(xtlelzt—l) — Z P(£t—1|€1:t—1) ' P($t|$t—1)

Lt—1

Observe: compute P(X, | 1.1, €)=P(X.| e,)

P(xileq.s) o< P(xilers—1) - Pleg|xt)



