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Reasoning over Time or Space

▪ Often, we want to reason about a sequence of observations

▪ Speech recognition

▪ Robot localization

▪ User attention

▪ Medical monitoring

▪ Need to introduce time (or space) into our models



Markov Models

▪ Value of X at a given time is called the state

▪ Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

▪ Stationarity assumption: transition probabilities the same at all times

▪ Same as MDP transition model, but no choice of action

X2X1 X3 X4



Markov Models (Markov Chains)

▪ A Markov model defines

▪ a joint probability distribution:

X2X1 X3 X4

▪ One common inference problem:

▪ Compute marginals P(Xt) for all time steps t

XN



Conditional Independence

▪ Basic conditional independence:
▪ Past and future independent of the present
▪ Each time step only depends on the previous
▪ This is called the (first order) Markov property
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Example Markov Chain: Weather

▪ States: X = {rain, sun}
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Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ Conditional Probability Table 
(CPT) P(Xt | Xt-1):



Example Markov Chain: Weather

▪ Initial distribution: 1.0 sun

▪ What is the probability distribution after one step?
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Chain Rule and Markov Models
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Chain Rule and Markov Models
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Mini-Forward Algorithm

▪ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



Example Run of Mini-Forward Algorithm

▪ From initial observation of sun

▪ From initial observation of rain

▪ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…

[Demo: L13D1,2,3]



Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!



▪ Stationary distribution:
▪ The distribution we end up with is called 

the stationary distribution   of the 
chain

▪ It satisfies

Stationary Distributions

▪ For most chains:
▪ Influence of the initial distribution 

gets less and less over time.

▪ The distribution we end up in is 
independent of the initial distribution



Example: Stationary Distributions

▪ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:



Application of Stationary Distribution: Web Link Analysis

▪ PageRank over a web graph
▪ Each web page is a state

▪ Initial distribution: uniform over pages

▪ Transitions:

▪ With prob. c, uniform jump to a
random page (dotted lines, not all shown)

▪ With prob. 1-c, follow a random
outlink (solid lines)

▪ Stationary distribution
▪ Will spend more time on highly reachable pages
▪ E.g. many ways to get to the Acrobat Reader download page
▪ Somewhat robust to link spam
▪ Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors


