CSE 573: Artificial Intelligence Winter 2019

Markov Models & Hidden Markov Models

Hanna Hajishirzi

Many slides adapted from Pieter Abbeel, Dan Klein, Dan Weld, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Markov Models (Markov Chains)

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \cdots \rightarrow (X_N)$$

- A Markov model defines
 - a joint probability distribution:

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$

More generally:

 $P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$

$$P(X_1, \dots, X_n) = P(X_1) \prod_{t=2}^N P(X_t | X_{t-1})$$

- One common inference problem:
 - Compute marginals $P(X_t)$ for all time steps t

Example Markov Chain: Weather

Initial distribution: 1.0 sun

What is the probability distribution after one step?

$$P(X_2 = \operatorname{sun}) = P(X_2 = \operatorname{sun}|X_1 = \operatorname{sun})P(X_1 = \operatorname{sun}) + P(X_2 = \operatorname{sun}|X_1 = \operatorname{rain})P(X_1 = \operatorname{rain})$$

 $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Mini-Forward Algorithm

Question: What's P(X) on some day t?

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

$$P(x_1) = \text{known}$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Example Run of Mini-Forward Algorithm

From initial observation of sun

$$\begin{pmatrix} 1.0 \\ 0.0 \end{pmatrix} \begin{pmatrix} 0.9 \\ 0.1 \end{pmatrix} \begin{pmatrix} 0.84 \\ 0.16 \end{pmatrix} \begin{pmatrix} 0.804 \\ 0.196 \end{pmatrix} \longrightarrow \begin{pmatrix} 0.75 \\ 0.25 \end{pmatrix}$$

$$P(X_1) P(X_2) P(X_3) P(X_4) P(X_{\infty})$$

From initial observation of rain

$$\begin{pmatrix} 0.0 \\ 1.0 \\ P(X_1) \end{pmatrix} \begin{pmatrix} 0.3 \\ 0.7 \\ P(X_2) \end{pmatrix} \begin{pmatrix} 0.48 \\ 0.52 \\ P(X_3) \end{pmatrix} \begin{pmatrix} 0.588 \\ 0.412 \\ P(X_4) \end{pmatrix} \longrightarrow \begin{pmatrix} 0.75 \\ 0.25 \\ P(X_{\infty}) \end{pmatrix}$$

From yet another initial distribution P(X₁):

$$\left\langle \begin{array}{c} p \\ 1-p \\ P(X_1) \end{array} \right\rangle$$

Pac-man Markov Chain

Pac-man knows the ghost's initial position, but gets no observations!

Stationary Distributions

• For most chains:

- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution

Stationary distribution:

- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Example: Stationary Distributions

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

 $P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$ $P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$

 $P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$ $P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$

 $P_{\infty}(sun) = 3P_{\infty}(rain)$ $P_{\infty}(rain) = 1/3P_{\infty}(sun)$

Also:
$$P_{\infty}(sun) + P_{\infty}(rain) = 1$$

$$P_{\infty}(sun) = 3/4$$
$$P_{\infty}(rain) = 1/4$$

X _{t-1}	X _t	$P(X_t X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step

Example: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transitions:
- Emissions:

 $P(X_t \mid X_{t-1})$ $P(E_t \mid X_t)$

R _{t-1}	R _t	$P(R_t R_{t-1})$	R _t	Ut	$P(U_t R_t)$
+r	+r	0.7	+r	+u	0.9
+r	-r	0.3	+r	-u	0.1
-r	+r	0.3	-r	+u	0.2
-r	-r	0.7	-r	-u	0.8

Example: Ghostbusters HMM

- $P(X_1) = uniform$
- P(X|X') = usually move clockwise, but sometimes move in a random direction or stay in place
- P(R_{ij} | X) = same sensor model as before: red means close, green means far away.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

P(X₁)

1/6	1	1/2
0	1/6	0
0	0	0

P(X|X'=<1,2>)

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process: future depends on past via the present
 - Current observation independent of all else given current state

- Quiz: does this mean that evidence variables are guaranteed to be independent?
 - [No, they tend to correlated by the hidden state]

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution
 B_t(X) = P_t(X_t | e₁, ..., e_t) (the belief state) over time
- We start with B₁(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

required 1 mistake

Inference: Base Cases

 $= P(x_1)P(e_1|x_1)$

$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$

$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$

• Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

$$B'(X') = \sum_{x} P(X'|x)B(x)$$

Transition model: ghosts usually go clockwise

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

• Then, after evidence comes in:

$$\frac{P(X_{t+1}|e_{1:t+1})}{\propto_{X_{t+1}}} = \frac{P(X_{t+1},e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})} \\ \propto_{X_{t+1}} \frac{P(X_{t+1},e_{t+1}|e_{1:t})}{P(X_{t+1},e_{t+1}|e_{1:t})}$$

 $= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$

 $= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$

• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

 $B(X) \propto P(e|X)B'(X)$

Example: Weather HMM

R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	Ut	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

 $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

The forward algorithm does both at once (and doesn't normalize)

Example Pac-man

Summary: Filtering

- Filtering is the inference process of finding a distribution over X_T given e_1 through e_T : $P(X_{T} | e_{1.t})$
- We first compute $P(X_1 | e_1)$:
- For each t from 2 to T, we have P($X_{t-1} | e_{1\cdot t-1}$) $P(x_1|e_1) \propto P(x_1) \cdot P(e_1|x_1)$
- Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute $P(X_t | e_{1:t-1}, e_t) = P(X_t | e_{1:t})$

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$