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Markov Models (Markov Chains)

▪ A Markov model defines

▪ a joint probability distribution:

X2X1 X3 X4

▪ One common inference problem:

▪ Compute marginals P(Xt) for all time steps t

XN



Example Markov Chain: Weather

▪ Initial distribution: 1.0 sun

▪ What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1



Mini-Forward Algorithm

▪ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



Example Run of Mini-Forward Algorithm

▪ From initial observation of sun

▪ From initial observation of rain

▪ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…



Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!



▪ Stationary distribution:
▪ The distribution we end up with is called 

the stationary distribution   of the 
chain

▪ It satisfies

Stationary Distributions

▪ For most chains:
▪ Influence of the initial distribution 

gets less and less over time.

▪ The distribution we end up in is 
independent of the initial distribution



Example: Stationary Distributions

▪ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:



Hidden Markov Models

▪ Markov chains not so useful for most agents
▪ Need observations to update your beliefs

▪ Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X

▪ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

▪ An HMM is defined by:
▪ Initial distribution:
▪ Transitions:
▪ Emissions:



Example: Ghostbusters HMM

▪ P(X1) = uniform

▪ P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

▪ P(Rij|X) = same sensor model as before:
red means close, green means far away.
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Conditional Independence

▪ HMMs have two important independence properties:

▪ Markov hidden process: future depends on past via the present

▪ Current observation independent of all else given current state

▪ Quiz: does this mean that evidence variables are guaranteed to be independent?

▪ [No, they tend to correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Real HMM Examples

▪ Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)

▪ States are specific positions in specific words (so, tens of thousands)

▪ Machine translation HMMs:
▪ Observations are words (tens of thousands)

▪ States are translation options

▪ Robot tracking:
▪ Observations are range readings (continuous)

▪ States are positions on a map (continuous)



Filtering / Monitoring

▪ Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

▪ We start with B1(X) in an initial setting, usually uniform

▪ As time passes, or we get observations, we update B(X)

▪ The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program



Example: Robot Localization

t=0

Sensor model: can read in which directions there is a wall, 
never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1

Lighter grey: was possible to get the reading, but less likely b/c 
required 1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference: Base Cases

E1

X1

X2X1



Passage of Time

▪ Assume we have current belief P(X | evidence to date)

▪ Then, after one time step passes:

▪ Basic idea: beliefs get “pushed” through the transitions
▪ With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

▪ Or compactly:



Example: Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)

Transition model: ghosts usually go clockwise



Observation

▪ Assume we have current belief P(X | previous evidence):

▪ Then, after evidence comes in:

▪ Or, compactly:

E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence

▪ Unlike passage of time, we have 
to renormalize



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117



The Forward Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…



Online Belief Updates

▪ Every time step, we start with current P(X | evidence)

▪ We update for time:

▪ We update for evidence:

▪ The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2



Example Pac-man



Summary: Filtering

▪ Filtering is the inference process of finding a distribution over XT given e1 through eT : 
P( XT | e1:t )

▪ We first compute P( X1 | e1 ):

▪ For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 

▪ Elapse time: compute P( Xt | e1:t-1 )

▪ Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )


